
Toward on-chip
acceleration of the
backpropagation algorithm
using nonvolatile memory
By performing computation at the location of data, non-Von
Neumann (VN) computing should provide power and speed benefits
over conventional (e.g., VN-based) approaches to data-centric
workloads such as deep learning. For the on-chip training of large-
scale deep neural networks using nonvolatile memory (NVM) based
synapses, success will require performance levels (e.g., deep neural
network classification accuracies) that are competitive with
conventional approaches despite the inherent imperfections of such
NVM devices, and will also require massively parallel yet low-power
read and write access. In this paper, we focus on the latter
requirement, and outline the engineering tradeoffs in performing
parallel reads and writes to large arrays of NVM devices to
implement this acceleration through what is, at least locally, analog
computing. We address how the circuit requirements for this new
neuromorphic computing approach are somewhat reminiscent of, yet
significantly different from, the well-known requirements found in
conventional memory applications. We discuss tradeoffs that can
influence both the effective acceleration factor (“speed”) and power
requirements of such on-chip learning accelerators.
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Introduction
The extreme flexibility of digital circuits has allowed

modern processors based on the Von Neumann architecture

to not only efficiently implement algorithms for a wide

variety of problems, but to consistently improve system

performance at an exponential rate. However, with

continued device scaling constrained by power and voltage

considerations, the time and energy spent transporting data

between memory and processor (across the so-called “Von

Neumann bottleneck”) has become problematic for data-

centric applications such as real-time image recognition and

natural language processing.

One example of non–Von Neumann computing is the

human brain. Characterized by its massively parallel

architecture and adaptive elements (e.g., its synapses), the

brain can outperform modern processors on many tasks

involving unstructured data classification and pattern

recognition. Artificial neural networks (ANNs), first

conceived in the mid-1940s to mimic what was then known

about neural systems, perform computations in a naturally

parallel fashion. Modern graphical processing units (GPUs)

have greatly increased both the size of the networks and the

datasets that can be trained in reasonable time. In turn, this

has commensurately improved classification performance

to the point that these systems are now becoming

commercially pervasive. In contrast to power-hungry

GPUs, IBM’s TrueNorth chip is a flexible and modular non-

VN tool for implementing forward inference of large ANNs

[e.g., deep neural networks (DNNs)] at ultralow power [1].

Synaptic weights are typically trained off-line and

transferred onto digital SRAM (static random access

memory) arrays to perform forward propagation of large

and complex DNNs.

One path for extending such non-VN systems toward full

on-chip learning—and thus to provide accelerated DNN

training at lower power than GPUs—is to replace these

reliable but binary SRAM memory cells used in TrueNorth

with dense and analog (but less reliable) nonvolatile

memory (NVM). By performing computation at theDigital Object Identifier: 10.1147/JRD.2017.2716579
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location of data, such an approach—on-chip training of

large-scale DNN using NVM-based synapses [2–8]—could

potentially provide significant power and speed benefits on

the specific and important task of training very large DNNs.

Such an implementation can realize the multiply-

accumulate (MAC) operations at the heart of most neural

network algorithms extremely efficiently, using physics—

Ohm’s law followed by current summation (Kirchhoff’s

current law)—for locally analog computation at the location

of the weight data. The idea of performing MAC operations

in the analog domain for neuromorphic computing is quite

old [9, 10], but recent developments in NVM devices offer

new opportunities for revisiting this idea [2, 11, 12].

However, practical viability of such an approach has

several requirements. First, despite the inherent

imperfections of NVM devices such as phase change

memory (PCM) [2, 3] or resistive random access memory

(RRAM) [5], such NVM-based networks must achieve

similar performance levels (e.g., classification accuracies)

when compared to DNNs trained using CPUs (central

processing units) or GPUs. Second, the benefits of

performing computation at the data must confer a decided

advantage in either training power or speed (or preferably,

both) [4]. Finally, any on-chip accelerator should be

applicable toward networks of different types (e.g. fully-

connected multi-layer perceptions and convolutional neural

networks) and be reconfigurable for networks of different

shapes (wide, with many neurons, or deep, with many

layers) [4].

In this paper, we outline the engineering tradeoffs in

performing parallel reads and writes to large arrays of NVM

devices to implement this acceleration through what is, at

least locally analog computing. In contrast to others who

have treated this as a digital design problem fed by

conventional [13] or emerging NVM devices [14, 15], or

who have focused solely on the NVM crossbar array

without much focus on peripheral circuitry [16–21], we are

trying to consider this problem as a holistic, mixed analog-

digital-NVM design problem. We do not address here

spiking neural networks, in which synaptic plasticity is

modified based on the timing of sparse upstream and

downstream neuronal spikes [22–24], since such local

learning rules have not yet been harnessed by a global

learning algorithm exhibiting the kind of convergence

properties (and thus demonstrated application success)

offered by backpropagation.

In this paper, we attempt to lay out the challenges for the

design of an NVM-based on-chip accelerator for

backpropagation training. We plan to publish a full power

and speed analysis in the future, once we can fully disclose

the specific design choices we have identified to address

these challenges. In this paper, we address the roles that

peripheral circuitry must fulfill within such a system, and

discuss how the resulting circuit requirements for this new

neuromorphic computing approach are different from the

well-known requirements found in conventional memory

applications. We discuss tradeoffs that can influence both

the effective acceleration factor (speed) and power

requirements of such on-chip learning accelerators.

Recap of previous work
In this section, we briefly review our previous work [2–8]

in assessing the potential accuracy, speed, and power of

on-chip NVM-based DNN training. Figure 1 shows our

general concept for fully connected DNN layers. In our

approach, each synaptic layer in a large ANN—connecting

an upstream layer of neurons (either input or hidden

neurons) to the next downstream layer of neurons (either

hidden or output neurons)—is mapped to one or more

“crossbar arrays” of NVM device-pairs. Each synapse is

composed of two conductances, encoding synaptic weight

in the difference between these two conductances,

wij ¼ Gþ
ij � G�

ij, with i and j being indices within the 2D

array of synapses. In this way, negative and positive

weights can be readily encoded using positive-only

conductance values. Each crosspoint, or intersection

between a horizontal “row-line” and vertical “column-line,”

also contains an access device, either a 2-terminal selector

[25] or a 3-terminal transistor as shown in Figure 1. This

access device ensures that external circuitry can precisely

target which device or devices will participate in read and

write operations. The requirements and specifications of a

2-terminal selector, and of the voltage selection scheme,

for this kind of neuromorphic application remain mostly

unchanged from the requirements for a conventional

memory application [21, 25]: leakage must be minimized

so that write power is delivered efficiently and reads

performed accurately.

Device-related previous work
Using two phase-change memory devices per synapse, we

demonstrated a three-layer perceptron (fully connected

DNN) with 164,885 synapses [2], trained with the

backpropagation algorithm [26] on a subset (5,000

examples) of the MNIST (modified National Institute of

Standards and Technology) database of handwritten digits

[27], using a modified weight-update rule, compatible with

NVM and access device crossbar arrays [2]. We proved that

this weight-update modification does not degrade the high

“test” (generalization) accuracies such a three-layer

network inherently delivers with respect to this problem

when trained in software [2]. However, nonlinearity and

asymmetry in PCM conductance response limited both

“training” and “test” accuracy in our original, mixed

hardware-software experiments to 82% to 83% [2]. Since

our original paper was published, other researchers have

proposed and verified similar update strategies, and studied

the impact of device imperfections [16, 19, 20, 28].
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Asymmetry (between the gradual conductance increases

of PCM partial-SET and the abruptness of PCM RESET)

was mitigated by an “Occasional RESET” strategy, which

could be both infrequent and inaccurate [2]. While in these

initial experiments, network parameters such as learning

rate, h, had to be tuned very carefully, a modified “Local

Gains” algorithm offered wider tolerance to h, higher

classification accuracies, and lower training energy [4].

Tolerancing results—where we varied individual device

and system parameters to gauge the effect of each on DNN

accuracy—showed that while NVM-based DNNs can be

expected to be highly resilient to random effects (NVM

variability, yield, and stochasticity), they will be highly

sensitive to “gradient” effects that act to steer all synaptic

weights in a particular direction [2]. We showed that a

bidirectional NVM with a symmetric, linear conductance

response of finite but large dynamic range (e.g., each

conductance step is relatively small) can deliver the same

high classification accuracies on the MNIST digits as a

conventional, software-based implementation [3]. One key

observation is the importance of avoiding constraints on

weight magnitude that arise when the two conductances

(Gþ and G�) are either both small or both large—e.g.,

synapses should remain in the center stripe of the

“G-diamond” [2, 3] formed by the finite range of these

two conductance values.

In subsequent papers, we have extended these

observations and addressed several different yet useful

topics. We have assessed the impact of undesired, time-

varying conductance change, including drift in PCM and

leakage of analog CMOS capacitors [7]. We have

introduced a “jump-table” concept to describe the full

cumulative distribution function (CDF) of conductance-

change at each device conductance value [2], allowing the

practical modeling of both the potentiation (SET) and

depression (RESET) characteristics of real NVM devices

[2, 6–8]. Using artificially constructed “jump-tables,” we

have studied the impact on DNN accuracy of various

imperfections exhibited by such real NVM devices [6].

Finally, we have investigated the use of non-filamentary,

bidirectional RRAM devices based on PrCaMnO (PCMO),

as a potential approach for developing material variants that

provide suitably linear conductance change [5, 7].

Circuit-related previous work
We have also explored tradeoffs in designing peripheral

circuitry, balancing simplicity and area-efficiency with

respect to the impact on DNN performance [7, 8]. We

performed these studies for both fully bidirectional NVMs

(such as PCMO), as well as for devices with abrupt

conductance change in one direction (such as PCM). For

fully bidirectional devices, a combination of algorithm

approximations—including a piece-wise linear (PWL)

nonlinear squashing function, a simple step-function

derivative, limitations on the number of neuron states, and

careful selection of programming pulses—can enable

Figure 1

Neuro-inspired non–Von Neumann computing [1, 2], in which neurons activate each other through dense networks of programmable synaptic weights,

can be implemented using dense crossbar arrays of nonvolatile memory (NVM) and 2-terminal or 3-terminal selector device-pairs.
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competitive DNN performance [8]. We demonstrated

that these approximations do not significantly degrade

classification accuracies, compared to neuron

implementations with rigorously precise functionality [8].

Devices with abrupt conductance change in one direction

require an “Occasional RESET” operation, during which all

conductances are measured. Synapses for which both Gþ

and G� are rather large then have both conductances

decreased (by RESET followed by incremental SET) such

that their difference, and thus the synaptic weight, remain

the same. We showed that this measurement operation can

be performed with coarse binning of weight values, but that

real PCM exhibiting significant pulse-to-pulse variability

may require read-verify steps during the incremental SET

operations [8].

Finally, we have assessed the potential advantages,

in terms of speed and power, of on-chip machine learning

of large-scale DNN using NVM-based synapses, in

comparison with conventional GPU-based hardware [4].

Under moderately aggressive assumptions for parallel-read

and parallel-write speed (see [4] for details), PCM-based

on-chip machine learning can potentially offer lower power

and faster training (per DNN example) than GPU-based

training for both large and small networks, even with the

time and energy required for “Occasional RESET.” Critical

here is the design of area-efficient read/write circuitry, so

that many copies of this circuitry operate in parallel (each

handling a small number of columns (and rows), cs).

In the remainder of this paper, we discuss the

requirements for the peripheral circuitry that will be

needed to support on-chip training of large-scale DNN

using NVM-based synapses.

Generic architecture for on-chip learning
Figure 2 shows a schematic of a chip architecture for the

acceleration of neural network training with analog NVM.

Similar to the TrueNorth chip [1], the architecture is

composed of a large number of identical array-blocks

connected by a flexible routing network. Each array-block

here represents a large NVM device array, perhaps of size

Figure 2

Proposed chip architecture for the acceleration of neural network training with analog non-volatile memory. A flexible routing network has three tasks:

1) to convey chip inputs (such as example data, example labels, and weight overrides) from the edge of the chip to the device arrays, 2) to carry chip

outputs (such as inferred classifications and updated weights) from the arrays to the edge of the chip, and 3) to interconnect the various arrays in order

to implement multi-layer neural networks. Each NVM array has input neurons (here shown on the “West” side of each array) and output neurons

(“South” side), connected with a dense grid of synaptic connections. Peripheral circuitry is divided into circuitry assigned to individual rows and col-

umns, circuitry shared between a number of neighboring rows and columns, and support circuitry.
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512 � 512 or 1;024 � 1;024 synaptic unit-cells. With a

unit-cell composed of two NVM conductances, this would

correspond to arrays of 512 � 1;024 or 1;024 � 2;048

NVM devices.

However, unlike TrueNorth [1], the routing network here

is not a true point-to-point network, offering flexible

connection from the “South side” of any single column to

the “West side” of any single row. (We discuss connections

to only one side of the array-block to simplify the

discussion; use of all four sides for peripheral circuitry is

certainly desirable for efficient use of chip area.) Instead,

the routing network we envision need only be block-to-

block, connecting all the columns at the “South side” to all

the rows at the “West side” of the “next downstream” array-

block. In some cases, connections might be needed between

the “South side” of one array-block and the “South side” of

another, mimicking an extra-tall array-block to implement

neuron layers that have more neurons than the number of

rows in any one array block. Similarly, routing between the

“West side” of one array-block and the “West side” of

another could be used to effectively implement very wide

blocks, for DNNs that fan out from a small number of input

neurons to hidden layers with a large number of neurons.

In addition to interconnecting the various array-blocks in

order to implement multi-layer neural networks, this

flexible routing network has two additional tasks. First, it

must convey chip inputs such as example data (e.g., pixels

of a training image), example labels (e.g., the ground truth

classification of that training image), and weight overrides

(see discussion toward the end of the paper) from the edge

of the chip to the device arrays. Second, the routing network

is needed to carry chip outputs—such as inferred

classifications and updated weights—from the arrays to the

edge of the chip. While chip inputs and outputs need to be

directed to only a small subset of arrays on the chip

(corresponding to the locations of input and output

neurons), weight overrides and updated weights would

potentially need to be sent to and received from every single

array on-chip, making these global updates the far more

challenging routing requirement. Furthermore, in order to

enable scale-out to even larger DNNs with a multi-chip

modular approach, the I/O interface protocol at the edge of

the chip should be identical to the internal within-chip

protocol.

Each NVM array-block has input neurons (here shown on

the “West” side of each array) and output neurons (“South”

side), connected with a dense grid of synaptic connections.

Peripheral circuitry is divided into circuitry assigned to

individual rows and columns, circuitry shared between a

number of neighboring rows and columns, and support

circuitry. In the actual mapping of DNN to array-blocks,

each hidden layer neuron actually corresponds to two

different pieces of circuitry: a particular instance of the

each-column circuitry sitting at the “South side” of the

array-block corresponding to an “output” from an upstream

synaptic layer; and a matching instance of the each-row

circuitry sitting at the “West side” of a different

array-block, corresponding to an “input” to a downstream

synaptic layer for the given neuron.

In the next few sections, we describe the various tasks

involved in DNN training, and how these tasks place unique

demands and requirements on the peripheral circuitry of

these array-blocks.

Forward propagation
Forward propagation or inference in a neural network

involves the calculation of the neuron activations of a

hidden/output layer, based on the neuron activations of the

previous layer and the intervening synaptic weights. Here,

we focus on fully connected neural networks, leaving the

implementation of a convolutional neural network to a

subsequent paper. Figure 3 shows how the peripheral

circuitry at the “West” and “South” sides of an array-block

must work together to perform this operation. Signals

arriving at the “West side” of the array-block are passed to

row-drivers, generating a V ðtÞ (voltage as a function of
time) signal on horizontal row-lines to convey a signal

Figure 3

During forward propagation, signals arriving at the “West side” of

each array-block are passed to row-drivers, generating a V(t) signal on

horizontal row-lines that is proportional to each upstream neuron exci-

tation, x. (During this operation, a small number of bits encoding this x

value—for later use during weight-update—are stored locally near the

end of the row.) The resulting aggregate read currents from the entire

column, e.g.,
P

V(t)Gþ and
P

V(t)G�, arrive at the peripheral cir-

cuitry located at the “South side” of each column, where they are inte-

grated onto a single capacitor (either adding to, or subtracting from, its

voltage as appropriate). After the integration is complete, each capaci-

tor voltage must be measured and transmitted across the flexible rout-

ing network to its destination. This can either be the “South side” of

another array-block (to effectively implement one extra-tall array

block), or the “West side” of the “next downstream” array-block,

where the transmitted signal continues the forward-propagation opera-

tion of the next synaptic layer.
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proportional to the upstream neuron excitation, x. During

this operation, a small number of bits encoding this x value

must be stored locally near the end of the row. These bits

will be needed later during weight-update.

In a conventional memory application, a read operation

would activate only one row. Since a larger number of rows

will be activated in this neuromorphic read operation

(including, potentially, all of the rows), the circuit design

point should allow for a sufficiently low current through

each of the active crosspoints during forward read. The key

constraints include the following: 1) The aggregate power

and power density must be within manageable limits;

2) Aggregate current “in most cases” should be within the

driving capability of peripheral driver circuits (it would be

acceptable if, on a small number of examples/instances, the

actual current ended up being less than what is expected

from the aggregate sum, given the error tolerance of the

algorithm); and 3) This current should stay within the

long-term electromigration limits of the technology. Given

that read voltages cannot be scaled arbitrarily due to noise,

IR (current times resistance) drop, and variation

considerations, it is of critical importance that the NVM

element operate in a low but linear conductance regime to

keep crosspoint currents (and thereby aggregate currents)

within manageable limits.

The resulting aggregate multiply-accumulate currents

from the entire column, e.g.,
P

V ðtÞGþ and
P

V ðtÞG�,
arrive at the peripheral circuitry located at the “South side”

of each column, where they are integrated onto a single

capacitor. Current mirrors can be used to add to, or subtract

from, a pre-charged capacitor voltage as appropriate.

Different column-lines that receive different total currents

will have different voltages, but decoupled from the voltage

to which any capacitor could be charged. Because of these

slight differences in voltage, however, a fully passive

scheme with no selector or transistor cannot guarantee a

zero voltage difference across every “unselected” device.

Since the currents here are the aggregate read current from a

large number of rows, they tend to be significantly larger in

magnitude than the memory read current due to only one

NVM element. As such, sub-unity gain in the current

mirrors can be used to control the mapping between this

large current and a suitably small voltage change on

the capacitor, thus avoiding the need for large and

area-inefficient capacitors at every column.

The integration operation can be performed in multiple

segments if needed—provided the scaled and mirrored

currents are sufficiently small to prevent the capacitor

voltage from saturating. After all the signals have been

integrated, each capacitor voltage must be measured and

transmitted across the flexible routing network to its

destination. This can either be the “South side” of another

array-block (to effectively implement an “extra-tall” array

block), or the “West side” of the “next downstream”

array-block, where the transmitted signal continues the

forward-propagation operation of the next synaptic layer.

To ensure that the computation of a multilayer DNN does

not readily collapse to a single linear equation and reduce its

capabilities, a nonlinear squashing function is typically

applied to the integrated signal at the periphery. Commonly

used functions in software implementations include rectified

linear units (ReLUs), tanh() (i.e., the hyperbolic-tangent

function), or the logistic function (S ¼ 1=ð1 þ expð � tÞÞ).
However, the latter such functions are difficult to implement

exactly unless a large number of transistors are included. (The

ReLU is problematic because its unbounded nature is

inconsistent with capacitors that cannot be charged beyond

the fixed supply voltage.) Analog-to-digital and digital-to-

analog converters tend to require a significant amount of chip

real-estate, which is inconsistent with a small circuit-sharing

parameter, cs. As discussed earlier, a piece-wise linear (PWL)

implementation of this squashing function is muchmore

straightforward to implement, and has been shown to provide

similar DNN training performance on theMNIST dataset [8].

A second design choice is the range of distinct neuron

activation values that need to be supported by the hardware.

In a digital implementation this translates into the number

of bits, which would have area implications depending on

the amount of local storage required, as well as the

resolution of any analog to digital conversion circuits used

to convert signals from the crossbar array into those bits.

In an analog implementation, this would directly translate

into the resolution between analog voltage levels and/or

time-steps. We have shown that as few as six distinct

neuron levels is sufficient for the MNIST dataset [8],

delivering 92% test accuracy on a small three-layer network

trained with only 5,000 examples, for which test accuracy

with a perfect system can only reach 94%.

For a chip that only performs forward inference, no

further steps are required. The excitations of the final output

neurons can be output as the network’s “guess” as to the

classification of the data example that was input. In

addition, the local storage of the intermediate neuron

excitations, x, can be skipped. This then permits a

significant degree of pipelining for forward-inference-only,

with each array computing its forward inference for a

different data-example, allowing the system to generate one

new classification result for each time period equal to the

time needed for the forward propagation of one layer.

Backpropagation of errors
Reverse propagation, or backpropagation of errors, is

similar to forward propagation, but proceeds from output/

hidden neurons back to the preceding hidden neurons

(reversing the path followed by forward propagation). The

quantity d, known as the correction or error, together with

the forward-propagated neuron activations x, are needed in

order to perform the weight updates for neural network
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training. At the output layer, these correction values are

obtained by simple subtraction between the forward

inference “guess” of the DNN and the correct labels. (In

some cases, the DNN “guess” is first normalized by a

softmax() operation, so that the raw value of the jth output

neuron, zj, is replaced by expðzjÞ =
P

expðzkÞ, where the
denominator is summed over all K output neurons.)

Reverse propagation proceeds from the output neurons

back toward the input neurons. At each array-block, a

multiply-accumulate operation is again performed, but in a

direction orthogonal to the integration performed during the

forward-propagate step (e.g., along rows). Thus, the

peripheral circuitry needs from Figure 3 are all present again,

except that the locations are swapped. Thus, signals must be

received, stored locally (as a few bits of d information), and

fed to column drivers on the “South side” of the array.

Similarly, integration of the aggregate read current along each

row occurs onto a capacitor, which is now located at the

“West side” of each row, followed bymeasurement and

transmission from shared “West side” circuitry. The need to

“read” the array in two orthogonal directions at different

times is a key distinction from conventional memory.With

careful design of bias scheme and peripheral circuitry, it is

possible to accomplish this without adding anymore access

transistors into the array. This parallel read operation is also

subject to the same aggregate current and power constraints as

the forward propagate parallel read.

For reverse propagation, because d values are signed and

because Gþ and G� conductances share a common row, we

must perform the integration in two time-multiplexed

phases. First, positive signals are integrated onto the “West

side” capacitor, representing the combination of positive

d values read through Gþ conductances and negative d

values read through G� conductances. Then, the circuitry

on the “West side” is reconfigured so that aggregate read

current subtracts from the capacitor voltage, allowing

contributions from positive d values read through

G� conductances and negative d values read through

Gþ conductances. (Note that one could choose to provide

differentiated row-lines for Gþ and G� and a common

column-line, but while that would allow the integration

within this reverse-propagation operation to be performed

in one phase, now the integration within forward-

propagation would need to become a two-phase operation.)

Another important distinction from forward propagation

is that a nonlinear squashing function is not applied.

Instead, the multiply-accumulated sum (corresponding to

the analog voltage on each West-side capacitor after

integration) needs to be scaled by the derivative of the

activation function, as evaluated at the neuron activation

value. An exact tanh() or logistic derivative is not efficient

to compute and multiply. Fortunately, a step-function

derivative with two distinct states can be used. The

necessary single bit, encoding whether the x value for this

neuron during forward-propagate called for a large or small

derivative, can readily be preserved as one of the few bits

stored locally during forward propagation.

Multiplication by derivative values of zero and one

is fairly straightforward to implement in hardware.

This corresponds to simply enabling or disabling the

transmission of an accumulated sum-of-deltas from any

neuron stage to the preceding stage. With analog circuitry,

more flexible multiplication by arbitrary scale factors can

also be performed.

Once delta values have been integrated for a neuron

layer, that layer is ready for weight update. This step

can be pipelined with backward propagation of d through

additional upstream layers. Note that backward propagation

from the first hidden layer back to the input neurons can

be performed, but is not required. (The input neurons have

no upstream synapses, so the highest layer that ever uses

d values is the first hidden layer.)

Synaptic weight update
For weight-update, the few-bits that were stored locally at

the “West side” of each row during forward-propagate, and

the few-bits that were stored locally at the “South side”

of each column are finally used. As shown in Figure 4,

these bits are used to drive the row and column for write

operations. (In the context of PCM, these would be partial-

SET pulses, intended to increase conductance by a small

portion of the total dynamic range between RESET and

SET.) As described in [2], only the overlap of both the row

and column pulse should lead to programming. The scheme

described in [2] called for four timeslots (A, B, C, and D) so

that the bit-pattern stored locally need only encode whether

that row (or column) should participate in each of these

timeslots. This mapping from the magnitude “Received

signal” in Figure 3 to the particular bit-pattern stored for

weight-update occurs during forward-propagate. This was

also the point in time at which an effective “learning rate,”

h, can be imposed, in determining the threshold values at

which the received x (or d) transitions from requiring no

programming pulses (few-bit pattern is all zeros) to one

programming pulse (a timeslot is 1, others are 0), and so on.

In order to minimize excess CV 2 energy caused by

unnecessary up-and-down toggling of the long row-lines

and column-lines, the 1-bits in each few-bit pattern should

be contiguous. Note that even a single timeslot provides

quite similar DNN training performance, at least on the

MNIST dataset [8]. In the case of a unidirectional NVM,

the sign of delta dictates whether programming pulses are

sent to the Gþ or G� conductances. In the case of a

bidirectional NVM, two programming phases (a first set of

A, B, C, D timeslots, followed by a second set) can be used

for improved performance [4], so that every weight update

is implemented by programming both the Gþ and G�

conductances. Here, it is important to use an NVM that
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supports short writing times, such as the 25 ns partial-SET

pulses [4] that can be used with PCM. Much longer write

times would either slow the system, or require larger arrays

or larger peripheral circuitry capable of aggregating

multiple weight updates together.

Note that, even for low values of the learning rate, a given

data example may require a large number of programming

pulses to be applied to the array, perhaps exceeding the

capabilities of the write drivers. This is particularly likely

early in training. One approach that can work here is to write

one stripe of the array-block at a time, enabling just the first

32 (or 64) columns, then the next, and so on. Such a procedure

could be used early during training, and then turned off to

allow subsequent training to occur evenmore rapidly. As a

result, it will be important that the few-bits stored locally can

be preserved for subsequent re-use, so that a single local-

enable bit can control whether write drivers are enabled. Note

that any sequencing of stored bits across timeslots should only

be performed by support circuitry if that row or column line is

enabled for write, in order to avoid wasted power. The

simplest approach is to avoid the need for sequencing by

using just a single timeslot bit. This has been shown to work

just as well as four timeslots on both theMNIST and the

MNISTþ background noise datasets [8].

Occasional RESET
For NVM devices exhibiting a pronounced asymmetry in

their conductance response, asmentioned earlier in this paper,

an “Occasional RESET” step is necessary to allow accurate

DNN training.Without this step, synapses receiving

a large number of programming pulses inevitably move

to the far right side of the “G-diamond,” [2, 3] where both

conductances approach their maximum value, and weight

values are steered toward zero. This invariably causes

networks to “freeze out,” as the network stops training

(because the d values received by all upstream synaptic layers

are scaled to near-zero by the lowweight values) while it also

steadily deletes the weights it has learned.

Althoughwe refer to this process as “Occasional RESET”

because the SET step in PCM is gradual, and the RESET step

is abrupt, the exact same requirement would be necessary for

a filamentary RRAM such asHfOx or TaOxRRAM. The only

difference would be that in such devices, it is the RESET step

that is gradual, and the SET step which is abrupt.

During this “Occasional RESET” step, DNN training

is paused, and all conductances must be measured.

This must necessarily be done in a row by row fashion.

The measurements can be performed with the same

integration circuitry described in Figure 3, except that the

signals will be smaller (requiring longer integrations) and

the integration ofGþ and G� performed in sequence so that

each conductance value can be independently obtained.

One approach here might be to repurpose neighboring

capacitors via current mirrors so that the weight, Gþ and

G� could all be obtained simultaneously.

Once the individual conductances are measured, any

synapse for which both conductances are large can be

flagged for RESET and incremental SET. Again, the few

bits of local storage at each column can be used to hold

these decisions, while the few bits at each row encode

which row is being processed. This should allow the same

write circuitry to perform both the RESET and subsequent

SET operations. If verify should be necessary, the presence

of the original weight as an analog voltage on one of the

“South side” column-capacitors can be used to decide when

to terminate the verify-SET loop.

Reconfigurability and directed redefinition of
weights
As described earlier, it is important that such a single piece

of hardware for on-chip learning support as wide a variety

of DNN applications as possible. Thus a flexible routing

network is essential to supporting networks that are very

wide and networks that are very deep in a reconfigurable

way. As such, an external user would experience no

Figure 4

For weight-update, the few-bits stored locally at the “West side” of

each row and the “South side” of each column are used to drive the

row and column for write operations. (In the context of PCM, these

would be partial-SET pulses, intended to increase conductance by a

small portion of the total dynamic range between RESET and SET.)

As described in reference [2], only the overlap of both the row and col-

umn pulse should lead to programming. The scheme described in refer-

ence [2] called for four timeslots (A, B, C, and D) so that the bit-

pattern stored locally need only encode whether that row (column)

should participate in each of these timeslots. In order to minimize

excess CV2 energy caused by unnecessary up-and-down toggling of the

long row- and column-lines, the 1-bits in each few-bit pattern should

be contiguous. Note that even a single timeslot provides quite similar

DNN training performance, at least on the MNIST dataset [8]. In the

case of a unidirectional NVM, the sign of delta dictates whether pro-

gramming pulses are sent to the Gþ or G� conductances. In the case of

a bidirectional NVM, two phases can be used for improved perfor-

mance [4], so that weight changes are implemented by programming

both the Gþ and G� conductances.
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constraints associated with the actual size of any one array

block. Future work will address the possibility of adapting

the architecture described here to support convolutional

neural networks.

One important architecture in the training of extremely

large DNN models involves the use of “data parallelism.”

Here a large number of processing nodes train the same

DNN model in parallel, each using a different portion of

the overall training database. As such, the weights of

each copy of the DNN model tend to diverge based on

their unique sequence of data examples. In order to

leverage the large dataset, a “parameter server” is

responsible for coordinating the work of the various

processing nodes, by maintaining a single set of

coordinated weights for the DNN.

The parameter server performs this work by alternating

between sending out the current copy of these coordinated

weights, and updating this set of weights with periodic

updates sent back to the parameter server from each

processing node. Such an approach can provide large

speed-ups on the training of DNN models—for instance,

speed-ups of 40� have been measured for large models

split across 50 processing nodes [29].

In order for any learning accelerator chip using NVM-

based synapses to also support this kind of speedup through

data parallelism, it is essential to support two additional chip

modes, as shown at the left edge of Figure 2—weight

overrides IN, and updated weights OUT. These two steps are

mademuch more straightforward if the chipmaintains a copy

of the last “best” set of weights received from the parameter

server. This can either be stored in digitized format at the edge

of the chip, or more compactly within array-blocks that are

NOT subsequently used for DNN training.

The process of receiving weight overrides then simply

requires row-by-row tuning of the conductance values within

both analog copies of the weight. The process of determining

which weights have beenmodified by this chip requires only a

simple row-by-row comparison between the two analog

copies of the weights. Alternatively, if digital storage is

available at the edge of the chip, or on a DRAM (dynamic

random access memory) chip located nearby, then all the

weights can be read out and digitized at the edge of the chip,

allowing off-chip comparison between the last “best set” of

weights and the chip’s current set of weights, thus minimizing

the network bandwidth needed for conveying weight updates

from this processing node back to the parameter server. In this

scenario, the near-off-chip digital copy of the “best set” of

weights can be used to identify just those weights in need of

override within the NVM-based chip.

Conclusion
We have described a generic architecture for accelerating

the backpropagation-based training of DNNs by means of

on-chip learning built around analog multiply-accumulate

operations implemented with large NVM arrays. Peripheral

circuitry on such an on-chip accelerator will need to support

standard functionality for forward propagation, reverse

propagation, and weight update. We presented circuit-level

constraints and design choices toward realization of these

functionalities. We also outlined some additional modes of

operation (e.g., Occasional RESETs for certain NVMs,

support for reconfigurable and flexible routing, and weight

overrides). In all cases, we discussed tradeoffs and design

choices that impact the acceleration factor and power

consumption. These include several approximations to

reduce the area overhead of peripheral circuitry, including

approximate implementations of the squashing function and

derivative, approximate crossbar-compatible weight update,

sharing of circuitry between occasional RESET and parallel

read/write modes, and reduction in the number of updated

weights. Such practical circuit approaches will be of critical

importance in the design of a practical dedicated on-chip

training accelerator based on NVMs. Eventually, the mixed

analog-digital-NVM design approach described here, once

successful in implementing supervised on-chip learning for

established algorithms such as backpropagation, might

eventually lead to hardware implementations of much less-

mature but sparse (and thus inherently more energy-

efficient) spike-based algorithms offering one possible path

toward continuous, online learning.
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