What Is the Hidden Impact of NYC Building Codes on Residential Architecture?

What Is the Hidden Impact of NYC Building Codes on Residential Architecture?

Brooklyn architecture firms

Historical Context: Development of NYC Building Codes


The advancement of New york city City building codes is a fascinating journey that provides insight into exactly how the citys unique architectural landscape has actually been shaped in time. What Is the Hidden Influence of NYC Building Codes on Residential Architecture? . These codes, usually seen as simple regulations, have actually wielded a surprise yet profound impact on residential architecture, dictating the kind and feature of urban space.


The story begins in the late 19th century with the Tenement House Act of 1867, the very first substantial legislative attempt to resolve the awful living conditions in New york cities rapidly growing shanty towns. This regulation mandated basic sanitary problems, consisting of the requirement for one toilet per 20 residents and fire escapes on structures. Although fundamental, it noted the beginning of a governing framework intended to shield public wellness and safety, unintentionally influencing architectural design by introducing components like boosted air flow and natural light.


As the city expanded, so did the intricacy of its building codes. The 1916 Zoning Resolution was an innovative development, replying to the urban density that threatened to obstruct sunlight and air movement in the city streets. This law presented the idea of "" troubles,"" calling for structures to taper as they increased, successfully bring to life the renowned NYC high-rise shape. Architects accepted this difficulty, causing innovative layouts that balanced aesthetic appeal with functional requirement.


Quick onward to the mid-20th century, and the introduction of the Multiple House Regulation in 1929 additional emphasized health and wellness, concentrating on fireproofing and accessibility to open up spaces. This duration likewise saw a raising understanding of the social implications of architecture, with building codes starting to reflect problems about affordability and ease of access, establishing the stage for modern-day residential growths.


The post-war boom brought about new products and technologies, triggering updates to the codes to accommodate developments like strengthened concrete and steel. The 1968 Building regulations overhaul marked a substantial modernization effort, systematizing many techniques and establishing new standards for structural stability and security. These adjustments played an essential duty in shaping the citys residential architecture, permitting even more innovative expressions while making certain the security of its citizens.


In recent decades, sustainability has actually become a main theme in NYC building codes, showing broader ecological problems. The Green Building Legislation of 2005 and succeeding updates have actually mandated power effectiveness standards, influencing the design and construction of residential buildings to include functions like green roofs and energy-efficient systems. These codes have not only contributed to lowering the citys carbon impact but have actually likewise spurred architectural technology, as developers seek to combine environmental obligation with urban living.


Throughout its background, New york cities building codes have actually been greater than simply a 20

Influence On Design Appearances and Materials


New York City, a busy metropolitan area renowned for its architectural marvels, is a city where the skyline is constantly advancing. Nonetheless, under the surface of this ever-changing cityscape exists an intricate internet of building codes that considerably affect the design aesthetics and products used in residential architecture. These regulations, while primarily aimed at ensuring security, sustainability, and ease of access, have a profound and occasionally refined impact on the aesthetic selections and product choices of architects and designers.


Among one of the most considerable ways NYC building codes influence design visual appeals is with zoning regulations. These codes determine the elevation, mass, and trouble needs for structures, which in turn influence the total silhouette and form of residential structures. For example, the legendary "" wedding-cake"" design of very early 20th-century skyscrapers was substantiated of zoning laws that required setbacks to allow sunshine to get to the streets listed below. Today, these regulations continue to form the city's architectural account, engaging architects to artistically navigate these restraints to generate cutting-edge styles that adhere to the law while still achieving aesthetic allure.


Furthermore, building codes in NYC required strict power effectiveness and sustainability criteria, which have led to a change in the products made use of in residential construction. The drive in the direction of sustainability has motivated the use of materials that are not only eco-friendly but additionally cosmetically pleasing. As an example, the raised use of green roofs, solar panels, and high-performance glazing systems is a direct feedback to these codes. These products not just contribute to a structures sustainability qualifications but also affect its visual and tactile high qualities, usually resulting in a contemporary, streamlined appearance that is now associated with contemporary urban living.


Fire security regulations additionally play a crucial duty in establishing the products used in NYC residential architecture. Building codes require making use of fire-resistant materials, which has traditionally limited the choice to particular sorts of stone, brick, and concrete. While these products have a classic charm, contemporary advancements have actually broadened the palette to include fire-rated timber and progressed compounds, permitting higher versatility in design while preserving compliance with security requirements. This has enabled architects to explore new visual opportunities, blending traditional and contemporary designs in unique ways.

What Is the Hidden Impact of NYC Building Codes on Residential Architecture? - Minimalist architects NYC

  • Black urban designers NYC
  • Sustainable modern architects NYC
  • NYC architecture companies


Furthermore, availability requirements have prompted architects to rethink the spatial format and design of residential buildings. Functions such as wider entrances, ramps, and easily accessible routes should be perfectly integrated right into the design, influencing not only the functionality however additionally the aesthetic consistency of a space. This requirement has actually driven a trend in the direction of open layout and minimalistic designs, where simpleness and availability coalesce to produce rooms that are both stunning and

Sustainability and Power Performance Demands


New York City, a dynamic metropolitan area renowned for its iconic skyline and architectural marvels, has actually long been at the center of progressive urban development. Nonetheless, below its towering glass facades and historic brownstones exists a nuanced governing framework that significantly influences residential architecture: the citys building codes. Central to these codes are sustainability and energy efficiency requirements, which play a surprise yet extensive duty in shaping the design and performance of residential structures.


The development of New york cities building codes mirrors an expanding commitment to ecological stewardship and energy preservation. As worries concerning climate modification and source depletion magnify, the citys regulations have increasingly prioritized green building techniques. This shift is evident in requireds for energy-efficient appliances, boosted insulation, and the assimilation of renewable energy sources, all targeted at decreasing the carbon impact of residential frameworks.


Among the essential influences of these sustainability needs is the promote cutting-edge architectural solutions that mix kind with feature. Architects and developers are currently tested to produce styles that not only fulfill visual criteria yet additionally adhere to strict energy performance criteria. This has actually brought about the unification of advanced innovations such as green roof coverings, photovoltaic panels, and progressed heating and cooling systems. These aspects not only boost the energy efficiency of structures but also contribute to the overall wellness and health of homeowners by promoting much better indoor air quality and decreasing energy expenses. Green building architects NYC


In addition, New york cities building codes urge the use of sustainable products, which has a causal sequence on the construction industry. By focusing on materials with lower environmental effect, such as recycled steel, reclaimed timber, and low-VOC paints, the city cultivates a market for green products and methods. This focus on sustainability extends past specific buildings, affecting neighborhood development patterns and advertising urban densification as a means to reduce sprawl and protect green areas.


The surprise impact of these codes is likewise evident in the means they drive the retrofitting of existing buildings. Most of NYCs residential structures are years, otherwise centuries, old. The citys energy efficiency demands incentivize the innovation of these structures, guaranteeing they meet existing requirements without compromising their historic personality. This not just maintains the architectural heritage of the city yet additionally improves the livability and energy efficiency of its real estate supply.


In conclusion, the hidden influence of NYCs building codes on residential architecture is profound and diverse. By installing sustainability and energy performance needs right into the regulatory structure, the city not just addresses pressing environmental issues however also fosters technology and resilience in its residential architecture. As NYC remains to develop, these codes will certainly play an essential function in shaping a 52

Obstacles and Opportunities for Architects


The horizon of New york city City is a testament to human ambition, creative thinking, and the power of architectural innovation. Yet, behind the famous shapes and progressive designs exists a complex web of building codes that possess a significant impact over residential architecture. These codes, typically perceived simply as governing difficulties, carry concealed ramifications that shape the really significance of just how architects come close to the design and construction of living spaces in one of the globes most vibrant urban landscapes.


At the heart of NYCs building codes is a dual required: ensuring security and advertising public welfare. These regulations determine everything from structural stability and fire security to access and energy performance. For architects, this converts into a balancing act between imaginative expression and compliance with a thorough collection of criteria. On one hand, these codes make sure that architectural growths contribute favorably to the urban atmosphere by protecting citizens and advertising sustainable techniques. On the various other, they can impose restraints that limit architectural liberty and technology.


Among the most significant ways in which NYC building codes affect residential architecture is via zoning regulations.

What Is the Hidden Impact of NYC Building Codes on Residential Architecture? - Minimalist architects NYC

  1. Brooklyn architecture firms
  2. Minimalist architects NYC
  3. Green building architects NYC
These regulations regulate land usage and dictate the dimension, form, and objective of buildings. For architects, zoning legislations can either offer a canvas of opportunity or a maze of constraints. As an example, elevation constraints and flooring location ratios can considerably affect the horizon shape and the density of residential tasks. This requires architects to be both strategists and artists, functioning within these constraints to make the most of space and aesthetic allure.


Another covert influence of building codes is the drive in the direction of sustainability. NYCs codes have actually progressively incorporated green building standards, pushing architects to integrate energy-efficient systems and sustainable products right into their layouts. This not only challenges architects to introduce however also opens up new opportunities for creative thinking in making ecologically responsible and resource-efficient residential structures. The adoption of green roofs, photovoltaic panels, and advanced insulation strategies are several of the methods architects are redefining urban living in reaction to these codes.


In addition, accessibility requirements mandated by building codes have extensive implications on residential architecture. The need for buildings to be obtainable to individuals with handicaps means architects need to think about the inclusivity of their designs. This can affect whatever from the layout of layout to the selection of products and the unification of assistive technologies. While these criteria ensure that residential spaces are welcoming to all, they also require a thoughtful method to design that transcends simple aesthetic appeals.


To conclude, the surprise impact of NYC building codes on residential architecture is both a challenge and a possibility for architects. While these codes enforce certain restrictions, they likewise work as a stimulant for development, pressing architects to believe

Driving Directions on the maps

Our Batchgeo Maps

View Architecture Firms Near Me in a full screen map

Residential Architect New York


Baobab Architects P.C. Videos

Citations and other links

An architect, 1893.
Occupation
Names Architect
Occupation type
Profession
Activity sectors
Architecture
Civil engineering
Structural engineering
Construction
Project management
Urban planning
Interior design
Visual arts
Description
Competencies Engineering, technical knowledge, building design, planning and management skills
Education required
See professional requirements

An architect is a person who plans, designs, and oversees the construction of buildings.[1] To practice architecture means to provide services in connection with the design of buildings and the space within the site surrounding the buildings that have human occupancy or use as their principal purpose.[2] Etymologically, the term architect derives from the Latin architectus,[3] which derives from the Greek[4] (arkhi-, chief + tekton, builder), i.e., chief builder.[5]

The professional requirements for architects vary from location to location. An architect's decisions affect public safety, and thus the architect must undergo specialised training consisting of advanced education[6] and a practicum (or internship) for practical experience to earn a license to practice architecture. Practical, technical, and academic requirements for becoming an architect vary by jurisdiction though the formal study of architecture in academic institutions has played a pivotal role in the development of the profession.

Origins

[edit]

Throughout ancient and medieval history, most architectural design and construction was carried out by artisans—such as stone masons and carpenters—who rose to the role of master builders. Until modern times, there was no clear distinction between architect and engineer. In Europe, the titles architect and engineer were primarily geographical variations that referred to the same person, often used interchangeably.[7][8] "Architect" derives from Greek á¼€ρχιτέκτων (arkhitéktōn, "master builder," "chief tektōn).[5]

Filippo Brunelleschi is revered as one of the most inventive and gifted architects in history.[9]

It is suggested that various developments in technology and mathematics allowed the development of the professional 'gentleman' architect, separate from the hands-on craftsman. Paper was not used in Europe for drawing until the 15th century but became increasingly available after 1500. Pencils were used for drawing by 1600. The availability of both paper and pencils allowed pre-construction drawings to be made by professionals.[10] Concurrently, the introduction of linear perspective and innovations such as the use of different projections to describe a three-dimensional building in two dimensions, together with an increased understanding of dimensional accuracy, helped building designers communicate their ideas.[10] However, development was gradual and slow-going. Until the 18th century, buildings continued to be designed and set out by craftsmen, with the exception of high-status projects.[10][11]

Architecture

[edit]

In most developed countries only those qualified with an appropriate license, certification, or registration with a relevant body (often a government) may legally practice architecture. Such licensure usually requires a university degree, successful completion of exams, and a training period.[12] Representation of oneself as an architect through the use of terms and titles were restricted to licensed individuals by law, although in general, derivatives such as architectural designer were not legally protected.

To practice architecture implies the ability to practice independently of supervision. The term building design professional (or design professional), by contrast, is a much broader term that includes professionals who practice independently under an alternate profession, such as engineering professionals, or those who assist in the practice of architecture under the supervision of a licensed architect, such as intern architects. In many places, independent, non-licensed individuals may perform design services outside of professional restrictions, such as the design of houses or other smaller structures.

Practice

[edit]

In the architectural profession, technical and environmental knowledge, design, and construction management require an understanding of business as well as design. However, design is the driving force throughout the project and beyond. An architect accepts a commission from a client. The commission might involve preparing feasibility reports, building audits, and designing a building or several buildings, structures, and the spaces among them. The architect participates in developing the requirements the client wants in the building. Throughout the project (planning to occupancy), the architect coordinates a design team. Structural, mechanical, and electrical engineers are hired by the client or architect, who must ensure that the work is coordinated to construct the design.

Design role

[edit]

The architect, once hired by a client, is responsible for creating a design concept that meets the requirements of that client and provides a facility suitable to the required use. The architect must meet with and ask questions to the client, to ascertain all the requirements (and nuances) of the planned project.[13]

Often, the full brief is not clear in the beginning. It involves a degree of risk in the design undertaking. The architect may make early proposals to the client which may rework the terms of the brief. The "program" (or brief) is essential to producing a project that meets all the needs of the owner. This becomes a guide for the architect in creating the design concept.

Design proposal(s) are generally expected to be both imaginative and pragmatic. Much depends upon the time, place, finance, culture, and available crafts and technology in which the design takes place. The extent and nature of these expectations will vary. Foresight is a prerequisite when designing buildings as it is a very complex and demanding undertaking.

Any design concept during the early stage of its generation must take into account a great number of issues and variables, including the qualities of the space(s), the end-use and life-cycle of these proposed spaces, connections, relations, and aspects between spaces, including how they are put together, and the impact of proposals on the immediate and wider locality. The selection of appropriate materials and technology must be considered, tested, and reviewed at an early stage in the design to ensure there are no setbacks (such as higher-than-expected costs) which could occur later in the project.

The site and its surrounding environment, as well as the culture and history of the place, will also influence the design. The design must also balance increasing concerns with environmental sustainability. The architect may introduce (intentionally or not), aspects of mathematics and architecture, new or current architectural theory, or references to architectural history.

A key part of the design is that the architect often must consult with engineers, surveyors, and other specialists throughout the design, ensuring that aspects such as structural supports and air conditioning elements are coordinated. The control and planning of construction costs are also part of these consultations. Coordination of the different aspects involves a high degree of specialized communication, including advanced computer technology such as building information modeling (BIM), computer-aided design (CAD), and cloud-based technologies. Finally, at all times, the architect must report back to the client, who may have reservations or recommendations which might introduce further variables into the design.

Architects also deal with local and federal jurisdictions regarding regulations and building codes. The architect might need to comply with local planning and zoning laws such as required setbacks, height limitations, parking requirements, transparency requirements (windows), and land use. Some jurisdictions require adherence to design and historic preservation guidelines. Health and safety risks form a vital part of the current design, and in some jurisdictions, design reports and records are required to include ongoing considerations of materials and contaminants, waste management and recycling, traffic control, and fire safety.

Means of design

[edit]

Previously, architects employed drawings[10] to illustrate and generate design proposals. While conceptual sketches are still widely used by architects,[14] computer technology has now become the industry standard.[15] Furthermore, design may include the use of photos, collages, prints, linocuts, 3D scanning technology, and other media in design production. Increasingly, computer software is shaping how architects work. BIM technology allows for the creation of a virtual building that serves as an information database for the sharing of design and building information throughout the life-cycle of the building's design, construction, and maintenance.[16] Virtual reality (VR) presentations are becoming more common for visualizing structural designs and interior spaces from the point-of-view perspective.

Environmental role

[edit]

Since modern buildings are known to release carbon into the atmosphere, increasing controls are being placed on buildings and associated technology to reduce emissions, increase energy efficiency, and make use of renewable energy sources. Renewable energy sources may be designed into the proposed building by local or national renewable energy providers. As a result, the architect is required to remain abreast of current regulations that are continually being updated. Some new developments exhibit extremely low energy use or passive solar building design.[17] However, the architect is also increasingly being required to provide initiatives in a wider environmental sense. Examples of this include making provisions for low-energy transport, natural daylighting instead of artificial lighting, natural ventilation instead of air conditioning, pollution, and waste management, use of recycled materials, and employment of materials which can be easily recycled.

Construction role

[edit]

As the design becomes more advanced and detailed, specifications and detail designs are made of all the elements and components of the building. Techniques in the production of a building are continually advancing which places a demand on the architect to ensure that he or she remains up to date with these advances.

Depending on the client's needs and the jurisdiction's requirements, the spectrum of the architect's services during each construction stage may be extensive (detailed document preparation and construction review) or less involved (such as allowing a contractor to exercise considerable design-build functions).

Architects typically put projects to tender on behalf of their clients, advise them on the award of the project to a general contractor, facilitate and administer a contract of agreement, which is often between the client and the contractor. This contract is legally binding and covers a wide range of aspects, including the insurance and commitments of all stakeholders, the status of the design documents, provisions for the architect's access, and procedures for the control of the works as they proceed. Depending on the type of contract used, provisions for further sub-contract tenders may be required. The architect may require that some elements be covered by a warranty which specifies the expected life and other aspects of the material, product, or work.

In most jurisdictions prior notification to the relevant authority must be given before commencement of the project, giving the local authority notice to carry out independent inspections. The architect will then review and inspect the progress of the work in coordination with the local authority.

The architect will typically review contractor shop drawings and other submittals, prepare and issue site instructions, and provide Certificates for Payment to the contractor (see also Design-bid-build) which is based on the work done as well as any materials and other goods purchased or hired in the future. In the United Kingdom and other countries, a quantity surveyor is often part of the team to provide cost consulting. With large, complex projects, an independent construction manager is sometimes hired to assist in the design and management of the construction.

In many jurisdictions mandatory certification or assurance of the completed work or part of the work is required. This demand for certification entails a high degree of risk; therefore, regular inspections of the work as it progresses on site is required to ensure that the design is in compliance itself as well as following all relevant statutes and permissions.

Alternate practice and specialisations

[edit]

Recent decades have seen the rise of specialisations within the profession. Many architects and architectural firms focus on certain project types (e.g. healthcare, retail, public housing, and event management), technological expertise, or project delivery methods. Some architects specialise in building code, building envelope, sustainable design, technical writing, historic preservation(US) or conservation (UK), and accessibility.

Many architects elect to move into real-estate (property) development, corporate facilities planning, project management, construction management, chief sustainability officers interior design, city planning, user experience design, and design research.

Professional requirements

[edit]

Although there are variations in each location, most of the world's architects are required to register with the appropriate jurisdiction. Architects are typically required to meet three common requirements: education, experience, and examination.

Basic educational requirement generally consist of a university in architecture. The experience requirement for degree candidates is usually satisfied by a practicum or internship (usually two to three years). Finally, a Registration Examination or a series of exams is required prior to licensure.

Professionals who engaged in the design and supervision of construction projects before the late 19th century were not necessarily trained in a separate architecture program in an academic setting. Instead, they often trained under established architects. Prior to modern times, there was no distinction between architects and engineers and the title used varied depending on geographical location. They often carried the title of master builder[18][19] or surveyor after serving a number of years as an apprentice (such as Sir Christopher Wren). The formal study of architecture in academic institutions played a pivotal role in the development of the profession as a whole, serving as a focal point for advances in architectural technology and theory. The use of "Architect" or abbreviations such as "Ar." as a title attached to a person's name was regulated by law in some countries.

Fees

[edit]

Architects' fee structure was typically based on a percentage of construction value, as a rate per unit area of the proposed construction, hourly rates, or a fixed lump sum fee. Combination of these structures were also common. Fixed fees were usually based on a project's allocated construction cost and could range between 4 and 12% of new construction cost for commercial and institutional projects, depending on the project's size and complexity. Residential projects ranged from 12 to 20%. Renovation projects typically commanded higher percentages such as 15–20%.[20]

Overall billings for architectural firms range widely, depending on their location and economic climate. Billings have traditionally been dependent on local economic conditions, but with rapid globalization, this is becoming less of a factor for large international firms. Salaries could also vary depending on experience, position within the firm (i.e. staff architect, partner, or shareholder, etc.), and the size and location of the firm.

Professional organizations

[edit]

A number of national professional organizations exist to promote career and business development in architecture.

  • The International Union of Architects (UIA)
  • The American Institute of Architects (AIA) US
  • Royal Institute of British Architects (RIBA) UK
  • Architects Registration Board (ARB) UK
  • The Australian Institute of Architects (AIA) Australia
  • The South African Institute of Architects (SAIA) South Africa
  • Association of Consultant Architects (ACA) UK[21]
  • Association of Licensed Architects (ALA) US
  • The Consejo Profesional de Arquitectura y Urbanismo (CPAU) Argentina
  • Indian Institute of Architects (IIA) & Council of Architecture (COA) India
  • The Jamaican Institute of Architects (JIA)
  • The National Organization of Minority Architects (NOMA) US[22]

Prizes and awards

[edit]
Ceremony for the 2019 Aga Khan Award for Architecture, presenting the award for the Arcadia Education Centre

A wide variety of prizes is awarded by national professional associations and other bodies, recognizing accomplished architects, their buildings, structures, and professional careers.

The most lucrative award an architect can receive is the Pritzker Prize, sometimes termed the "Nobel Prize for architecture". The inaugural Pritzker Prize winner was Philip Johnson who was cited as having "50 years of imagination and vitality embodied in a myriad of museums, theatres libraries, houses gardens and corporate structures". The Pritzker Prize has been awarded for forty-two straight editions without interruption, and there are now 22 countries with at least one winning architect. Other prestigious architectural awards are the Royal Gold Medal, the AIA Gold Medal (US), AIA Gold Medal (Australia), and the Praemium Imperiale.[23]

Architects in the UK who have made contributions to the profession through design excellence or architectural education or have in some other way advanced the profession might, until 1971, be elected Fellows of the Royal Institute of British Architects and can write FRIBA after their name if they feel so inclined. Those elected to chartered membership of the RIBA after 1971 may use the initials RIBA but cannot use the old ARIBA and FRIBA. An honorary fellow may use the initials Hon. FRIBA, and an international fellow may use the initials Int. FRIBA. Architects in the US who have made contributions to the profession through design excellence or architectural education or have in some other way advanced the profession are elected Fellows of the American Institute of Architects and can write FAIA after their name. Architects in Canada who have made outstanding contributions to the profession through contributions to research, scholarship, public service, or professional standing to the good of architecture in Canada or elsewhere may be recognized as Fellows of the Royal Architectural Institute of Canada and can write FRAIC after their name. In Hong Kong, those elected to chartered membership may use the initial HKIA, and those who have made a special contribution after nomination and election by the Hong Kong Institute of Architects (HKIA), may be elected as fellow members of HKIA and may use FHKIA after their name.

See also

[edit]
  • Architectural designer
  • Architectural drawing
  • Architectural engineering
  • Architectural technologist
  • Building officials
  • Chartered architect
  • Civil engineer
  • Construction engineering
  • Construction manager
  • Drafter
  • Expression (architecture)
  • Industrial architecture
  • Landscape architect
  • List of architects
  • Starchitect
  • State architect
  • Structural engineering
  • Urban designer
  • Urban planner
  • Women in architecture

References

[edit]
  1. ^ "What's the difference between an architect and a building designer?". BUILD. Archived from the original on 2021-03-02. Retrieved 2021-03-03.
  2. ^ "The Nova Scotia Legislature". Office of the Legislative Counsel. Nova Scotia House of Assembly. 2006. Archived from the original on July 21, 2011. Retrieved 8 March 2019.
  3. ^ "Etymology in Architecture: Tracing the Language of Design to its Roots". ArchDaily. 2018-07-30. Archived from the original on 2021-05-26. Retrieved 2021-03-03.
  4. ^ "The Meaning of the Word Architect | The History of Design-Build". New England Design & Construction. 2019-10-24. Archived from the original on 2021-05-26. Retrieved 2021-03-03.
  5. ^ a b Harper, Douglas. "architect". Online Etymology Dictionary. Archived from the original on 5 December 2022. Retrieved 5 December 2022.
  6. ^ Czcibor-Piotrowski, Andrzej (2000). "The Profession and Discipline of Architecture: Practice and Education". Discipline of Architecture. University of Minnesota Press. p. 293. ISBN 978-0-8166-3665-5. JSTOR 10.5749/j.cttttqm2.18.
  7. ^ Murray, Peter (1986). Burckhardt, Jacob (ed.). The Architecture of the Italian Renaissance. Knopf Doubleday Publishing Group. p. 242. ISBN 0-8052-1082-2.
  8. ^ "Civil Engineering Defined - Civil Engineering Definitions and History". SMW Engineering Group, Inc. Archived from the original on 25 April 2012. Retrieved 8 March 2019.
  9. ^ "Filippo Brunelleschi". Totally History. 11 October 2012. Archived from the original on 4 July 2017. Retrieved 8 March 2019.
  10. ^ a b c d Pacey, Arnold (2007). Medieval Architectural Drawing: English Craftsmen's Methods and Their Later Persistence (c.1200–1700). Stroud: Tempus Publishing. pp. 225–227. ISBN 978-0-7524-4404-8. Archived from the original on 2023-12-10. Retrieved 2019-08-20.
  11. ^ Vardhan, Harsh. "Different types of work by architects". Archibuddy. Archived from the original on 17 March 2018. Retrieved 17 March 2018.
  12. ^ "The Basics". NCARB – National Council of Architectural Registration Boards. 2017-01-23. Archived from the original on 2020-05-01. Retrieved 2020-04-29.
  13. ^ "Architects – What do Architects do?". StudentScholarships.org. Archived from the original on 2020-05-13. Retrieved 2020-04-29.
  14. ^ Rosenfield, Karissa (5 June 2015). "17 Napkin Sketches by Famous Architects". ArchDaily. ISSN 0719-8884. Archived from the original on 5 March 2019. Retrieved 8 March 2019.
  15. ^ Rybczynski, Witold (30 March 2011). "Think Before You Build". Slate. The Slate Group. Archived from the original on 14 June 2018. Retrieved 8 December 2015 – via Graham Holdings Company.
  16. ^ "Frequently Asked Questions About the National BIM Standard-United States". National BIM Standard. National Institute of Building Sciences. Archived from the original on 16 October 2014. Retrieved 17 October 2014.
  17. ^ "What is a Passive House?". passipedia.org. Archived from the original on 2015-12-08. Retrieved 2015-12-08.
  18. ^ Routman, Marcus. Master Builders of Byzantium.[full citation needed]
  19. ^ Boero, Dina (Spring 2022). "Who Built Qal'at Sim'ān?". Journal of Late Antiquity. 15 (1): 231–276. doi:10.1353/jla.2022.0007. ProQuest 2813607353.
  20. ^ "RIBA". Archived from the original on 2023-08-10. Retrieved 2023-08-09.
  21. ^ "Association of Consultant Architects". Archived from the original on 2020-04-11. Retrieved 2020-04-11.
  22. ^ "National Organization of Minority Architects". Archived from the original on 2021-10-20. Retrieved 2021-10-20.
  23. ^ "5 Highly Prestigious Awards in Architecture That You Should Know". Arch2O.com. 2016-11-07. Archived from the original on 2019-12-10. Retrieved 2020-04-30.

 

 

New York most commonly refers to:

  • New York (state), a state in the northeastern United States
  • New York City, the most populous city in the United States, located in the state of New York

New York may also refer to:

Film and television

[edit]
  • New York (1916 film), a lost American silent comedy drama by George Fitzmaurice
  • New York (1927 film), an American silent drama by Luther Reed
  • New York (2009 film), a Bollywood film by Kabir Khan
  • New York: A Documentary Film, a film by Ric Burns
  • "New York" (Glee), an episode of Glee

Literature

[edit]
  • New York (Burgess book), a 1976 work of travel and observation by Anthony Burgess
  • New York (Morand book), a 1930 travel book by Paul Morand
  • New York (novel), a 2009 historical novel by Edward Rutherfurd
  • New York (magazine), a bi-weekly magazine founded in 1968

Music

[edit]
  • New York EP, a 2012 EP by Angel Haze
  • "New York" (Angel Haze song)
  • New York (album), a 1989 album by Lou Reed
  • "New York" (Eskimo Joe song) (2007)
  • "New York" (Ja Rule song) (2004)
  • "New York" (Paloma Faith song) (2009)
  • "New York" (St. Vincent song) (2017)
  • "New York" (Snow Patrol song) (2011)
  • "New York" (U2 song) (2000)
  • New York, a 2006 album by Antti Tuisku
  • "New York", a 1977 song by the Sex Pistols from Never Mind the Bollocks, Here's the Sex Pistols

Places

[edit]

United Kingdom

[edit]
  • New York, Lincolnshire
  • New York, North Yorkshire
  • New York, Tyne and Wear

United States

[edit]

New York state

[edit]
  • New York metropolitan area, the region encompassing New York City and its suburbs
  • New York County, covering the same area as the New York City borough of Manhattan
  • New York, the US Postal Service address designating the Manhattan borough
  • New York University
  • Province of New York, the British colony preceding the state of New York

Other states

[edit]
  • New York, Florida, an unincorporated community in Santa Rosa County
  • New York, Iowa, a former town in Wayne County
  • New York, Kentucky, an unincorporated community in Ballard County
  • New York, Missouri, a ghost town in Scott County
  • New York, Texas, an unincorporated community in Henderson County
  • New York Mountain, a mountain in Colorado
  • New York Mountains, a mountain range in California

Ukraine

[edit]
  • New York, Ukraine, a settlement in Donetsk Oblast

Ships

[edit]

Many ships have been named after the city or state of New York. See:

  • List of ships named New York
  • List of ships named City of New York
  • List of ships named New York City

Sports

[edit]

American football

[edit]
  • New York Giants, members of the East Division of the National Football Conference of the NFL (1925–present)
  • New York Jets, members of the East Division of the American Football Conference of the NFL (1960–present)
  • New York (World Series of Football), a professional football team for the World Series of Football (1902–1903)

Baseball

[edit]
  • New York Mets, members of the East Division of the National League of MLB (1962–present)
  • New York Yankees, members of the East Division of the American League of MLB (1903–present)
  • New York Giants, a National League of MLB team that later became the San Francisco Giants (1885–1958)

Hockey

[edit]
  • New York Islanders, members of the Metropolitan Division of the Eastern Conference of the NHL (1972–present)
  • New York Rangers, members of the Metropolitan Division of the Eastern Conference of the NHL (1926–present)

Soccer

[edit]
  • New York City FC, a professional soccer team based in New York City that competes in the Eastern Conference of MLS (2015–present)
  • New York Red Bulls, a professional soccer team that competes in the Eastern Conference of MLS (1996–present)
  • New York Stadium in South Yorkshire, home ground of Rotherham United F.C.

Other sports

[edit]
  • New York GAA, a county board of the Gaelic Athletic Association outside Ireland, responsible for Gaelic games in the New York metropolitan area
  • New York Knicks, a professional basketball team, part of the Atlantic Division of the Eastern Conference in the NBA

Other uses

[edit]
  • New York (pinball), a 1976 pinball machine by Gottlieb
  • New York (1983 typeface), an Apple font set for original Macintosh computers
  • New York (2019 typeface), a font set for developing software on Apple platforms
  • New York Harbor, a waterfront in New York City
  • Brooklyn Navy Yard, referred to as New York in naval histories
  • Tiffany Pollard (born 1982), star of the reality TV show I Love New York who is nicknamed New York

See also

[edit]
  • New York City (disambiguation)
  • New York Cosmos (disambiguation)
  • New York, New York (disambiguation)
  • Nova Iorque, Brazilian municipality in the state of Maranhão
  • Nowy Jork, former name of Łagiewniki, WÅ‚ocÅ‚awek County, Poland
  • NY (disambiguation)
  • All pages with titles beginning with New York
  • All pages with titles containing New York
Photo
Photo
Photo
Photo

Driving Directions in New York County


Driving Directions From Manhattan School of Music to Baobab Architects P.C.
Driving Directions From Apollo Theater to Baobab Architects P.C.
Driving Directions From Red Rooster Harlem to Baobab Architects P.C.
Driving Directions From Strawberry Fields to Baobab Architects P.C.
Driving Directions From Intrepid Museum to Baobab Architects P.C.
Driving Directions From RiseNY to Baobab Architects P.C.

Reviews for Baobab Architects P.C.


Baobab Architects P.C.

Andy Roberts

(5)

Very good architectural firm in NYC. Highly recommended !

Baobab Architects P.C.

Matthew Wittman

(5)

Taf was the perfect architect to complete our filing with the NYC DOB for the washer-drier we wished to install in our coop apartment.

Baobab Architects P.C.

Eric Schnider

(5)

Thank you Mr. Taf & team. We look forward to working with you again on another successful project. I hope by the this Covid pandemic will be history!

Baobab Architects P.C.

A Burke

(5)

Mr Mwandiambira, gave me a thorough explanation on what to expect in navigating the DOB's complex application submission process to get approval for alterations to my home. I was pleasantly surprised at how quickly an acceptable plan was composed. I would highly recommend Baobab Architects to anyone seeking a top quality architectural firm.

Baobab Architects P.C.

Amitava Misra

(5)

Baobab Architects is an architectural firm based in Brooklyn, New York City. NYC alteration type 1 architects, NYC alteration type 2 architects, affordable housing architects, or small development, NYC, and Baobab.

Frequently Asked Questions

Thank you for recognizing our commitment to sustainability! Baobab Architects P.C. prioritizes eco-friendly design, seamlessly blending aesthetics with environmental consciousness. Our architects incorporate cutting-edge technologies and materials to create sustainable spaces that stand the test of time. Dive deeper into our green initiatives at www.baobabarchitects.com/. Join us in crafting a greener tomorrow – schedule a consultation now!

We understand the importance of a smooth permitting process! Baobab Architects P.C. takes pride in navigating the complex world of permits to ensure your construction projects move forward seamlessly. Learn more about our permit expertise at www.baobabarchitects.com/. Ready to break ground without the hassle? Contact us for a consultation and let's bring your vision to life!

Your curiosity about trends is commendable! Baobab Architects P.C. stays at the forefront of architectural innovation by actively engaging in industry events, collaborating with design influencers, and embracing continuous education. Dive into the world of cutting-edge design with us at www.baobabarchitects.com/. Ready to infuse your project with the latest in architectural style? Contact us today!