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Outline
 Motivation

• future server-room power & space demands may require 
a new technology – Storage Class Memory (SCM) – combining…

 the benefits of a solid-state memory (high performance and robustness)
 the archival capabilities and low cost of conventional HDD

 3-D Crosspoint memory
• High-density, high-performance Non-Volatile Memory (NVM)

 STT-MRAM, RRAM, PCM

• Back-End-Of-the-Line (BEOL)-compatible access device
 High ON-state current for writing (>10MA/cm2)
 Low OFF-state leakage (<100pA  >107 ON/OFF ratio)
 Bipolar operation (for RRAM or STT-MRAM)

 Access Device based on Mixed-Ionic-Electronic-Conduction

 Conclusion
• With its combination of low-cost and high-performance, 

SCM could impact much more than just the server-room...
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Power & space in the server room
The cache/memory/storage hierarchy is rapidly becoming the bottleneck for large systems. 

We know how to create MIPS & MFLOPS cheaply and in abundance, 
but feeding them with data has become 

the performance-limiting and most-expensive part of a system (in both $ and Watts).

• 5 million HDD
 16,500 sq. ft. !! 
 22 Megawatts

Extrapolation to 2020
(at 70% CGR  need 

2 GIOP/sec)

R. Freitas and W. Wilcke, Storage Class Memory: the next storage 
system technology –"Storage Technologies & Systems" special issue 

of the IBM Journal of R&D (2008)
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• 21 million HDD
 70,000 sq. ft. !! 
 93 Megawatts

(at 90% CGR  need 8.4G SIO/sec)

…yet critical applications are also undergoing a paradigm shift

Compute-centric
paradigm

Typical Examples:

Bottleneck:

Main Focus: Analyze petabytes of data

Storage & I/O
Search and Mining

Analyses of social/terrorist networks

Sensor network processing

Digital media creation/transmission

Environmental & economic modeling

Data-centric
paradigm

Solve differential equations

CPU / Memory
Computational Fluid Dynamics

Finite Element Analysis

Multi-body Simulations

(at 90% CGR  need 1.7 PB/sec)

• 5.6 million HDD
 19,000 sq. ft. !! 
 25 Megawatts

Extrapolation
to 2020

[Freitas:2008]
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Problem (& opportunity): The access-time gap between memory & storage

TAPE

DISK

RAM
CPU

Yesteryear 

• Modern computer systems have long had to be designed around hiding the access gap 
between memory and storage  caching, threads, predictive branching, etc.

• “Human perspective” – if a CPU instruction is analogous to a 1-second decision by a human,
retrieval of data from off-line tape represents an analogous delay of 1250 years
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Problem (& opportunity): The access-time gap between memory & storage

• Today, Solid-State Disks based on NAND Flash can offer fast ON-line storage, 
and storage capacities are increasing as devices scale down to smaller dimensions…

TAPE

DISK

FLASH
SSD

RAM
CPU

Today 

TAPE

DISK

RAM
CPU

…but while prices are dropping, the performance gap between memory and storage
remains significant, and the already-poor device endurance of Flash is getting worse.
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Problem (& opportunity): The access-time gap between memory & storage

Research into new solid-state non-volatile memory candidates 
– originally motivated by finding a “successor” for NAND Flash –

has opened up several interesting ways to change the memory/storage hierarchy…

Near-future 
ON-chip
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Access time...
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Write to FLASH, random (1ms)

Read a FLASH device (20 us)

1) Embedded Non-Volatile Memory – low-density, fast ON-chip NVM
2) Embedded Storage – low density, slower ON-chip storage

3) M-type Storage Class Memory – high-density, fast OFF- (or ON*)-chip NVM
4) S-type Storage Class Memory – high-density, very-near-ON-line storage

TAPE

DISK

RAM
CPU

SCM

* ON-chip using 3-D packaging

Memory/storage gap
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S-type vs. M-type SCM

Memory
Controller

DRAM

SCMI/O
Controller

SCM

SCM

Disk

Storage
Controller

CPU
Internal

External

M-type: Synchronous
• Hardware managed
• Low overhead
• Processor waits
• New NVM  not Flash
• Cached or pooled memory
• Persistence (data survives despite 
component failure or loss of power) requires
redundancy in system architecture

S-type: Asynchronous
• Software managed 
• High overhead
• Processor doesn’t wait, 

(process-, thread-switching)
• Flash or new NVM
• Paging or storage
• Persistence  RAID

~1us read latency
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Storage-type vs. memory-type Storage Class Memory

The cost basis of semiconductor processing is well understood – the paths to higher density are 
1) shrinking the minimum lithographic pitch F, and 2) storing more bits PER 4F2

F F 4F2
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Cost structure of silicon-based technology

Co$t determined by

 cost per wafer 

 # of dies/wafer 

 memory area 
per die [sq. mm]

 memory density
[bits per 4F2]

 patterning density
[sq. mm per 4F2]

Chart courtesy of Dr. Chung Lam, IBM Research
updated version of plot from 2008 IBM Journal R&D article
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Storage Class Memory  need 3-D crosspoint arrays

Performance
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Outline
 Motivation

• future server-room power & space demands may require 
a new technology – Storage Class Memory (SCM) – combining…

 the benefits of a solid-state memory (high performance and robustness)
 the archival capabilities and low cost of conventional HDD

 3-D Crosspoint memory
• High-density, high-performance Non-Volatile Memory (NVM)

 STT-MRAM, RRAM, PCM

• Back-End-Of-the-Line (BEOL)-compatible access device
 High ON-state current for writing (>10MA/cm2)
 Low OFF-state leakage (<100pA  >107 ON/OFF ratio)
 Bipolar operation (for RRAM or STT-MRAM)

 Access Device based on Mixed-Ionic-Electronic-Conduction

 Conclusion
• With its combination of low-cost and high-performance, 

SCM could impact much more than just the server-room...
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Ingredients of crosspoint memory

NVM memory element

plus access device

Generic SCM Array

• Improved FLASH

• Magnetic Spin Torque Transfer 
 STT-RAM
 Magnetic Racetrack

• Phase Change RAM

• Resistive RAM

2) High-density access device (A.D.)

1) NVM element

• 2-D – silicon transistor or diode

• 3-D  higher density per 4F2

• polysilicon diode (but <400oC processing?)

• MIEC A.D. (Mixed Ionic-Electronic Conduction)

• OTS A.D. (Ovonic Threshold Switch)
• Conductive oxide tunnel barrier A.D.
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Limitations of Flash
Asymmetric performance

Writes much slower than reads

Program/erase cycle
Block-based, no write-in-place

Data retention and Non-volatility
Retention gets worse as Flash scales down

17
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Endurance

• Single level cell (SLC)  105 writes/cell

• Multi level cell (MLC)  104 writes/cell

• Triple level cell (TLC)  ~300 writes/cell

Future outlook

• Scaling focussed solely on density 

• 3-D schemes exist but are complex
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STT (Spin-Torque-Transfer) RAM
• Controlled switching of free magnetic layer in a 
magnetic tunnel junction using current, leading to 
two distinct resistance states

• Inherently very fast  almost as fast as DRAM
• Much better endurance than Flash or PCM
• Radiation-tolerant
• Materials are Back-End-Of-the-Line compatible
• Simple cell structure  reduced processing costs

Strengths

Weaknesses
• Achieving low switching current/power is not easy
• BEOL temperatures can affect STT-MRAM device stack
• Resistance contrast is quite low (2-3x)  achieving tight distributions is ultra-critical
• High-temperature retention strongly affected by scaling below F~50nm
• Tradeoff between fastest switching and switching reliability

Bit Line

Plate Line

Word Line

Outlook: Strong outlook for an Embedded Non-Volatile Memory to replace/augment DRAM.

While near-term prospects for high-density SCM with 
STT-RAM may seem dim, Racetrack Memory offers hope 
for using STT concepts to create vertical “shift-register” of 
domain walls  potential densities of 10-100 bits/F2



Towards SCM: 3-D crosspoint access devices using MIEC

19 Geoffrey W. Burr           IBM Research – Almaden February 12, 2013

• Very mature (large-scale demos & products)
• Industry consensus on material  GeSbTe or GST
• Large resistance contrast  analog states for MLC 
• Offers much better endurance than Flash
• Shown to be highly scalable (still works at ultra-small F) and Back-End-Of-the-Line compatible
• Can be very fast (depending on material & doping)

Phase-change RAM Phase Change Material

‘heater’
wire

insulator

word line

bit 
lineaccess device

• Switching between low-resistance crystalline, 
and high-resistance amorphous phases, controlled 
through power & duration of electrical pulses

Strengths

Weaknesses
• RESET step to high resistance requires melting  power-hungry, thermal crosstalk?

To keep switching power down  sub-lithographic feature and high-current Access Device
To fill small feature  ALD or CVD  difficult now to replace GST with a better material

Variability in small features broadens resistance distributions
• 10-year retention at elevated temperatures can be an issue  recrystallization
• Device characteristics change over time due to elemental segregation  device failure
• MLC strongly affected by relaxation of amorphous phase  “resistance drift”

Outlook: NOR-replacement products now shipping  if yield-learning successful and MLC 
drift-mitigation and/or 3-D Access Devices can offer high-density (=low-cost), then 
opportunity for NAND replacement, S-type, and then finally M-type SCM may follow
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RESET

Resistive RAM Voltage-controlled formation & dissipation of an oxygen-vacancy 
(or metallic) filament through an otherwise insulating layer

• Good retention at elevated-temperatures
• Simple cell structure  reduced processing costs
• Both fast and ultra-low-current switching have been demonstrated
• Some RRAM materials are Back-End-Of-the-Line compatible
• Relatively new field  high hopes for improved material concepts
• Less “gating” Intellectual Property to license
• Some RRAM concepts offer co-integrated NVM & Access Device 
• Numerous ongoing development efforts

Strengths

Weaknesses
• Highly immature technology – wide variation in materials hampers cross-industry learning
• Demonstrated endurance is slightly better than Flash, but lower than PCM or STT-RAM
• Switching reliability an issue, even within single devices, and read disturb can be an issue
• An initial high-voltage “forming” step is often required
• To attain low RESET switching currents, circuit must constrain current during previous SET
• Unipolar and bipolar versions – bipolar typically better in both write margins & endurance, 

but then requires an unconventional bipolar-capable Access Device (transistor or diode is out)
• High array yield with minimal “outlier” devices not yet demonstrated
• Tradeoff between switching speed, long-term retention, and reliability not yet explored

Outlook: Outlook is unclear.  Emergence of a strong material candidate offering high array 
yield & reliability could focus industry efforts considerably.  Absent that, many 
uncertainties remain about prospects for reliable storage & memory products.

Top electrode

Bottom electrode
“Forming”

step

SET

oxide

Conductive
filament
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NVM memory element

plus access device

Generic SCM Array

• Improved FLASH

• Magnetic Spin Torque Transfer 
 STT-RAM
 Magnetic Racetrack

• Phase Change RAM

• Resistive RAM

2) High-density access device (A.D.)

1) NVM element

• 2-D – silicon transistor or diode

• 3-D  higher density per 4F2

• polysilicon diode (but <400oC processing?)

• MIEC A.D. (Mixed Ionic-Electronic Conduction)

• OTS A.D. (Ovonic Threshold Switch)
• Conductive oxide tunnel barrier A.D.

Ingredients of crosspoint memory
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High density  3D Multilayer Crosspoint Memory Array

Effective cell size: 4F2 Effective cell size: 4F2/L

Stack ‘L’ layers in 3D

F = minimum litho. feature size

As a result of the cost-basis of semiconductor manufacturing, 
memory cost is inversely related to bit density

Since they effectively store more bits per 4F2 footprint,

3D crosspoint arrays  a route to low cost memory

(adapted from Burr, EIPBN 2008)
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Large arrays require an Access Device at each element

Memory Element (PCM, RRAM etc.)

Access Device (Selector)

Apply V

Current ‘sneak path’problem

Access device needed in series with memory element

• Cut off current ‘sneak paths’ that lead to 
incorrect sensing and wasted power

• Typically diodes used as access devices
• Could also use devices with highly non-linear I-V curves

Sense I
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Requirements for an Access Device for 3D Crosspoint Memory

PCM or RRAM

Access 
Device

• High ON-state current density
>10 MA/cm2 for PCM / RRAM RESET

• Low OFF-state leakage current
>107 ON/OFF ratio, and
wide low-leakage (< 100pA) voltage zone to 
accommodate half-selected cells in large 
arrays

• Back-End process compatible
<400C processing to allow 3D stacking

• Bipolar operation
needed for optimum RRAM operation

IBM’s MIEC-based access device satisfies all these criteria
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• Devices fabricated on 4inch wafers
• Voltage margin @ 10nA of 0.85V
• Suitable (desirable) for bipolar memory elements such as RRAM

MIEC access devices can operate in both polarities
(Gopalakrishnan et al, 2010 VLSI Tech. Sym.)

MIEC access devices offer highly nonlinear & Bipolar I-V Curves 
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Bottom Electrode (BE)

Top Electrode (TE)





MIEC

Cu+ Ion Motion

Cu-containing Mixed Ionic-Electronic 
Conduction† (MIEC) materials:
• Mobile Cu  transport in E-field
• Cu interstitials/vacancies can act as dopants

 relationship between mobile Cu and 
local electron/hole 

concentration

Voltage applied to electrodes leads to …

• transient Cu ion drift, followed by
• steady-state electron/hole currentOur devices:

BE  inert (eg. W, TiN)
TE  inert or ionizable
MIEC can be deposited @ ~200C

Exploit non-linear I-V relationship in MIEC devices 
for access device functionality

(Gopalakrishnan et al, 2010 VLSI Tech. Sym.)

†Ref: I. Riess, Solid State Ionics, 157, 1 (2003) for an 
overview of MIEC models

MIEC device operation
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MIEC devices – 200mm wafer integration demonstrated

As-deposited

Post-CMP

TEM x-section

180 nm CMOS 
Front-End
 1T-1MIEC

(1 transistor + 1 MIEC 
access device)

CMP process for MIEC material with modified commercial Cu slurry 

self-aligned MIEC Diode-in-Via (DIV) in a 200 mm wafer process
(Shenoy et al, 2011 VLSI Tech. Sym.)
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MIEC devices support ultra-low leakage currents 
(needed for successful half- and un-select within large arrays)

Voltage margin @ 10nA of 1.1V
~10 pA leakage currents near 0V & wide range with <100pA

(Burr et al, 2012 VLSI Tech. Sym.)
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Scope 

Pulse
generator

V

t

Current

t
50W

100’s of uA pulse currents  ON/OFF ratio >107 

(Shenoy et al, 2011 VLSI Tech. Sym.)

MIEC devices can supply LARGE driving currents 
(needed for successful write of power-hungry NVM candidates)
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Requirements for an Access Device for 3D Crosspoint Memory

PCM or RRAM

Access 
Device

 High ON-state current density
>10 MA/cm2 for PCM / RRAM RESET

 Low OFF-state leakage current
>107 ON/OFF ratio, and
wide low-leakage (< 100pA) voltage zone to 
accommodate half-selected cells in large arrays

 Back-End process compatible
<400C processing to allow 3D stacking

 Bipolar operation
needed for optimum RRAM operation

• variability?
• yield?
• co-integration with NVM?
• turn-ON speed for write?
• endurance?
• manufacturability?
• scalability?

• long-term leakage?
• turn-OFF speed?
• turn-ON speed for read?
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5x10 arrays of FET-
connected DIVs

• Voltage margin (Vm) ~1.1V 
• Low inter-device variability

Integrated small arrays of 
MIEC DIVs with high yield

(Shenoy et al, 2011 VLSI Tech. Sym.)

Multiple MIEC devices can be made with similar characteristics
(essential for reading, especially if SNR from the NVM is low)
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Large Arrays of MIEC have been integrated at 100% yield

100% yield and tight distributions in 512 kbit 1T-1MIEC array
(Burr et al, 2012 VLSI Tech. Sym.)
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Demonstrated > 105 cycles of PCM SET/RESET 
through stacked MIEC access device

(Burr et al, 2012 VLSI Tech. Sym.)

MIEC has been integrated together with PCM in 200mm process
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MIEC access device can supply >150uA in 15ns …
sufficient to RESET PCM

(Virwani et al, IEDM 2012)
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MIEC supports 15ns writes of PCM  suitable for M-class SCM
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Low current (memory READ) endurance > 1010 cycles

(Gopalakrishnan et al, 2010 VLSI Tech. Sym.)

MIEC endurance at low current  >> 1e10 cycles
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MIEC endurance at high current is finite  leakage increases

DC I-V curves 
monitored in between 
100uA pulses

Leakage current rises …

… and voltage margin 
shrinks

After many cycles …

High current (memory WRITE) endurance is finite.

(Shenoy et al, 2011 VLSI Tech. Sym.)
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Endurance depends inversely on current 
(exponential) and pulse duration

(Shenoy et al, 2011 VLSI Tech. Sym.)

MIEC endurance scales sharply with current (NOT current density)
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Strong current-dependence of MIEC access device endurance 
persists across many different device structures

Expect even higher 
MIEC endurance for 
RRAM 
(IPROG/ERASE <100uA)

(Shenoy et al, 2011 VLSI Tech. Sym.)

>108 endurance 
for sub-45nm-
node PCM!
( IRESET < 150 A )

MIEC endurance at modest write currents > 1e8
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Before cycling After cycling

425,000 cycles 
@ 325 A

TEM/EELS local 
stoichiometry

BEC CD ~ 80 nm
Wide area TEC

negative 
voltage on 
TEC

(Shenoy et al, 2011 VLSI Tech. Sym.)

MIEC cycling failure associated with Copper agglomeration

Endurance failure correctable by 
annealing and/or voltage pulses
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Requirements for an Access Device for 3D Crosspoint Memory

PCM or RRAM

Access 
Device

 High ON-state current density
>10 MA/cm2 for PCM / RRAM RESET

 Low OFF-state leakage current
>107 ON/OFF ratio, and
wide low-leakage (< 100pA) voltage zone to 
accommodate half-selected cells in large arrays

 Back-End process compatible
<400C processing to allow 3D stacking

 Bipolar operation
needed for optimum RRAM operation

 variability?
 yield?
 co-integration with NVM?
 turn-ON speed for write?
 endurance?
• manufacturability?
• scalability?

• long-term leakage?
• turn-OFF speed?
• turn-ON speed for read?
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Large thermal process budget window Manufacturable deposition

Process optimization for higher Vm

Rapid learning cycles 
enabled by cAFM

(Burr et al, 2012 VLSI Tech. Sym.)

Short loop process flows 
on relevant structures

Conductive AFM  rapid exploration of processes & materials 
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Current scales well with BEC size over several orders of magnitude

Suggests non-filamentary nature of operation mechanism
(Gopalakrishnan et al, 2010 VLSI Tech. Sym.)

Lateral scaling of just BEC size
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Selector functionality is maintained in fully confined 
MIEC devices with reduced TEC and BEC size

Voltage margin 
increased with 
smaller TEC CD

(Virwani et al, 2012 IEDM)

(Shenoy et al, 2011 VLSI Tech. Sym.)

Consistent 
with trend 
seen on earlier 
devices

Lateral scaling of TEC size (slide 1 of 3)

139nm

89nm

48nm

139nm

Correction to 2012 IEDM
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Ultra-scaled MIEC access devices can still deliver 
>100uA pulse currents in both polarities

(Virwani et al, 2012 IEDM)

Lateral scaling of TEC size (slide 2 of 3)
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No lower limit to lateral scaling has been found so far 

(Virwani et al, 2012 IEDM)

Sub-30nm lateral CD MIEC device

Lateral scaling of TEC size (slide 3 of 3)
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SiN

Si wafer

BEC
oxide

C-AFM
tip

TEC

MIEC dmin

Cumulative 
distribution 
plots of 10nA 
MIEC voltage 
margin

MIEC devices are well behaved down to 12nm minimum 
inter-electrode distance (dmin)

(Virwani et al, 2012 IEDM)

Thickness scaling trends
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Start to see some failures in arrays of MIEC devices with 
dmin ~12nm  Leakage current increases

(Virwani et al, 
2012 IEDM)

Thickness scaling trends – failure analysis (slide 1 of 2)
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Lower limit seen for thickness scaling of 
this MIEC access device

(Virwani et al, 2012 IEDM)
Good

Good

Ba
d

Use TEM to correlate 
device failures to 
MIEC thickness

Thickness scaling trends – failure analysis (slide 2 of 2)
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Requirements for an Access Device for 3D Crosspoint Memory

PCM or RRAM

Access 
Device

 High ON-state current density
>10 MA/cm2 for PCM / RRAM RESET

 Low OFF-state leakage current
>107 ON/OFF ratio, and
wide low-leakage (< 100pA) voltage zone to 
accommodate half-selected cells in large arrays

 Back-End process compatible
<400C processing to allow 3D stacking

 Bipolar operation
needed for optimum RRAM operation

 variability?
 yield?
 co-integration with NVM?
 turn-ON speed for write?
 endurance?
 manufacturability?
 scalability?

• long-term leakage?
• turn-OFF speed?
• turn-ON speed for read?
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Novel Mixed-Ionic-Electronic-Conduction (MIEC) Access Device
Strengths

•High enough ON currents for PCM –
cycling of PCM has been demonstrated
•Low enough OFF current for large arrays
•Very large (>>1e10) endurance for typical 
5uA read currents
•Voltage margins > 1.5V with tight 
distributions  sufficient for large arrays
•CMP process demonstrated
•512kBit arrays demonstrated w/ 100% yield
•Scalable to <30nm CD, <12nm thickness
•Capable of 15ns write, <<1us read

Weaknesses
•Maximum voltage across companion 
NVM during switching must be low     
(1-2V)  influences half-select condition 
and thus achievable array size
•Endurance during NVM 
programming is strongly dependent on 
programming current

Gopalakrishnan, VLSI 2010
Shenoy, VLSI 2011

Burr, VLSI 2012
Virwani, IEDM 2012
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Competitive Outlook among emerging NVMs

H
igh Speed

Low co$t

Embedded Non-Volatile Memory
(low-density, fast ON-chip NVM)

• STT-RAM? CBRAM?

Embedded Storage
(low density, slower ON-chip storage)

• NAND? (but complicated process)

• RRAM?/PCM?

Future NOR applications
(program code, etc.)

• PCM (but market disappearing)

Future NAND applications
(consumer devices, etc.)

• 3-D NAND (but crossover to succeed 20nm 
conventional NAND may require >50 layers!)

• PCM?/RRAM?

M-type Storage Class Memory
(high-density, fast OFF- (or ON*)-chip NVM)

• CBRAM? STT-RAM?
• PCM?/RRAM?
• Racetrack? (future?)

S-type Storage Class Memory
(high-density, very-near-ON-line storage)

1) PCM?/RRAM?
2) Racetrack? (future?)

* ON-chip using 3-D packaging
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Device
AvailabilityPaths towards SCM

Embedded Storage
(low density, 

slower ON-chip storage)

S-type SCM
(high-density, 

near-ON-line storage)

1-10us
emerging NVM 
RRAM? PCM? 
CBRAM?

* ON-chip using 3-D packaging

M-type SCM
(high-density, 

fast OFF-(or ON*)
-chip NVM)

Embedded
Non-Volatile Memory
(low-density, fast ON-chip NVM)

<<1us
emerging NVM 
STT-RAM? CBRAM?
PCM??/RRAM??

Future DRAM 
(working memory, etc.)

DRAM

Capital
investment Applications

3-D NANDNAND Future NAND applications
(consumer devices, etc.)

Co$t


unlikely, but
possible path
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What does the future hold?

• Consumer disk and enterprise tape will persist for the foreseeable future

• Flash will come into its own (in enterprise systems)

• Flash may drive out enterprise disk, and if it doesn’t, SCM will

• When will SCM arrive? 
That will depend on the path the NAND industry takes after the 16-20nm node…

• 3-D NAND succeeds  new NVMs (such as PCM, RRAM, STT-RAM) will develop
slowly, driven only by SCM/embedded market

• 3-D NAND fails or is late one new NVM will be driven rapidly by NAND market

• If the latter, SCM could become the dominant storage technology by 2020 

• The application software stack will be redesigned to utilize 
SCM-enabled persistent memory
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