
Improved Deep Neural Network
hardware-accelerators based on

Non-Volatile-Memory: the Local Gains technique
Irem Boybat†‡, Carmelo di Nolfo∗, Stefano Ambrogio∗, Martina Bodini∗†, Nathan C. P. Farinha∗§,

Robert M. Shelby∗, Pritish Narayanan∗, Severin Sidler†, Hsinyu Tsai∗, Yusuf Leblebici†, and Geoffrey W. Burr∗

∗IBM Research–Almaden, 650 Harry Road, San Jose, CA 95120, Tel: (408) 927–1512, Email: gwburr@us.ibm.com
†EPFL, 1015 Lausanne, Switzerland ‡IBM Research–Zurich, 8803, Rueschlikon, Switzerland

§University of Sao Paulo, Av. Trab. Sao-Carlense, 400 - Parque Arnold Schimidt, Sao Carlos - SP, 13566-590, Brazil

Abstract—Cognitive computing – which learns to do useful
computational tasks from data, rather than by being pro-
grammed explicitly – represents a fundamentally new form of
computing. However, training Deep Neural Networks (DNNs)
calls for repeated exposure to huge datasets, requiring extensive
computation capabilities (such as many GPUs) and days or weeks
of time. One potential approach for accelerating this process are
hardware accelerators for backpropagation training based on
analog Non-Volatile Memory (NVM).

This paper describes a novel Local Gains (LG) method which
can increase network accuracy, extend the range of acceptable
learning rates, and reduce overall weight-update activity (and
thus the corresponding energy consumption). We first analyze the
impact of different activation functions and the corresponding
dynamic range of input and output neurons. We then show
that the use of non-negative neuron-activations offers advantages
within a crossbar implementation (without degrading accuracy),
by causing the sign of the weight-update to depend only on the
sign of the backpropagated error.

Then we introduce LG: a neuron-centric (NOT synapse-
centric) modulation of the learning rate based on the sign of
successive weight updates. The concept of Safety Margin (SM)
– the margin by which the correct output neuron exceeded (or
failed to exceed) the strongest incorrect neuron – is introduced,
providing a novel way to gauge the robustness of DNN clas-
sification performance. We use device-aware DNN simulations
to demonstrate higher accuracy, reduced sensitivity to network
hyperparameters, and an overall improved training process, as
well as lower network activity and reduced energy consumption.

I. INTRODUCTION

Deep Neural Networks (DNNs) represent the current state of
the art in cognitive computing [1]. However, training these net-
works requires extensive computational capabilities, leading to
large expenditures of time and energy due to separate location
of memory and CPU, typically described as the “Von Neumann
bottleneck,” Fig. 1a. To accelerate this training process, our
group has been investigating neuromorphic hardware accel-
erators for backpropagation training based on analog Non-
Volatile Memory (NVM) [2], [3], which exploit the co-location
of memory and computation, as shown in Fig. 1b.

Our previous work has focused on Fully Connected, multi-
layer perceptron networks trained with the backpropagation
algorithm [4], in which weights are encoded in pairs of Phase

CPU Memory

BUS

Von Neumann
“Bottleneck”(a) (b)

Fig. 1. In the Von Neumann architecture (a), data (both operations and
operands) must move to and from the dedicated Central Processing Unit (CPU)
along a bus. In contrast, in a Non-Von Neumann architecture (b), distributed
computations take place at the location of the data, reducing the time and
energy spent moving data around.

Change Memory (PCM) devices [2]. As a result, the multiply–
accumulate operation between weights and neuron activations
can be performed by parallel read of this analog memory,
with Ohm’s Law providing the multiply operation and Kirch-
hoff’s Current Law providing the accumulation (summation
of products). Fig. 2 shows our prototypical network, with
three layers of synapses connected by four neuron layers. We
feed this network with images from the MNIST database of
handwritten digits [5], cropped to 22 x 24 pixels. The weights
are organized in crossbar arrays of PCM and selector (in
this case, a MOSFET) pair as shown in Fig. 2, with each
weight encoded into the difference between a pair of conduc-
tances [6]. We have developed an architectural approach that
allows forward-propagation, back-propagation of corrections,
and weight update to each be performed by peripheral circuits
at the edge of each crossbar array.

Fig. 3 shows our early experimental results of a mixed
hardware-software implementation of this three-layer percep-
tron of 164,885 synapses (Fig. 2), as trained on a 500 x
661 array of mushroom-cell [2], 1T1R PCM devices (180-
nm node). As part of this initial work, we also developed
a simulator which was able to replicate the experimental
results [2]. The resulting training and test accuracy (on the
MNIST dataset) was limited to 82% due to the impact of
device non-idealities present within the experiment [3]. These



Cropped

MNIST

images 
0

2

7

8

9

…

x528

…

x1

x2

x3

… …

x1

x125

x528 Forward-propagation

Back-propagation

x1

x2

x3

xn

NVM

Transistor

+ -

Conductance

pairs

x1
+ -

xm

x1

x250

1

Fig. 2. In forward evaluation of a multi-
layer perceptron, each layer of neurons
drives the next layer through weights
wij and a nonlinearity f(). Input neu-
rons are driven by pixels from succes-
sive MNIST images (cropped to 22 x
24 pixels). Every neuron is connected
to the other neurons of adjacent layers
by networks of programmable synap-
tic weights, implemented using dense
crossbar arrays of nonvolatile memory
(NVM) and selector device-pairs.

imperfections were accurately modeled in the simulator by
using a “jump-table” [2], [7] – a simulation approach that will
be compactly referred to here as the “2–PCM” approach.

Since this original paper, interest in this approach – back-
propagation training or subsequent forward-inference-only
evaluation of neural networks using large crossbar arrays of
analog memory devices – has only increased. Studies of power
and speed [8], [9], the impact of device imperfections [7], [10],
[11], the impact of circuit approximations [12], [13], and yield
[14] have been performed, and connections to ultra-low-power
spiking-based networks proposed [15]. Analog non-volatile
memory devices ranging from PCM [16] to RRAM [14], [17]
to non-filamentary RRAM [18] to 3-terminal devices based
on electrochemical intercalation [19] have been proposed and
demonstrated.

This paper first analyzes the impact of different activa-
tion functions and the corresponding dynamic range of input
and output neurons with pure software implementation first
(weights encoded as integers) and then with the “2–PCM”
approach (weights encoded in a pair of simulated PCMs).
We then show that the use of non-negative neuron-activations
offers advantages within a crossbar implementation (without
degrading accuracy), by causing the sign of the weight-update
to depend only on the sign of the backpropagated error. Then,
we describe a novel Local Gains (LG) method which improves
network accuracy, extends the range of acceptable learning
rates, and reduces overall weight-update activity and thus
the corresponding energy consumption. We also introduce the
Safety Margin (SM) concept to quantify the quality of the
network training, and we show some considerations on energy
consumption with and without LG.

II. IMPACT OF ACTIVATION FUNCTION AND
INPUT/OUTPUT DYNAMIC RANGES

Fig. 4 shows the computation inside each neuron within
the network. The activation xBj of the neuron is obtained by
summing the overall contributions from the previous layer
neurons xAi , each multiplied by the corresponding weight
wij . The integrated contribution ΣxAi wij is then passed to
an hyperbolic tangent function, producing xBj . We decided to
study the impact of varying the tanh function by using two

parameters, α and β, to scale and shift this nonlinear squashing
function. Then, we varied the dynamic range of the input, e.g.,
how we map the values of the pixels of the training and test
images to input neuron excitations, with respect to the range
of the tanh function. In addition, we focused on the impact of
different ranges for the Ground Truth (GT), namely the image
label during the training process.

We simulated the same neural network topology as in Fig. 2.
Weights were encoded with high precision, using integers

90

100

%
] 500 x 661 PCM = (2 PCM/synapse * 164,885 synapses) + 730 unused PCM

80

90

ac
y 

[%

Experiment

60

70

ac
cu

r

80
90

100 Matched simulation

40

50

nt
al

 a

50
60
70

20

30

ri
m

en

Map of
final 10

20
30
40

10

20

Training epochEx
pe

final
PCM 0 5 10 15 200

10

conductances (5000 images
each)

0 1 2
0

g p each)

Fig. 3. Training and test accuracy for the same network of 164,885 hardware
synapses shown in Fig. 2, with all weight operations taking place on a 500
x 661 array of mushroom-cell PCM devices. We also developed a simulator
based on experimental data which matches the experimental results.

𝑥𝑗
𝐵Σ𝑥𝑖

𝐴𝑤𝑖𝑗

𝑥𝑗
𝐵 = 𝛼 𝑡𝑎𝑛ℎ Σ𝑥𝑖

𝐴𝑤𝑖𝑗 + 𝛽

Input 

range

Ground Truth 

range

𝑥𝑗
𝐵

Σ𝑥𝑖
𝐴𝑤𝑖𝑗

𝛼 + 𝛽

−𝛼 + 𝛽

Bright pixel

Dark pixel

“1”

“0”

Fig. 4. The neuron activation is obtained by summing all the input contribu-
tions xAi wij and by then applying a nonlinear squashing function (here, the
hyperbolic tangent function, scaled by α and shifted by β). The input range
corresponds to the mapping of input pixels with respect to the dynamic range
of the neuron. The Ground Truth range is similarly varied.



(a) (b)

(c) (d)

(e) (f)

Swx

tanh(Swx)

1

-1

IN GT

0
Swx

tanh(Swx)

1

-1

IN GT

0

Swx

tanh(Swx)

1

-1

IN GT

0 Swx

tanh(Swx)

1

-1

IN GT

0

Swx

tanh(Swx)

1

IN GT

0
Swx

tanh(Swx)

1

IN GT

0

Local gains

#1 #2a

#2b #3

#4 #5

~~

~~ ~~

~~

~~~~ ~~

~~

~~

Fig. 5. Calculated training (blue) and test (red) accuracies of a pure-software
implementation of our 3-layer neural network (not the “2–PCM” approach)
as a function of the learning rate. Different combinations of activation func-
tions and input/GT dynamic ranges have been analyzed: (a) tanh function,
input ∈ [-1 , 1] and GT ∈ {-1, 1}. (b) tanh function, input ∈ [-1 , 1] and
GT ∈ {0, 1}. (c) tanh function, input ∈ [0 , 1] and GT ∈ {-1, 1}. (d)
tanh function, input ∈ [0 , 1] and GT ∈ {0, 1}. (e) scaled tanh function,
input ∈ [0 , 1] and GT ∈ {0, 1}. (f) scaled tanh function, input ∈ [0 , 1]
and GT ∈ {0, 1} with local gains. Training is done with 20 epochs of 60,000
images; all networks are tested with 10,000 images.

ranging from -1000 to +1000 and integer activations ranging
from -255 to +255 (activations plotted in the paper are shown
scaled to ±1). Except where noted, all simulations were run
for 20 epochs, which ensured network convergence, using
60,000 images for training and 10,000 images for test. The
test accuracy was studied with respect to the variation of the
learning rate η, namely the coefficient of every weight update
∆W = ηxδ, where x is the neuron activation and δ is the
backpropagated error.

A. Symmetric activation function

Fig. 5 shows training and test accuracies as a function
of differences in the relative scaling of inputs, GT, and the
tanh function, illustrating the individual impact of each scale
parameter. Fig. 5a shows the starting case (labelled #1),
using the usual hyperbolic tangent tanh(Σxw), so that the
activation function, the input range, and GT range are each
symmetric and each spans the full interval [-1,1]. Note that the
vertical scale accentuates the accuracy range above 90%, with

accuracies between 90% and a poorly-trained network (10%)
plotted in a highly compressed manner. Accuracy starts rising
at a learning rate around 10−5, exhibiting a bell-shaped curve
with maximum value at 98% accuracy near 10−4.

In Fig. 5b and (c), the effects of a positive-only GT, case
#2a, or a positive-only input, case #2b, are analyzed separately,
maintaining the symmetric activation function and same pa-
rameters as for case #1. In both situations, test accuracy starts
rising around 10−5: #2b shows a larger bell shaped curve,
with a larger plateau, roughly showing a similar behavior
with respect to #1. In Fig. 5d, case #3, input and GT are
fully positive, ranging in the interval [0,1]. The shape of the
resulting test accuracy remains comparable to the previous
cases, with the peak value around 97.7%. Note that the positive
range of GT implies that the output layer of the network is
forced by backpropagation to have output between zero and
one, thus failing to exploit the available dynamic range from -1
to 1. However, this limitation apparently has negligible effects,
at least with the MNIST dataset. All training accuracies show
a comparable behavior, generally similar to test accuracy.

B. Positive activation function

After analyzing all the possible combinations of input and
GT dynamic ranges, we studied the effect of a fully positive
activation function, as shown in Fig. 5e, case #4. We adopted
a scaled hyperbolic tangent (α = 0.5, β = 0.5), compressed
to the range [0,1], thus matching the corresponding range of
input and GT. The resulting accuracies start rising at a slightly
higher learning rate, while the accuracy is comparable to
previous cases. We observe negligible differences arising from
different cases, which should give us a high degree of freedom
when designing the real network. Typically, positive activation
functions are easier to implement in hardware than bipolar
curves. Finally, case #5, Fig. 5f, shows the same situation as
in case #4, but with the Local Gain (LG) algorithm – which
will be described in the next section – activated. The #5 curve
shows a broader plateau, which is highly desirable for reducing
sensitivity to learning rate tuning, with no degradation of the
maximum test accuracy, around 97.6%.

(a) (b)

5,000 

Training

Images

60,000 

Training

Images

Fig. 6. (a) Training (blue) and test (red) accuracy as a function of the learning
rate on 5,000 training images. The network configuration is the same as case
#3, but using the device–imperfection–aware simulation first described in [2]
(“2–PCM” approach). Compared to (a) the results of [2], using (b) 60,000
images for training only makes a slight difference at higher learning rates.



“2-PCM” approach

#3

#4

Fig. 7. Test accuracy of the same network in Fig. 2 with the “2–PCM” ap-
proach, as a function of learning rate. The network configurations correspond
to cases #3 and #4 of Fig. 5d, e. Simulations were run for 20 epochs, trained
with 60,000 MNIST images.

The simulations and experimental results in our first paper
[2] (Fig. 3) correspond to case #3 in Fig. 5. Fig. 6a replots the
results that were obtained. We use that same neural network
simulator, capable of capturing the stochastic and highly
variable behavior of real experimental PCM devices, and re-
model the network of Fig. 2 with weights encoded in pairs of
PCM devices (“2–PCM” approach). Simulations were run for
20 epochs, trained and tested with MNIST dataset, respectively
with 5,000 images for training and with 10,000 images for the
test. Test and training accuracies were evaluated with learning
rates between 10−2 and 101. The accuracy curves sharply rise
around 10−1, reaching a peak value of 82%. Fig. 6a replicates
our results previously published in [2], [3]. We then repeated
the same simulation with the same set of parameters, but
trained over the entire 60,000 examples of the MNIST dataset,
producing similar behavior (Fig. 6b). Peak accuracy is almost
the same around 83%, demonstrating that the limited accuracy
shown in Fig. 6a cannot be improved by simply training with
additional images.

We repeated the same simulation for 60,000 training im-
ages, but now optimizing the slope of the hyperbolic tangent
activation function and the overall hyperparameters (the sim-
ulations in [2] were not intended to be optimized, but instead
to show the variation around the particular operating point
demonstrated experimentally). Test accuracy results for cases
#3 and #4, with the two-PCM scheme representing the same
imperfection modeling described in [2], are reported in Fig. 7.
While accuracy rises up to 92%, the range of learning rates
over which high accuracy is obtained is still quite narrow.
This poses challenges in implementing optimal training of the
network in hardware.

III. LOCAL GAIN TECHNIQUE

The local gains concept of a synapse-centric local learning
rate was first proposed in 1988 [20]. Fig. 8 shows a schematic
representation of the scope and impact of local gains: in a net-
work with no local gains, some weights (A), exhibit a steady
increase or decrease as training progresses. Others (B), exhibit

a dithering behavior, moving up or down as some images
are trained and then later in the opposite direction as other
images are trained, essentially maintaining a constant mean
value. The local gains method rewards weights which head
consistently in one direction (either increasing or decreasing,
A’) and reduces the oscillation of weights found to be dithering
(alternating in the sign of the update, B’). With no local gains,
the weight update rule is ∆W = ηxδ. The original instance of
the local gains algorithm modulated the learning rate for each
synapse by multiplying ∆W with a local factor gW [20]. In
this original instance, two parameters are required per synapse:
the factor gW and a second variable to record the recent history
of that synapse.

Motivated by the synapse-centric local gain algorithm [20],
we have developed a neuron-centric and crossbar-compatible
local gain algorithm, which we call LG. Here the LG param-
eters (the gain g and the recent-local-history) are stored at
the neurons, updated according to the change of sign in x
and δ neuron values. Now, weight update is ∆W = ηxδgxgδ ,
where gx (gδ) depends on changes in sign between successive
x (δ) values encountered during training. We translate this to
gx increasing when two consecutive x are strictly positive or
decreasing otherwise:

gx(i) =

{
gx(i− 1) + LGC, sign(x(i)x(i−1)) > 0
gx(i− 1)(1− LGC), otherwise

(1)

gx(i) corresponds to gx during the training of image i,
updating from the value gx(i−1) used for the previous training
image. LGC is the Local Gain Coefficient, nominally equal to
0.01 in the simulations. Note that we increase gx linearly and
decrease it exponentially to preserve the positive sign of gx,
which varies between a minimum LG (nominally 0.1) and a
maximum LG (10).

Similarly, gδ depends on δ:

gδ(i) =

{
gδ(i− 1) + LGC, sign(δ(i)δ(i−1)) > 0
gδ(i− 1)(1− LGC), otherwise

(2)

with the same LGC, maximum and minimum LG as for gx.
This means that we calculate the weight update in a crossbar-
compatible algorithm, with the upstream neuron firing pulses

A

B

Training Images

Weight
Favor

increase

Reduce

oscillation

A’

B’

Training Images

Weight

DW = hxdgW = hxdgxgd

No Local gains With Local gains

DW = hxd

gW gx gdSynapse centric Neuron centric

Fig. 8. Local Gain technique rewards the weights which head to a precise
direction (either increasing or decreasing) and suppresses weights that are
“dithering”. The neuron centric approach locates the local gain coefficients
into the neurons and not into the synapses.



according to the value of
√
ηgxx and the downstream neuron

firing pulses according to
√
ηgδδ. The main contribution of the

LG algorithm is to locally modulate the global learning rate η
at each and every neuron. This neuron-centric approach greatly
reduces the number of parameters which must be stored, from
164,885 gW (one for every synapse) in the synapse-centric
representation to less than 1500 (one gx and one gδ per
neuron).

Both the original and our new neuron-centric LG method
require local storage of the recent history. In our neuron-centric
LG method, only the history of x is stored in the upstream
neuron (during forward propagation), and the history of δ in
the downstream neuron (during backpropagation). By using
cases #4 and #5, we can avoid the exchange of information
between these neurons: since x is always positive, the sign of
∆W can only depend on the sign of δ. This provides significant
simplifications when designing the weight update circuits.

A. Initial implementation

We implemented the LG algorithm in the context of PCM
devices with the same imperfections exhibited in [2], and show
results in Fig. 9 for training with the first 5,000 images from
the MNIST training set. As sketched in Fig. 9a, we applied
gx and gδ in all the layers. Fig. 9b plots the training and test
accuracies as a function of the learning rate. Results are not
optimal, with a test accuracy just reaching 60%. To understand
this behavior, we extracted the probability distribution function
(PDF) of gx, Fig. 9c, corresponding to the best result in
Fig. 9b. From the initial distribution of gx (all gx = 1), after
20 training epochs we can observe a smooth distribution for
gx of the input layer neurons (gx,IL). However, the gx of all
the hidden neuron layers (gx,HL) saturates at the maximum
value allowed (e.g., at 10.0). The reason is that, while the input
pixels are positive or zero, hidden layer neuron activations can
only be positive, forcing a continuous increase of gx.

Hidden 

Layer 1

Input

layer

x

x

x
gx,IL

gd gx,HL

gx,HL
gd

gd(a)
y

Hidden 

Layer 2

Output

Layer

(b)

(c)

gx,IL gx,HL

Fig. 9. (a) Schematic of initial LG scheme with gx applied to input and hidden
layers and gδ applied to hidden and output layers. (b) Corresponding training
and test accuracy after 20 epochs for a 3-layer perceptron with different
learning rates. (c) Cumulative distribution of gx before training and after
20 epochs.

Hidden 

Layer 1

Input

layer

x

x

x
gx

gd

gd

gd(a)
y

Hidden 

Layer 2

Output

Layer

(b)

(c)

gx

Fig. 10. (a) Schematic of intermediate LG scheme with gx applied to input
layer and gδ applied to hidden and output layers. (b) Corresponding training
and test accuracy after 20 epochs for a 3-layer perceptron with different
learning rates. (c) Distribution of gx before training and after 20 epochs.

gd

gx

Fig. 11. Cumulative distributions of gx and gδ for the configuration of
Fig. 10: almost 40% of input layer neurons having gx stuck at minimum
value 0.1. This results in a low neuron activity since the weights are frozen.
On the other hand, gδ varies smoothly with a median slightly below 1.

B. Intermediate implementation

Since gx saturates for hidden layers, we adapted our method
by using a constant gx = 0.1 in those layers, obtaining the
structure of Fig. 10a. We update gx only in the input layer,
resulting in the distribution of gx in Fig. 10c. The accuracy
results in Fig. 10b show increased robustness of training and
test accuracies to variations of the learning rate. However, here
the LG algorithm still fails to improve the best-case accuracy.

To better understand local gains behavior, we plot the
cumulative distribution function (CDF) of gx and gδ , Fig. 11.
We observe that almost 40% of input layer neurons have gx
stuck at or near the minimum value of 0.1. This results in a low
neuron activity since the corresponding weights are frozen and
are unable to update their conductances. On the other hand,
gδ varies smoothly in a range slightly below one.

C. Final implementation

The backpropagated δ’s carry information about the classi-
fication error – in effect, representing the importance of any
given neuron (and the synapses upstream of that neuron) in
terms of correcting the classification of the particular image



Hidden 

Layer 1

Input

layer

x

x

x
gx = gd

gd

gd

gd(a)
y

Hidden 

Layer 2

Output

Layer

(b)

(c)gx

gd

Fig. 12. (a) Schematic of final LG scheme with gx derived from gδ of
the input layer and gδ applied to hidden and output layers. (b) Corresponding
training and test accuracy after 20 epochs for a 3-layer perceptron for different
learning rates. (c) Cumulative distribution of gx and gδ before training and
after 20 epochs. Now gx exhibits a behavior similar to that of gδ .

being trained. Thus if this quantity maintains the same sign at
any given input neuron, it implies that this input pixel offers
significance for classification. This motivated us to implement
a similar distribution for gx and gδ , together with the need to
avoid frozen weights as in Fig. 11. We pretended there was an
additional synaptic layer above the input layer, and propagated
the associated error (that would be needed for such a layer
of synapses) to the input neuron layer. This information, as
shown in Fig. 12a, was then used as the gx of the input layer.
Fig. 12b reports higher accuracies, while Fig. 12c shows the
CDF of gx and gδ , revealing the absence of stuck weights and
similar behaviors, since now both gx and gδ derive from the
backpropagated error.

A final comparison of gx for intermediate and final imple-
mentation is reported in the color maps in Fig. 13, representing
the gx values. Fig. 13a shows a strong correlation with the
dataset, thus revealing that the network suppresses pixels
outside the central region of the image, which seems to
degrade accuracy. Instead, the final implementation of the
LG algorithm exhibits no correlation with the input image,
allowing the network to train from all input pixels.

Gx Input Layer - LG V1

Pixel

P
ix

e
l

 

 

5 10 15 20

2

4

6

8

10

12

14

16

18

20

22

0.5

1

1.5

2

2.5

Gx Input Layer - LG V4

Pixel

P
ix

e
l

 

 

5 10 15 20

2

4

6

8

10

12

14

16

18

20

22

0.5

1

1.5

2

2.5

Gx Input Layer - LG V4

Pixel

Pixel

 

 

5 10 15 20

2

4

6

8

10

12

14

16

18

20

22

0.5

1

1.5

2

2.5

0

2.6

1.3

(a) (b)

Fig. 13. Map of gx in the input layer (a) for the initial and intermediate
implementations and (b) for the final implementation of the LG algorithm.

(b)

(a)

Fig. 14. Distribution of gδ for the first and second hidden layers (HL) and
for the output layer, collected from 500 randomly-selected images within (a)
training epoch 1 and (b) epoch 20.

IV. RESULTS

Fig. 14 reports the distributions of gδ for this final version of
the LG algorithm. Data are obtained by collecting gδ from 500
images distributed throughout (a) the first training epoch and
(b) the 20th training epoch. The first hidden layer distribution
shows negligible variation on the entire training. Since the
initial condition is gδ = 1, the evolution happens primarily
in the first epoch. On the contrary, the output layer shows a
drift towards large gδ between 3 and 6, because these gδ values
directly depend on the classification error (GT – output value).
Since any neuron’s error is 10% likely to be positive and 90%
to be negative, two consequent training steps have a ∼80%
probability of having the same δ sign. Thus, on average, gδ
increases. Interestingly, the second hidden layer (HL) shows
two statistical families, which probably derive from principal
signal paths (family at large value) and secondary paths
(family around 1). Further information on what these two
distinct distributions represent within the network would be
an interesting area of future research work.

We also studied the impact of the choice of LGC, Max LG
and Min LG, as reported in Fig. 15. Unless LGC is close to
one (at which point, the LG devolves into chaotic behavior as
shown in Eqs. 1 and 2 since g shows strong changes), there
is no dependence. Similarly, the choice of maximum gδ or
gx value has little impact. Increasing the minimum value too
much degrades accuracy, since this prevents the suppression
of dithering weights.

Fig. 5f shows the application of LG to the pure-software im-
plementation of our three-layer neural network, while Fig. 16
adds the effect of the final neuron-centric LG algorithm – for
the “2–PCM” approach representing real PCM devices – to
the results without the LG algorithm plotted earlier in Fig. 7.
Clearly, in both cases the range of learning rates offering high
accuracy is larger and increases from 92% to more than 93%
in the “2–PCM” approach.

We wanted to better understand the learning process during
training by studying the network output. Fig. 17 plots the
PDF of the ten output neurons during the forward propagation,
taken from Fig. 16 at η = 0.05, corresponding to the peak. The
results are shown for epochs 1 and 20. There are two families
for each plot: the left one corresponds to neurons whose GT



(a) (b) (c)

Fig. 15. Training and test accuracy after 5 epochs, 5000 training images, each
point averaged over 20 simulations, for a 3-layer perceptron as a function of
(a) Local Gain Coefficient (LGC), (b) maximum local gain and (c) minimum
local gain.

“2-PCM” approach

#5 (LG)
#3

#4

Fig. 16. Test accuracy of the network in Fig. 2 with the 2 PCM scheme, as
a function of learning rate, comparing cases #3 and #4 and now #5. The LG
algorithm improves accuracy slightly but provides a much broader window of
useful learning rates.

output should be 0, the right one to those neurons whose
output should be 1. The distance between the peaks of the
two families reveals the ability of the system to classify images
correctly. The curves in Fig. 17a show a large broadening as a
consequence of the activation function ranging between -1 and
1. The output in Fig. 17b, case #4, is limited to the positive
side, as is case #5 (Fig. 17c). Fig. 17c shows the effect of
LG, which results in a more crisp distinction between the two
distributions.

V. SAFETY MARGIN

Data reported in Fig. 17 provides information on the ability
of the network to separate high and low neuron values, but
does not give any relationship between outputs with GT = 1
(the excitation of the correct neuron) and the corresponding
outputs with GT = 0 (all the other neurons). For this reason,
we introduce the Safety Margin (SM) concept to provide a
quantitative metric for the quality of network training. SM
is defined as the difference between two particular neuron
excitations within the output neuron layer – the excitation of
the neuron which should be the right answer, and the highest
of all the other excitations – as sketched in Fig. 18. A sign
is attributed to this quantity: SM is positive when the highest
value obtained at the output layer corresponds to the correct

GT = 0

Output

GT = 1

Output

GT = 0

GT = 1

GT = 0

GT = 1

(a)

(b)

(c)

#3

#4

#5

Fig. 17. Distributions of network output layer during forward propagation
for first and last epochs, cases #3 (a), #4 (b) and #5 (c). The two families
correspond to outputs with corresponding GT = 0 or GT = 1.

classification, and becomes negative when the classification
is wrong. Higher learning quality, namely a strong ability to
distinguish between the correct classification output and the
other (incorrect) neuron outputs, leads to a larger SM. Thus
SM is an analog metric that not only encapsulates accuracy,
but also the margin by which that correct (or incorrect)
classification was made. Note that the conventional definition
of DNN loss involves the difference between the entire output
vector and GT, while SM only reflects the difference with
the two largest neurons. Thus output neuron distributions can
have many different loss values yet share the same SM, and
other distributions can exhibit many different safety margins
yet share the same DNN loss.

Fig. 19 shows the CDFs of SM for cases (a) #3, (b) #4 and
(c) #5, for simulations in Figs. 16 and 17. Safety Margins were

Correct Classification Classification Error

Safety Margin > 0

Ground Truth

Neuron

Output

Ground Truth

Neuron

Output

Safety Margin < 0

(a) (b)

Fig. 18. Scheme of the Safety Margin (SM) concept. (a) When the network
classifies the output correctly, the Safety Margin is the positive difference
between the correct neuron and the next largest neuron. (b) When the
classification is incorrect, the Safety Margin is a negative number indicating
the gap by which the output neuron failed to be the highest neuron value.



(a)

(b)

(c)

#3

#4

#5

Increasing

training

Fig. 19. Cumulative distributions (CDF) of Safety Margin (SM) for cases #3
(a), #4 (b) and #5 (c). The values were extracted by running the entire test
set after the first 10 images of the first epoch, after the first 200 images of
the first epoch, after the first epoch, and after epoch 20.

evaluated after the first 10 and 200 images of the first epoch,
after the first epoch of 60,000 images, and after epoch 20. For
increasing number of training images, the CDF shows a shift
towards positive values, which means that a higher number of
images are correctly classified. Fig. 19c shows a larger shift
of the curves towards higher SM with respect to (a) and (b),
revealing that LG helps achieve a higher learning quality.

VI. ENERGY CONSUMPTION

We also analyzed the impact of LG on energy consumption.
Since the algorithm reduces the weight update coefficients for
dithering weights, the number of partial–SET weight-update
pulses is reduced. Fig. 20 shows the correlation plot between
test accuracy and energy consumption. Global learning rate
goes from low to high values. We show both energy con-
sumption due to SET pulses (used for conductance increase
and evaluated as 3 pJ for every pulse [2], [21]) and for RESET
pulses (corresponding to 30 pJ [2]) for #4 (with no LG) and
#5 (with LG). We observe that no advantages arise from the
RESET energy since these RESET are periodically performed
with the same period (after every 100 examples) in both cases.
On the other side, LG leads to accuracy higher than 90% with
a SET energy reduction of more than 10x with respect to the
case without LG (#4). There is an increase of SET energy
for LG at small learning rates, as the network increases local
gains haphazardly in a doomed effort to train the network.

h

small h

large h

Reduced

Set energy

Fig. 20. Correlation between the energy consumption incurred by SET (e.g.,
weight-update) and occasional-RESET pulses and the associated test accuracy,
for cases #4 and #5 (with LG). LG reduces set energy by more than 10x.

VII. CONCLUSION

In this paper, we introduced a neuron-centric version of the
Local Gains (LG) method designed for crossbar-compatible
implementation. We showed that this technique can increase
network accuracy, extend the range of acceptable learning
rates, and reduce energy consumption. We first analyzed the
impact of different activation functions and the corresponding
dynamic range of input and output neurons, showing that
the use of non-negative neuron-activations allows the sign
of the weight-update to depend only on the sign of the
backpropagated error.

The concept of Safety Margin (SM) – the margin by which
the correct output neuron exceeded (or failed to exceed) the
strongest incorrect neuron – was introduced, providing a novel
way to gauge the robustness of DNN classification perfor-
mance. We used device-aware DNN simulations to demon-
strate higher accuracy, reduced sensitivity to network hyper-
parameters, and an overall improved training process, as well
as lower network activity and reduced energy consumption.

REFERENCES

[1] Y. LeCun et al., Nature, 521, 436 (2015).
[2] G. W. Burr et al., IEDM Tech. Digest, 29.5 (2014).
[3] G. W. Burr et al., IEEE Trans. Elec. Dev, 62(11), pp. 3498 (2015).
[4] D. E. Rumelhart et al., Parallel Dist. Proc., pp. 45-76 (1986).
[5] Y. LeCun et al., Proc. of IEEE, 86(11) (1998).
[6] M. Suri et al., IEDM Tech. Digest, 79 (2011).
[7] S. Sidler et al., ESSDERC Proc., 440 (2016).
[8] G. W. Burr et al., IEDM Tech. Digest, 4.4 (2015).
[9] S. Agarwal et al.,, Front. Neurosci., 9, 484 (2016).

[10] A. Fumarola et al., ICRC Proc., 1 (2016).
[11] T. Gokmen and Y. Vlasov, Front. Neurosci., 10, 333 (2016).
[12] P. Narayanan et al., IBM J. Res. Dev., to appear (2017).
[13] P. Narayanan et al., Proc. ISCAS, (2017).
[14] S. Yu et al., IEDM Tech. Digest, 16.2 (2016).
[15] J. H. Lee et al.,, Front. Neurosci., 10, 508 (2016).
[16] S. B. Eryilmaz et al., IEDM Tech. Digest, 25.5 (2013).
[17] M. Prezioso et al., Nature, 521, 61 (2015).
[18] J.-W. Jang et al., IEEE Electron Dev. Lett., 36(5) (2015).
[19] Y. van de Burgt et al., Nature Mat., 16(4856), 414 (2017).
[20] R. A. Jacobs, Neural Networks, (4):295307, (1988).
[21] B. Jackson et al., ACM J. Emerg. Tech. Comp. Sys., 9(2), 12 (2013).


