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Abstract—Using 2 phase-change memory (PCM) devices per
synapse, a 3-layer perceptron network with 164,885 synapses is
trained on a subset (5000 examples) of the MNIST database of
handwritten digits using a backpropagation variant suitable for
nonvolatile memory (NVM) + selector crossbar arrays, obtaining
a training (generalization) accuracy of 82.2% (82.9%). Using
a neural network (NN) simulator matched to the experimental
demonstrator, extensive tolerancing is performed with respect
to NVM variability, yield, and the stochasticity, linearity and
asymmetry of the NVM-conductance response. We show that
a bidirectional NVM with a symmetric, linear conductance
response of high dynamic range is capable of delivering the same
high classification accuracies on this problem as a conventional,
software-based implementation of this same network.

I. INTRODUCTION

ENSE arrays of nonvolatile memory (NVM) and selec-
tor device-pairs (Fig. 1) can implement neuro-inspired
non-Von Neumann computing [1], [2], using pairs [2] of
NVM devices as programmable (plastic) bipolar synapses.
Work to date has emphasized the Spike-Timing-Dependent-
Plasticity (STDP) algorithm [1], [2], motivated by synaptic
measurements in real brains. However, experimental NVM
demonstrations have been limited in size (<100 synapses),
and few results have reported quantitative performance metrics
such as classification accuracy. Worse yet, it has been difficult
to be sure whether the relatively poor metrics reported to date
might be due to immaturities or inefficiencies in the STDP
learning algorithm (as it is currently implemented), rather than
reflective of problems introduced by the imperfections of the
NVM devices.
Unlike STDP, backpropagation is a widely-used, well-
studied method in training artificial neural networks, offering
benchmark-able performance on datasets such as handwritten
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Fig. 1. Neuro-inspired non-Von Neumann computing [1], [2], in which
neurons activate each other through dense networks of programmable synaptic
weights, can be implemented using dense crossbar arrays of nonvolatile
memory (NVM) and selector device-pairs.
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Fig. 2. In forward evaluation of a multi-layer perceptron, each layer’s neurons
drive the next layer through weights w;; and a nonlinearity f (). Input neurons
are driven by pixels from successive MNIST images (cropped to 22x24); the
10 output neurons identify which digit was presented.

digits (MNIST) [3]. Although proposed earlier, it gained great
popularity in the 1980s [3], [4], and with the advent of
GPUs, backpropagation now dominates the neural network
field. In the present work, we use backpropagation to train
a relatively simple multi-layer perceptron network (Fig. 2).
During forward evaluation of this network, each layer’s inputs
(z;) drive the next layer’s neurons through weights w;; and a
nonlinearity f() (Fig.2). Supervised learning occurs (Fig. 3)
by backpropagating error terms J; to adjust each weight w;; as
the second step. A 3—layer network is capable of accuracies, on
previously unseen “test” images (generalization), of ~97% [3]
(Fig.4); even higher accuracy is possible by first “pre-training”
the weights in each layer [5]. (Here we use tanh() as the
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Fig. 3. In supervised learning, error terms d; are backpropagated, adjusting
each weight w;; to minimize an “energy” function by gradient descent,
reducing classification error between computed (le ) and desired output
vectors (gp).
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Fig. 4. A 3-layer perceptron network can classify previously unseen (“test”)
MNIST handwritten digits with up to ~97% accuracy [3]. Training on a subset
of the images sacrifices some generalization accuracy but speeds up training.

nonlinear function f(), and one bias (always-ON) neuron is
added to each layer other than the output layer in addition to
those neurons shown in Fig. 2. Like with STDP, low-power
neurons should be achievable by emphasizing brief spikes [6]
and local-only clocking. However, note that no CMOS neuron
circuitry is built or even specified in this paper — our focus
will be solely on the effects of the imperfections of the NVM
elements.

We choose to work with phase-change memory (PCM)
since we have access to large PCM arrays in hardware. We
discuss the consequences of the fundamental asymmetry in
PCM conductance response: the fact that small conductance
increases can be implemented through “Partial-SET” pulses,
but the RESET (conductance decrease) operation tends to be
quite abrupt. However, we also discuss the use of bidirec-
tional NVM devices (such as non-filamentary RRAM [7]).
We show that such a bidirectional NVM with a symmetric,
linear conductance response is fully capable of delivering the
same high classification accuracies (on the problem we study,
handwritten digit recognition) as a conventional, software-
based implementation of the same neural network.
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Fig. 9. The conductance response of an NVM device exhibits imperfections,
including nonlinearity, stochasticity, varying maxima, asymmetry between
increasing/decreasing responses, and non-responsive devices (at low or high
Q).

II. CONSIDERATIONS FOR A CROSSBAR IMPLEMENTATION

By encoding synaptic weight in the conductance difference
between a pair of nonvolatile memory devices, w;; = G —
G~ [2], forward propagation simply compares total read signal
on bitlines (Fig.5). This can be performed by encoding = using
some combination of voltage-domain or time-domain encoding
(either number of read pulses or pulse duration). These CMOS
circuitry choices are interesting and important topics, but are
beyond the scope of this paper.

Any non-volatile memory device that can offer a nonde-
structive parallel read (as shown in Fig. 5) of memory states
that can be smoothly adjusted up or down through a wide range
of analog values could potentially be used in this application.
Here we focus on NVM devices that offer a range of analog
conductance states.

This paper is concerned with how real NVM devices will
respond to programming instructions during in situ training
of their artificial neural network. Unfortunately, the conven-
tional backpropagation algorithm [4] calls for weight updates
Aw;; o< x;0; (Fig. 6), which forces upstream 7 and down-
stream j neurons to exchange information uniquely for each
and every synapse. This serial, element-by-element informa-
tion exchange between neurons is highly undesirable in a
crossbar array implementation. One alternative is to have each
neuron, downstream and upstream, fire pulses based on their
local knowledge of z; and §;, respectively. The presence of
a nonlinear selector is critical to ensure that NVM program-
ming occurs only when pulses from both the upstream and
downstream neurons overlap. This allows neurons to modify
weights in parallel, making learning much more efficient
[1] (Fig. 7). (Note that to reduce peak power, one might
choose to stagger these write pulses across the array, one
sub-block at a time.) Fig. 8 shows, using a simulation of the
neural network in Figs. 2,3, that this adaptation for nonvolatile
memory implementation has no adverse effect on accuracy.

However, while modifying the update rule is clearly not
a problem, the conductance response of any real nonvolatile
memory device exhibits imperfections that can decidedly af-
fect the neural network performance. These imperfections in-
clude nonlinearity, stochasticity, varying maxima, asymmetry
between increasing/decreasing responses, and non-responsive
devices at low or high conductance (Fig.9). The initial version
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Fig. 10. Bounding G values reduces NN training accuracy slightly, but uni-
directionality and nonlinearity in G-response can strongly degrade accuracy.
Figure insets map NVM-pair synapse states on a diamond-shaped plot of G+
vs. G~ (weight is vertical position) for a sampled subset of the weights.
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Fig. 11. If G values can only be increased (asymmetric G-response), a
synapse at point A (G1 saturated) can only increase G, leading to a low
weight value (B). If response at small G values differs from that at large G
(nonlinear G-response), alternating weight updates can no longer cancel. As
synapses tend to get herded into the same portion of the G-diamond (C —
D), the decrease in average weight can lead to network freeze-out.

of this work [8] was the first paper to study the relative
importance of each of these factors. This expanded version
adds significantly more explanatory details, as well as several
new plots detailing paths for future improvement.

Bounding G values would appear to reduce neural network
training accuracy slightly, as shown by the difference between
the blue and red (top two) curves in Fig. 10. However,
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Fig. 12. Synapses with large conductance values (inset, right edge of G-
diamond) can be refreshed (moved left) while preserving the weight (to some
accuracy), by RESETs to both G followed by a partial-SET of one. If such
RESETs are too infrequent, weight evolution stagnates and NN accuracy
degrades.
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Fig. 13.  Mushroom-cell [9], ITIR PCM devices (180nm node) with 2
metal interconnect layers enable 512x1024 arrays. A 1-bit sense amplifier
measures G values, passing the data to software-based neurons. Conductances
are increased by identical 25ns “partial-SET” pulses to increase G+ (G™)
(Fig. 7), or by RESETSs to both G followed by an iterative SET procedure
(Fig. 12).

ILD

unidirectionality and nonlinearity in the G-response strongly
degrade accuracy (bottom two curves, green and magenta).
Figure insets (Fig. 10) map non-volatile memory pair synapse
states on a diamond-shaped plot of G vs. G~ (weight is
vertical position). In this context (Fig. 11), a PCM-based
synapse with a highly asymmetric G-response (only partial—
SET can be done gradually) moves only unidirectionally, from
left-to-right. (Bipolar filamentary RRAM or CBRAM would
have an identical problem, except that SET is the abrupt step
and it is the RESET step which can be performed gradually.)

Once one G value is saturated, subsequent training can
only increase the other G value, reducing weight magnitude.
Nonlinearity in G-response further encourages weights of low
value. If the response at small G values differs from that
at large G, alternating weight updates no longer cancel. As
synapses are herded into the same portion of the G-diamond
(Fig. 11), the decrease in average weight can lead to network
“freeze-out” (Fig. 10 inset). In such a condition, the network
chooses to update very few if any weights, meaning that the
network stops evolving towards higher accuracy. Worse yet,
since the few weight updates that do occur are quite likely
to lead to weight magnitude decay, previously trained infor-
mation is steadily erased and accuracy can actually decrease
(bottom two curves, Fig. 10).

One solution to the highly asymmetric response of PCM
devices is occasional RESET [2], moving synapses back to the
left edge of the “G-diamond” while preserving weight value
(using an iterative SET procedure, Fig. 12 inset). However,
if this is not done frequently enough, weight stagnation will
degrade neural network accuracy (Fig. 12). (An analogous
approach for bipolar filamentary RRAM or CBRAM would
be occasional SET.)

III. EXPERIMENTAL RESULTS

We implemented a 3-layer perceptron of 164,885 synapses
(Figs.2,3) on a 500 x 661 array of mushroom-cell [9], 1ITIR
PCM devices (180nm node, Fig. 13). While the weight update
algorithm (Fig. 7) is fully compatible with a crossbar imple-
mentation, our hardware allows only sequential access to each

Fig. 14. Although G
values are measured
sequentially,  weight
summation and weight
update procedures in
our software-based
neurons closely mimic
the column (and
row) integrations
and pulse-overlap
programming needed
for parallel operations
across a  crossbar
array. However, since
occasional RESET
is  triggered  when
both G and G~ are
large, serial device
access is  required
to obtain and then
re-program  individual
conductances.
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Fig. 15. Training and test accuracy for a 3-layer perceptron of 164,885
hardware-synapses, with all weight operations taking place on a 500 X
661 array of mushroom-cell [6] PCM devices (Fig. 13). Also shown is a
matched computer simulation of this NN, using parameters extracted from
the experiment.
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Fig. 16. 50-point cumulative distributions of experimentally measured con-
ductances for the 500 x 661 PCM array, showing variability and stuck-
ON pixel rate. Insets show the measured RESET accuracy, and the rate and
stochasticity of G-response, plotted as a colormap of AG-per-pulse vs. G.
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responses), obtained from our computer model (inset) for the rate and
stochasticity of G-response (AG-per-pulse vs. G) matched to experiment
(Fig. 16).

PCM device (Fig. 13). For read, a sense amplifier measures G
values, passing the data to software-based neurons. Although
this measurement is performed sequentially, weight summation
and weight update procedures in the software-based neurons
closely mimic the column- and row-based integrations. (Again,
since no particular CMOS circuitry has been specified, we
assume that the 8-bit value of x; is implemented completely
accurately. Any problems introduced by inaccurate encoding
of x; values by real CMOS hardware could be easily assessed
using our tolerancing simulator.)

Weights are increased (decreased) by identical “partial—
SET” pulses (Fig.7) to increase G (increase G™) (Fig. 14).
The deviation from true crossbar implementation occurs upon
occasional RESET (Fig. 12), triggered when either G+ or G~
are large, thus requiring both knowledge of and control over
individual G values. Serial device access is required, both to
measure the G values (to determine which are in the “L-
shaped” region at the right side of the G-diamond) and then
to fire two RESET pulses (at both G* and G~) followed
by an iterative SET procedure to increase one of those two
conductances until the correct synaptic weight is restored.
Since the time and energy associated with this process are
large, it is highly desirable to perform occasional-RESET as
infrequently and as inaccurately as possible.

Fig. 15 shows measured accuracies for a hardware-synapse
neural network, with all weight operations taking place
on PCM devices. To reduce test time, weight updates for
each mini-batch of 5 MNIST examples were applied together.
Fig. 16 plots measured G-response, stochasticity, variability,
stuck-ON pixel rate, and RESET accuracy. By matching all
parameters including stochasticity (Fig. 17) to those measured
during the experiment, our neural network computer simula-
tion was able to precisely reproduce the measured accuracy
trends (Fig. 15).

IV. TOLERANCING AND POWER CONSIDERATIONS

We can now use this matched neural network simulation to
explore the importance of nonvolatile memory imperfections.
Fig. 18 shows final training (test) accuracy as a function

of variations in nonvolatile memory and neural network pa-
rameters away from the conditions used in our hardware
demo (green dotted line). NN performance is highly robust
to stochasticity (Fig. 18(a)), variable maxima (c), the presence
of non-responsive devices (d,e), and infrequent and inaccurate
RESETs (f,g). A mini-batch of size 1 allows weight updates
to be applied immediately (Fig. 18(h)). However, as mentioned
earlier, nonlinearity and asymmetry in G-response (Fig. 18(b))
limit the maximum possible accuracy (here, to ~85%), and
require precise tuning of the learning rate and neuron-response
(f") (Fig. 18(i,j))). Too low a learning rate and no weight
receives any update; too high, and the imperfections in the
NVM response generate chaos. The narrow distribution of
these parameters means that the experiment must be tuned
very carefully. An extension of an existing neural network
technique to a crossbar-based neural network has been found
to provide a much broader distribution of the learning rate.
This technique is currently under investigation and will be the
subject of a future publication.

V. DISCUSSION

While the asymmetric G-response of PCM makes it neces-
sary to occasionally stop training, measure all conductances,
and apply RESETs and iterative SETs, energy usage can be
reasonable if RESETs are infrequent (Fig. 19, inset), and if
learning rate is low (Fig. 19).

Neural network performance with bidirectional nonvolatile
memory-based synapses can deliver high classification accu-
racy if G-response is linear and symmetric (Fig. 20, green
curve) rather than nonlinear (red curve). Asymmetry in G-
response (blue curve) strongly degrades performance. In
Fig. 21, we further explore the trends with an ideal but
nonlinear NVM, varying both the initial steepness of the G-
response and the choice of “fully bidirectional” weight updates
(when increasing weight, for instance, we both increase G
and decrease G~ together) or “alternating bidirectional” (we
choose one, but not both, of these two steps). Clearly, a less-
steep response is favorable, and the distinction between fully
or alternating bidirectional has the most impact for steeply
nonlinear GG-responses.

The most ideal NVM, with a linear and symmetric conduc-
tance response in both directions, would result in more regu-
larly distributed weight values and less freeze-outs, leading to
higher accuracies. In Fig.22 and Fig.23, we show that a gentle
linear response (e.g., a large number of identical pulses are
needed to change the conductance from minimum to maximum
conductance and vice-versa), is advantageous compared to a
steep response. While both the alternating bidirectional and
fully bidirectional update schemes deliver higher accuracies
than an NVM with a nonlinear conductance response, only
the fully bidirectional update scheme reaches the same high
test accuracies exhibited by networks in which the NVM
conductances are unbounded (Fig. 23, inset). Fig. 24 replots
the same data from Fig. 23 on a logarithmic vertical scale, to
accentuate the high accuracy region.

The reason for this difference is shown in Fig.25, where one
example of a desired sequence of weight updates is contrasted
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Fig. 19. Despite the higher power involved in RESET rather than partial—
SET (30pJ and 3pJ for highly-scaled PCM [1]), total energy costs of training
can be minimized if RESETs are sufficiently infrequent (inset). Low-energy
training requires low learning rates, which minimize the number of synaptic
programming pulses. At higher learning rates, even a bi-directional, linear
NVM requiring no RESET and offering low power (1pJ per pulse) can lead
to large training energy.
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Fig. 20. NN performance is improved if G-response is linear and symmetric
(green curve) rather than nonlinear (red). However, asymmetry between the
up- and down-going G-responses (blue), if not corrected in the weight-update
rule (Fig.7), can strongly degrade performance by favoring particular regions
of the G-diamond (Figs. 10,11).

Fig. 21. NN performance with a bidirectional but nonlinear G-response (same
basic shape as Fig. 20, red inset curve) improves as the response becomes
more gentle and the initial slope is less steep. The choice between always
updating both conductances when updating the weight (“fully bidirectional”)
and alternating between updating G or G~ but not both (“alternating
bidirectional”), has the most impact when the G-response is steeply nonlinear.
(Note that due to changes in learning rate and the slope of the nonlinear
function f(), the red curve in Fig.20 is not duplicated here.)
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Fig. 22. NN performance when alternating between updating G or G~ but
not both (“alternating bidirectional”), with a linear G-response. This update
method cannot reach the performance of a network with unbounded synaptic
weights, even when the dynamic range of the linear response is large (e.g.,
when the change due to any one pulse is only a small fraction of the range
between the minimum and maximum conductances).
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response. The inset shows that, when the dynamic range of the linear response
is large, the classification accuracy can now reach that of the original network
(a test accuracy of 94% when trained with 5,000 images; 97% when trained
with all 60,000 images).
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Fig. 24. The same NN performance data for a linear, symmetric NVM under
the fully bidirectional scheme (Fig. 23), here replotted on a logarithmic scale
that accentuates the high accuracy region. Here only the classification accuracy
on the training set is shown, which can reach close to 100%, at which point
the accuracy on the test set of 10,000 images that the network has never
seen before (Fig.23) becomes the only relevant way to gauge the network
performance.

to the actual weight updates that get implemented in these
two update schemes. In Fig. 25(b), we show that when the
state of the synapse is at the boundaries of the G-diamond,
there is a significant chance that the next weight update using
the alternating bidirectional scheme will have little or no
impact, simply because a conductance that is already saturated
cannot be increased (decreased) any further. In the fully-
bidirectional update scheme, some amount of weight update
will still occur at the edges of the G-diamond, leading to
smaller discrepancies between the desired and actual weight
changes, and thus higher performance. In addition, because
the weights only move “up” and “down” the G-diamond in
the fully bidirectional scheme, the synapses stay in the center
stripe of the G-diamond (Fig. 26(b)), where they have access
to the full dynamic range available. In contrast, because each
weight update in the alternating bidirectional scheme moves
along a diagonal line, some number of synapses end up at the
edges of the G diamond, where the effective dynamic range
which they can access is significantly reduced (Fig. 26(a)).
These results demonstrate conclusively that NVM devices

should be fully capable of delivering the same classification
accuracy on the MNIST handwritten digits as a conventional
implementation of this artificial neural network. All that is re-
quired of the NVM device is that it offer a bidirectional, linear,
and symmetric response in conductance with large dynamic
range (e.g., the change due to any one pulse represents only
a small fraction of the entire conductance range available).

Other future work will be needed to demonstrate a full
crossbar-array implementation, including dedicated CMOS
circuitry for summation of synaptic weights during both
forward and backpropagation through nearly-identical high-
performance nonlinear selector devices. The values of neurons
() and backpropagated errors () will need to be stored
in CMOS circuitry and presented to the crossbar, through
some combination of analog voltage levels, number of read
pulses, and/or duration of read pulses. The need to synchronize
write pulse timing between upstream and downstream neurons,
and techniques to disperse the high-energy writes in time (to
reduce the load on write drivers and voltage supplies) must
also be addressed in future work.

VI. CONCLUSIONS

Using 2 phase-change memory (PCM) devices per synapse,
a 3-layer perceptron with 164,885 synapses was trained with
backpropagation on a subset (5000 examples) of the MNIST
database of handwritten digits to high accuracy of (82.2%,
82.9% on test set). A weight-update rule compatible for
NVM-+selector crossbar arrays was developed, and was shown
to have no adverse effect on accuracy. A novel “G-diamond”
concept (Fig. 11) was introduced to illustrate issues created by
nonlinearity and asymmetry in NVM conductance response.
Asymmetry can be mitigated by an occasional RESET strat-
egy (Fig. 12), which can be both infrequent and inaccurate
(Figs. 12,18(f,g)).

Using a neural network (NN) simulator matched to the ex-
perimental demonstrator, extensive tolerancing was performed
(Fig. 18). Results show that network parameters such as
learning rate and the slope of the nonlinear neuron-response
function (Figs. 18(i,j)), and the nonlinearity, symmetry, and
bounded nature of the conductance response (Figs. 9-11, 20—
26), are critical to achieving high performance in an NVM-
based neural network.

Our results show that all NVM-based neural networks (not
just those based on PCM) can be expected to be highly
resilient to random effects (NVM variability, yield, and
stochasticity), but will be highly sensitive to ‘“gradient”
effects that act to steer all synaptic weights. A learning
rate just high enough to avoid network “freeze-out” is shown
to be advantageous for both high accuracy and low training
energy. We also prove that a bidirectional NVM with a
symmetric, linear conductance response of high dynamic range
(each conductance step is relatively small) would be fully
capable of delivering the same high classification accuracies
on the MNIST handwriting digit database as a conventional,
software-based implementation, ranging from >94% when
trained on 5000 examples to >97% when trained on the full
set of 60,000 training examples.
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Fig. 25. Because of the finite bounds on conductance values, any desired sequence of weight changes (lefthand portion of (a)) will not be fully implemented
in an NVM-based neuromorphic system. Parts (b) and (c) illustrate the actual weight updates that occur in (b) an “alternating bidirectional” update scheme,
in which we alternate between updating G or G~ but not both, and (c) a “fully bidirectional” update scheme, in which we always update both Gt or G—.
With the “alternating bidirectional” scheme, synapses whose conductance values are located at/near the boundaries of the G-diamond can potentially lead to
a situation where a large weight update is completely ignored. In contrast, in the “bidirectional” scheme, such large weight updates are simply reduced in the
magnitude of their effect, and synapses tend to remain in the center of the G-diamond.
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Fig. 26. When the G-response is steeply nonlinear, a “fully bidirectional”
scheme exhibits lower accuracy (see Fig. 21), because any single weight
update could potentially make two overly large conductance changes instead
of just one. However, the “fully bidirectional” scheme provides better per-
formance for a linear response with high dynamic range (compare Figs. 22
and 23), because the small symmetric changes of each conductance move the
synaptic weight up and down along the central vertical axis of the G-diamond.
In contrast, the “alternating bidirectional” scheme can move some synapses to
the left or right edges of the G-diamond, where the effective dynamic range
(maximum weight magnitude) is significantly reduced.
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