

SIFMA 2009

Securities Industry and Financial Markets Association Technology Conference June 2009

Data Center Design

Tom Keller, Austin Lab tkeller@us.ibm.com

Hendrik Hamann, T.J. Watson Lab hendrikh@us.ibm.com

IBM Research

6/24/2009 SIFMA 2009

© 2009 IBM Corporation

Presenters

Dr. Tom Keller Distinguished Engineer Austin Research Lab

- data center energy efficiency & tools
- led first system-level power management for IBM products
- technical lead IBM AIX performance
- led Los Alamos' performance evaluation of the Cray-1 serial #1 supercomputer
- at M.C.C. prototyped parallel database machine &
- led creation of the still surviving TPC-C benchmark
- Associate Director of the U. Texas Computation Center
- Chair, ACM Sigmetrics
- 50+ papers

Dr. Hendrik F. Hamann Manager Photonics and Thermal Physics T.J.Watson Research Ctr

- physical aspects of thermal & energy management from the transistors to the data center
- nanoscale heat transfer research
- novel near-field optical microscopes to study single molecules at high spatial resolution, at joint institute between U. Colorado and NIST
- 30+ scientific papers
- 25+ patents with 25+ pending
- IBM Master Inventor
- National Academy of Sciences committee
- Industrial advisor to Universities

2

<u>Agenda</u>

Case study from the financial Industry (Tom Keller)

- ACU Efficiencies
- Power Gap Analysis

DC Measurement and Management Technologies (Hendrik Hamann)

- How to measure, model and manage DCs
- Results & Savings

Data Centers

- Three drivers have lead to DC crisis
 - Insatiable IT demand
 - Power-limited core technology
 - Increasing energy costs
- DCs consume ~ 2 % of all US electricity
- Annual growth (15 %) is non-sustainable
- DC power projected to be > 8 % of US power by 2020

- Every DC is *different*, DCs are *heterogeneous* and *change over time*
- DCs are **not as efficient** as they should
- Inefficiencies are caused by lack of best practices

06/24/2009

IBM Data Centers

Data Centers	Americas	Pan Euro	Asia Pacific	Total
Count	135	110	170	415
Square Feet (Millions)	4.3	1.6	1.8	7.7

As of August, 2007

The Energy Efficiency Management Challenge you know your DC could be more energy efficient, *but*

- Need "ongoing" energy efficiency measurements
 - "what you can't measure you can't improve "
 - no viable charge-back mechanism between IT and RESO
 - current efficiency metrics are weather snapshots
 - just too many good excuses/reasons not to implement
- Energy efficiency recommendations are like New Year's resolutions

Energy Efficiency Proof of Concept Study

- Tier 4 (cooling, power)
- 40,000+ square feet
- Many hundreds of racks, plus
- Hundreds of freestanding racked machines
- Thousands of servers, SANs and routers
- 40+ Computer Room Air Conditioners (ACUs)
- Cooling and actual power known to be underused
- * Exact measures are client confidential

06/24/2009

Using Research's Measurement & Management Technology, we expected above floor temperatures to look something like this

Instead, the machine room was uniformly cool at all heights

Instrumenting the ACUs revealed why -- excess cooling capacity being used

Cooling kWh histories of two pairs of ACUs

After computational fluid dynamics modeling, recommended a schedule for turning ACUs on and off

Outlet Temperature Sensor

06/24/2009

Installed inexpensive ACU temperature sensing network

Procedure

- Preliminary data collection
- Deploy above and below floor sensor network
- Gather temperatures and pressure measurements
- Experimental evaluation of turning ACUs off
- Turn 2 ACUs off
 - Check for system safety
 - Sensor network to check temperatures and pressures
 - Spot check air flow in critical areas via flowhood
 - Compare results to model
 - Calculate ACU efficiencies
- Repeat until suggested number of ACUs are off
- · Monitor system for I week to gather additional data
- Deployment
- Turn on additional ACUs when a ACU fails
- Turn on all ACUs during ACU maintenance

Savings

 Each off ACU will save \$10,000 to \$20,000 per year in electric bill

Power gap analysis

- Displaying the difference between the actual power being used in a rack and the power allocated to the equipment in the rack showed opportunities for increasing the density of equipment in the data center
- Improvements in the 10's of percent in equipment density can be made safely, deferring the construction of new data centers

Power Measures 600 square foot snippet from machine room

12

14

<u>Agenda</u>

Case study from the financial Industry (Tom Keller)

- ACU Efficiencies
- Power Gap Analysis

DC Measurement and Management Technologies (Hendrik Hamann)

- How to measure, model and manage DCs
- Results & Savings

Single Energy Efficiency Metric is Not Enough PUE might be good for bragging rights, but it is only a start

PUE = Total DC Power / IT Power

widely used today

PUE metric can be problematic

- PUE is weather-, location-, application/tier-, and power density dependent
- does not include true IT performance
- metering is often not in place

Cooling Efficiency requires a more detailed Look

17

06/24/2009

Measuring and Managing DC Best Practices

IBM Measurement and Management Technologies (MMT 1.0)

- Optimize DC resources to reduce up to 15% of DC energy consumption
- Scans, digitize rapidly physical environment (temperature, flow, pressure etc..) of DC
- Cart tool comprises sensor network, where each sensor defines a virtual unit cell
- Integrates measurements, models and DC management

MMT 1.0 - Process

Solution Approach – Three Steps

Measure

 Capture high resolution temperature data, air flow data and infrastructure & layout data

SIFMA 2009

Model

 To identify improvement opportunities
 model the data
 center and use optimization
 algorithms ("best practices rules")

3

Manage "Best Practices"

2

- Realize air transport energy savings
- Realize thermodynamic energy savings
- \rightarrow Achieve reduced energy consumption
- \rightarrow Potential for deferring new investments

06/24/2009

MMT 3D Temperature Distributions

20

Example Energy Savings

- saved 177 kW with measurement / metrics driven best practices implementation
- typical 1-2 Month turnaround to realize savings
- improved DC COP 2.39 to 3.44
 - COP_{thermo} from 4.5 to 5.1
 COP_{trans} from 5.3 to 9.8
- total energy savings ~ \$200k (ROI: 7 months)

Finding / Metrics	Key Action / Solution	
Horizontal hotspots (HH)	change tile layout & deploy high throughput tiles	
Vertical hotspots (VH)	snorkels / fillers	≻ thermo
Non-targeted air flow	close leaks / cable cutouts	
Plenum temperatures	service ACUs supply side / increase ACU utilization	
ACU utilization	turn under-utilized ACUs off	≻ transpor
ACU flow	remove blockage	

Case Study: DC Area = 20k sqf; Temp. Meas. = 200,000; Airflow Meas. = 1,200; Power density ~ 75 W / sqf

MMT Historical Record / Scorecard

- MMT service provided to more than 50 DCs different sizes, power densities, locations etc.
- usually energy savings of > 10 % of IT power (< 1 y ROI)
- has delayed major DC upgrades / capital investments
- MMT is an WW IBM service offering with Research support in three GEOs

	Survey	RF power	DC area	%
	Date	P _{RF} [kW]	[feet ²]	Savings
DC1	05/07	1400	42k	13
DC2	06/07	2316	84k	11
DC3	07/07	1917	55k	9
DC4	09/07	1822	57k	9
DC5	10/07	204	2k	11
DC6	10/07	418	10k	12
DC7	12/07	461	8k	8
DC8	12/07	1091	14k	4
DC9	01/08	442	11k	10
TOTAL				10

Example – MMT Savings

WW MMT Activities

MMT 1.5: Move to a dynamic Solution

- DC can change over time
 - IT power levels can change (e.g., 10-15 % during a day)
 - cooling conditions change etc..
 - new racks / new servers / re-arrangement of tiles etc..
- MMT 1.5 provides high resolution combining
 - MMT 1.0 for base model generation, sensor placement etc..
 - real-time sensors for creating dynamic models

Animation of 3D heat map over 24 hours

max

min

MMT 1.5 Client

FEATURES:

- efficiency of each cooling zone in real-time
- data analysis capabilities
- energy efficiency reporting
- detailed layout editor
- alarm services / hotspot services
- real-time temperatures / 3D capabilities
- current being integrated into Tivoli and Maximo

https://researcher.ibm.com/mmt2/launch.htm

MMT 1.5 Client - continued

L Multi Andel Multi dala Brangasa Luda Madada El desarratoria dala Madada Roma L - P La Internacional Antonio del Constante d	
No. No. <th></th>	
	indicates cooling
EMBOSOLDAR/359528 31.6 37 4.4 100 100 400 400 400 500 400.00 EMBOSOLDAR/35028 30.6.5 6.5 5 6 6 8 M Modelson EMBOSOLDAR/35020 80.0 6.6 5.5 6 6 8 M Modelson EMBOSOLDAR/35020 80.0 6.6 5.5 6 6 8 M Modelson EMBOSOLDAR/35020 80.0 6.0 5.5 6 6 6 100.0000000000000000000000000000000000	
Charach Patrona Patrona <t< th=""><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1</th></t<>	1 1 1 1 1 1 1 1 1 1 1 1 1 1

provides alarm/threshold settings for sensors

06/24/2009

- determines fan efficiencies in real-time and provides corresponding cooling zones
- provides weekly reports of all logged temperatures

MMT IBM Internal Deployment

MMT 1.0 successfully WW deployed in > 1 M square feet of DC space

- ~2MW of savings so far
 - \$1.5M savings in utility bill savings
 - > \$10M delayed capital cost
- over 150 ACUs turned off / decommissioned
- ~ 8-9 % PUE improvements

MMT 1.5 currently being rolled out WW

- active management large-scale dynamic DC
- large scale deployment in EMEA

MMT 1.5 part of leadership DC design and architecture

- full deployment in leadership DC in Raleigh
- integrated into ITD data models & asset management systems

LDC Architecture Framework

