(THE LANDSCAPE OF)
PARALLEL GRAPH PROCESSING:
A VIEW FROM HOLLAND

Ana Lucia Varbanescu, University of Amsterdam, The Netherlands

a.l.varbanescu@uva.nl
With data, work, and (some) slides from a whole team:
Merijn Verstraaten, Ate Penders, Yong Guo, Alexandru losup, and Dick Epema.

I What to do when your graphs get out of control 2

In February 2015%, LinkedIn...
=

. has exceeded 347 Million users ...
.. 56% male, 44% women ...

. in over 200 countries ...
. more than 70% outside of US.

O O O 0O

01 Most users are “motivated” and “responsible”
0 Using a picture increases a user’s profile by 11x

0 CEOs have 200+ connections, on average

*http:/ /expandedramblings.com /index.php /by-the-numbers-a-few-important-linkedin-stats

Classical analytics

1 Statistics

O “How many connections do | have?”

0 Traversing

o “How can | reach Prof. X2~

0 Querying

o “Find all professionals in Graph Processing

1

€
around San Jose.

0 Mining

0 “Find the most influential CS researcher in Amsterdam.”

Classical analytics

1 Statistics

O “How many connections do | have?”

0 Traversing

o “How can | reach Prof. X2~

No textbook algorithms exist for some of these operations.
If they exist, they probably need changing.

Prof.X

0 Mining

0 “Find the most influential CS researcher in Amsterdam.”

. Ana Lucia Varbanescu's Professional Network
Llnkedm M“Ps as of Novembher 28, 2013

®2013 LinkedIn - Get your network map at inmaps.linkedinlabs.com

Your network is so large...

Sony, but your network is too large to be computed, we are
working to increase the limit, stay tuned!

Large Scale Graph Processing
B

0 Graph processing is (very) data-intensive
O 10x larger graph => 100x or 1000x slower processing

0 Graph processing becomes (more) compute-intensive

O More complex queries => 2x slower processing

0 Graph processing is (very) dataset-dependent

O Unfriendly graphs => 2x slower processing

High performance enables larger graphs and

support for more complex analytics.

More performance? Many-cores!

Works for Top500!

Virtually all machines are multi-cores,

more than 10% are accelerated

Graph500 # Top500 !

DOE/NNSA/LLNL Sequoia (IBM - Lawrence Livermore National

1BlueGene/Q) Laboratory 98304 1572864 41 23751
K computer (Fujitsu - Custom RIKEN Advanced Institute for
2 supercomputer) Computational Science (AICS) 82944 663552 40 19585

DOE/SC/Argonne National
Laboratory Mira (IBM - BlueGene/

3Q) Argonne National Laboratory 49152 786432 40 14982
4JUQUEEN (IBM - BlueGene/Q) Forschungszentrum Juelich (FZJ) 16384 262144 38 5848
5Fermi (IBM - BlueGene/Q CINECA 8192 131072 37 2567

6Tianhe-2 (MilkyWay-2) NUDT, Changsha, China 8192 196608 36 2061

36 1427

7 Turing (IBM - BlueGene/Q) 096 65536

Number 1 in Top500

8Blue Joule (IBM - BlueGene/Q) Council - Daresbury Laboratory 4096 65536 36 1427

9DIRAC (IBM - BlueGene/Q) University of Edinburgh 4096 65536 36 1427

10Zumbrota (IBM - BlueGene/Q) EDF R&D 4096 65536 36 1427

A clash?¢

0 Many-cores have emerged to improve

performance by using massive parallelism.

01 Performance gain in theory:

'ng 0o ®
. h process fion
N cores => N times faster Gmpm_dr'wen compute e
. o Da \ar me ory acc
0 For this, we need: o WregUl? T L locality

O massive (multi-layered) parallelism
0 high computation-to-data access ratio Low _omputatio”
O high data locality ccess Yotio

O structured, regular access patterns

Experiment 1: CPU and/or GPU *
—

0 Question:
0 Which multi-/many-core architectures are suitable for
graph processing?
0 Setup:

O Three parallelized algorithms

o0 Use different graphs

Control

0 Use different hardware

CPU

cI IS EEEEEENEEEEER

cI IS EEEEEEEEEEER

cs I IS EEEEEEEEEEER

csIEEEEEEEEEEEEEER

GPUsEE NSNS EEEE

[1] A.L.Varbanescu et al, “Can Portability Improve §================
Performance? A Graph Processing Case-Study” ICPE’'15 =IINSENEENEEEEEEED

Algorithms: BFS2APSP>BC

S
0 Graph traversal (Breadth First Search, BFS)

0 Traverses all vertices “in levels”

0 All-Pairs Shortest Paths (APSP)

O Repeat BFS for each vertex

0 Betweenness Centrality (BC)
O APSP once to determine paths

O Bottom-up BFS to count paths

0 Implementation in OpenCL*
O Same algorithm
0 CPU- and GPU-specific tuning applied

*Ate Penders MSc thesis
“Accelerating graph processing using modern accelerators”

Data sets & devices

Abbreviation| Vertices Edges Diameter Avg. Degree
Wikipedia Talk Network WT 2,394,385 5,021,410 Q 2,10
California Road Network CR 1,965,206 5,533,214 850 2,81
Rodinia Graph 1M TM 1,000,000, 6,000,000 36 6,00
Stanford Web Graph SW 281,903 2,312,497 740 8,20
EU Email Communication Network EU 265,214 420,045 13 1,58
Star ST 100,000 99,999 1 0,99
Chain CH 100,000 99,999 99,999 1,00
Epinions Social Network ES 75,879 508,837 13 6,70
Rodinia Graph 64K 64K 64,000 393,216 28 6,14
Wikipedia Vote Network VW 7,115 103,689 7 14,57
Rodinia Graph 4K 4K 4000 25,356 19 6,38

1 Devices

Intel(R) Xeon(R) CPU E5620 @ 2.40GHz

GeForce GTX 480
Tesla C2050 / C2070

BFS — normalized
N

1

0.9

0.8

!
s LEI B
05 HER BRI B
04 HER BRI B
03 1 H]l BRI}
02 111 B111
0. 111 B11 1]
i 11118111}

WT CR 1M SW EU CH ST ES 64K WV 4K

B Xeon (CPU) B Tesla (GPU) [GTX (GPU)

BFS — normalized
-—

1
0.9
0.8
0.7
0.6

¥ Performance depends on the diameter and degree:
¥ Large diameter => CPU
4 High degree => GPU

1---------

WT CR 1M SW EU CH ST ES 64K WV 4K

0

B Xeon (CPU) [Tesla (GPU) [GTX (GPU)

APSP - normalized
N

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

g I’IIIIIIII
0

WT CR 1M SW EU CH ST ES 64K WV 4K

B Xeon (CPU) B Tesla (GPU) [GTX (GPU)

APSP - normalized
N

1

0.9
0.8
0.7
0.6
0
0
0
0.2 = = B |
111111111 |

WT CR 1M SW EU CH ST ES 64K WV 4K

GPUs always win due to the (enforced) high
parallelism of our solution.

0

B Xeon (CPU) [Tesla (GPU) [GTX (GPU)

BC - normalized
S

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

oL I .

WT CR 1M SW EU CH ST ES 64K WV 4K

B Xeon (CPU) B Tesla (GPU) [GTX (GPU)

BC - normalized
S

1

0.9
0.8
0.7
0.6
0.5
P Atomic operations for counting paths => variable

0. performance due to variable contention!
IR EIN LR
ol El Tl Rillll

WT CR 1M SW EU CH ST ES 64K WV 4K

B Xeon (CPU) [Tesla (GPU) [GTX (GPU)

0

Lessons learned
B

0 Increased algorithm complexity may increase
parallelism

0 Dataset properties and data representation may
increase parallelism

1 Synchronization can be a hidden bottleneck
O E.g.: BC mixes compute with synchronization

0 We have no clear understanding of graph “sizes”

O # vertices or # edges? Diameter? Other properties?
0 Graphs seem to be CPU or GPU friendly

O Heterogeneous processing?

Experiment 2: BFS traversals

0 Question:
O Is there a best BFS algorithm?
®m On GPUs ¢
m Overall 2
0 Setup:

O Run multiple BFS implementations
® Including the ones @ LonestarGPU

o Run on different graphs

m 6 datasets

0 Run on different hardware

Normalized on naive GPU, kernel
B

1000

¥ CUDA-01
B CUDA-02
" CUDA-04
“ CUDA-08
W CUDA-16
¥ CUDA-32

100

10

¥ [lonestar]

[topology-atomic]

0.1 .
¥ [merrill]

B [worklistw]

0.01 [worklista]

“ [worklistc]

0.001 ® OpenCL CPU
A%
S

Normalized on naive GPU, kernel
B

1000

¥ CUDA-01
¥ CUDA-02
" CUDA-04
“ CUDA-08
W CUDA-16
¥ CUDA-32

100

10

¥ [lonestar]

" [topology-atomic]

0.1 .
¥ [merrill]

B [worklistw]

0.01 “ [worklista]

“ [worklistc]

0.001

Orders of magnitude performance difference.

No clear winner.

Normalized on naive GPU, full exec.
N

¥ CUDA-01
¥ CUDA-02
" CUDA-04
“ CUDA-08
W CUDA-16
¥ CUDA-32

¥ [lonestar]
[topology-atomic]

¥ [merrill]

0.1
B [worklistw]

[worklista]

" [worklistc]

0.01
[|
\\\e‘) 8 (\ed ¢ \eé o '\o\\" OpenCL CPU
29 1@ \o e wxe o g
S AN o A SN e o\
o & (o)) .
" re ‘0 ¢\) 6‘)
A 0% e N
o 0 S

Normalized on naive GPU, full exec.
N

¥ CUDA-01
¥ CUDA-02
" CUDA-04
“ CUDA-08
W CUDA-16
¥ CUDA-32

¥ [lonestar]
" [topology-atomic]

= [merrill]

0.1
B [worklistw]

" [worklista]

0.01

Adding the data transfer times narrows the

performance gaps.

Lessons learned

S
1 Depending on the graph ...

O Large variability in performance (fastest to slowest ratio)
O The relative performance of BFS implementation varies.

® Fastest on one graph CAN BE slowest on another graph.

0 Data representation and data structures make a BIG
difference

0 A naive CPU implementation can be competitive with
some of the GPU implementations.

0 On small graphs (GPUs are underutilized)
0 When data transfer is an issue (think BFS)

More experiments

0 Similar results
o Different BC implementations (available)
o Different PageRank implementations (available)

o Different APSP implementations (in progress)

0 Different results for community detection!

0 GPUs are much better (algorithms have much more
parallelism)

0 Heterogeneous computing pays off ... for memory
increase!

Take home message 2

0 Large scale graph processing IS high performance
computing
0 Due to/for data scale *and* analysis complexity

0 HPC hardware is useful for graph processing

O yet performance is (for now) unpredictable

0 Performance is dependent on all three “axes”

O Performance = f (dataset, algorithm, hardware)

P-A-D triangle

S
Algorithm

In progress
Algorithms for different
data types and graph

Overstudied
Performance is enabled
Portability is disabled

—
Datase " Platform

Understudied

No systematic findings yet

Intuitive correlations

Must be correlated with the algorithm

- The landscape

The landscape of

modern graph processin

Performance Today ... [1]

y

* Systems for graph processing
* Separate users from backends Cus’rom
* Think Giraph, Totem, Medusq,

Dedicated
Systems

Specify application

Choose the hardware

Implement & optimize

Think Graph500

Generic

~

In other work of
ours ... [2][3]

* Use existing large scale

S

distributed systems

- * Mapping is difficult _—>
* Parallelism is “free” Development
Effort

* Think MapReduce

The landscape of

modern graph processin
-%

0 Graph processing is a hot HPC topic for both
software and hardware developers

O Challenges in scale and irregularity
0 Existing graph processing systems : 80+
O Survey in progress

1 Choose which one to use?

0 Quick-Pick: choose a platform where (1) your graph fits
and (2) you can program.

O Systematic: meta-benchmarking, a.k.a., Graphalytics™

*http:/ /graphalytics.ewi.tudelft.nl

References
B

[1] A.L.Varbanescu et. al = “Can Portability Improve Performance?” ICPE 2015

[2] Y. Guo et. al, “An Empirical Performance Evaluation of GPU-Enabled
Graph-Processing Systems”, CCGrid 2015

[3] Y. Guo et. Al, “How Well do Graph-Processing Platforms Perform? An
Empirical Performance Evaluation and Analysis”, IPDPS 2014

