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Abstract
Numerical modeling is used to explain the origin of the large

ON/OFF ratios, ultra-low leakage, and high ON current densities
exhibited by BEOL-friendly Access Devices (AD) based on Cu-
containing MIEC materials [1-5]. Motion of large populations of
copper ions and vacancies leads to exponential increases in hole
current, with a turn-ON voltage that depends on material bandgap.
Device simulations match experimental observations as a function
of temperature, electrode aspect-ratio, thickness, and device CD.
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Introduction
Mixed-Ionic-Electronic-Conduction (MIEC)-based ADs [1–5]

exhibit ideal characteristics for 3D-stacking of large crosspoint
arrays of any resistive nonvolatile memory (NVM) in the BEOL,
including bipolar diode-like characteristics (Fig.1), large ON/OFF
ratios, high voltage margin Vm (for which leakage stays below 10
nA), ultra-low leakage (< 10 pA), and high ON current densities.
Although dependent on total electrode area [1,2,4], the Vm of any
given MIEC device structure is mostly independent of the size of
the gap between the two electrodes, dgap (Fig. 2). In addition,
transient response is markedly faster for points higher up the I–V
curve (Fig. 3), with turn-on times varying from >1µsec (for I �
1µA) to 15nsec for I >100µA[4].

The operation of MIEC devices has been qualitatively attributed
to the modulation of electronic current by the motion of Cu-
ions [1,5]. In this work, we quantify this theory using Sentau-
rus TCAD. Adapting features for tracking mobile H+ ions [6],
we perform 2–D numerical device simulations of Cu-based MIEC
semiconductors containing large concentrations of mobile positive
Cu+ ions and negative V−

Cu vacancies. Cu+ ions are allowed to in-
teract with conduction electrons, yet V−

Cu vacancies do not interact
with holes. The simulator self-consistently solves the continuity
and Poisson equations, along with ionization-recombination kinet-
ics (Fig. 4) and a ‘Unified Contact’ Schottky model [7] at each
ion-blocking metal electrode. While 1–D models have been devel-
oped (Fig.5), none have incorporated Schottky interfaces, minority
carriers, and electron-ion recombination simultaneously.

Modeling MIEC ADs
In the absence of ions, a metal-semiconductor-metal (MSM)

structure is simply two Schottky diodes connected back-to-back.
As bias increases, current originally limited by the reverse-biased
diode increases due to minority-carrier diffusion. However, unlike
MIEC ADs, turn-on voltages Vm are large and depend strongly on
dgap (Fig.6).

In such a p-type MSM structure, a metal work-function very
close to the valence band should imply large current flow even at
low bias voltages. The large number of mobile positive ions in Cu-
containing MIEC materials (Fig. 7) interact with conduction-band
electrons and change this behavior markedly (Fig.8). At zero bias
(Fig.9(a)), mobile ions settle into a U-shaped distribution with large
electric fields at each interface, maintaining a dynamic equilibrium
between electrostatic ion drift towards, and ion diffusion away
from, each interface [8]. This ion accumulation results in narrow
depletion widths and residual electron tunneling at each interface,
yet strong suppression of holes and hole current.

At low bias, holes are injected from the positively-biased elec-
trode (Fig. 9(b)), eventually resulting in significant hole diffusion

current (with a characteristic SS of ∼85 mV/dec) as the device
transitions out of the OFF-state dominated by electron current.
Copper ions move away from (and vacancies move towards) the
positive electrode, where current is limited at high bias by hole
tunneling. Hall-effect measurements performed on MIEC-based
materials (Fig. 8, inset) confirm hole-dominated currents at large
carrier densities. This behavior is consistent with a suppressed in-
teraction between V−

Cu vacancies and holes (large energy barrier),
unlike the interaction between Cu+ ions and electrons.

Role of Electrode Gap
Within a device with a large electrode-gap dgap, a distinct

‘quasi-neutral’ region where [Cu+] ∼ [V −
Cu] separates the regions

of extreme ion aggregation at each interface. This allows the de-
vice characteristics to be independent of dgap until these interfacial
regions begin to interfere with each other, leading to a decrease
in the voltage margin Vm (at 10nA) (Fig. 10). Filaments are not
modeled here, but may also form across a narrow dgap. While sim-
ulated trends of Vm do show an increase as devices are scaled in CD
(Fig.10), the trend is not as strong as that seen experimentally[2].

Device Asymmetry and Transient Response
Simulated IV characteristics become asymmetric for devices

with highly asymmetric electrode areas, such as conductive-AFM
measurements of blanket films (Fig. 11), and show an increase in
leakage current as temperature increases. Transient simulations
of the MIEC AD response (Fig. 12) show rapid response at high
bias and high current, with a slower response at low bias and low
current, similar to experiments (Fig. 3). However, the modeled
interplay — between fast ion migration that turns on the device,
and the slower interaction between ions and electrons that allows
hole current to dominate (Fig. 13) — does not exhibit the same
vast dynamic range in response speeds (from ∼25ns to ∼100ms)
observed experimentally, suggesting that further model refinement,
possibly involving interfacial Cu+ reduction, will be necessary.
Finally, by carefully tuning simulation mesh against TEM images,
precise matching of IV characteristics can be obtained (Fig.14).

Conclusions
A commercial device simulator was adapted to explain the

large ON/OFF ratios, ultra-low leakage, and high ON current den-
sities offered by BEOL-friendly Access Devices (AD) based on
Cu-containing Mixed-Ionic-Electronic-Conduction (MIEC) mate-
rials [1-5]. Ultra-low leakage at low bias is due to residual elec-
tron tunneling, with hole current suppressed by a central ‘quasi-
neutral’ region. Device turn-on occurs as hole injection from the
positively-biased electrode increases sharply, driven by motion of
large populations of copper ions and vacancies. Simulated trends
in turn-on voltage Vm vs. dgap and CD, transient response, tem-
perature dependence, and highly asymmetric device geometries all
match experimental observations.
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Fig. 1 Access Devices (ADs) based
on Cu-containing Mixed-Ionic-Electronic-
Conduction (MIEC) materials exhibit bipo-
lar diode-like characteristics with ultra-low
leakage and large ON/OFF ratios[1-5].
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Fig. 2 Measured turn-on voltages depend
strongly on device CD[2] (not shown), but
are insensitive to the gap between elec-
trodes (dgap) down to very small thick-
nesses.
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Fig. 3 Larger applied voltages with higher
saturation currents lead to faster turn-on of
MIEC access devices.

Fig. 4 Sentaurus TCAD[6] is
used to model drift, diffusion,
and two rate-equation inter-
actions between mobile cop-
per ions (Cu+), atoms (Cu0),
mobile vacancies (V −

Cu), and
electrons.
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the associated interaction rates (Fig.4).
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Fig. 12 Transient simulations of MIEC AD response
show that the ion migration needed to turn on an MIEC
AD occurs slowly at low bias and current, yet rapidly at
high bias and current, although not with the same wide
dynamic range observed in experiments (Fig.3). Tran-
sient data at higher temperature is likely to be faster, ac-
commodated by adjusting the rate constants in Figs.4 & 7
with the appropriate energy barriers.
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Fig. 13 After a voltage ramp to 1.0V (a, 1ns), hole oc-
cupancy remains suppressed by the large Cu+ population
diffusing slowly away from the positive (left) interface (b,
10ns). After 20ns (c), this ion population has departed,
flattening the bands and allowing some hole injection. By
1us (d), the slow interaction between Cu+ and electrons
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against TEM images for dimensions and the slight
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ing of IV characteristics can be obtained, including
ultra-low leakage currents, voltage turn-ON values,
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