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Abstract
Using circuit-level SPICE simulations, we explore the design

constraints on crossbar arrays composed of a nonvolatile memory
(NVM) (+1R) and a highly nonlinear Access Device (AD) enabled
by Cu-containing Mixed Ionic-Electronic Conduction (MIEC) ma-
terials [1-5]. Such ADs must maintain ultra-low leakage through
a large number of unselected and partially selected 1AD+1R cells,
while delivering high currents to the few cells selected for either
read or write. We show that power consumption during write, not
read margin, is the most stringent constraint for large 1AD+1R
crossbar arrays, with NVM switching voltage VNV M and selector
voltage margin Vm being much more critical than write current. We
show that scaled MIEC devices (Vm ∼ 1.54V [4]) can support 1Mb
arrays for VNV M up to 1.2V. Stacking two MIEC devices enables
VNV M ∼ 2.4V . A 20% improvement in Vm can either enable a 4×
increase in array size or counteract a 5× increase in interconnect
line resistance.
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Introduction
MIEC-based ADs [1–5] exhibit ideal characteristics for 3D-

stacking of large crossbar arrays of any resistive NVM in the BEOL,
including bipolar diode-like characteristics (Fig.1), large ON/OFF
ratios, high voltage margin Vm (for which leakage stays below 10
nA), ultra-low leakage (< 10 pA), and high ON current densities.
Even with such attractive characteristics, however, the design of a
large crossbar array of 1AD+1R devices (Fig. 2) — within which
writes and reads must be reliable yet leakage through non-selected
devices low — requires careful choice of selected & unselected
wordline (VW & VR) and bitline (VB & VC) voltages. We quantify
the design-space enabled by scaled MIEC-based ADs (Vm ∼ 1.54V
[4]) in terms of achievable array size, excess required power during
write, and read margin.

Simulation framework
We assume an NVM device that transitions between an ohmic

Low Resistance State (LRS) and a High Resistance State (HRS)
exhibiting Poole-Frenkel (PF) conduction (Fig.3). The equivalent
circuit for the MIEC AD (Fig. 3, inset) is carefully fit to exper-
imental data (Fig. 1). Before each SPICE simulation, the inner
voltages VC , VR (Fig.4(b)) are chosen for an aggregate unselected
leakage of 10uA (e.g., for a 1Mb array, 10pA/device). As outer
voltages VB , VW are swept apart, the voltage across the worst-case
selected 1AD+1R device(s) (Fig. 4(a)) increases. After the simu-
lation completes, the NVM switching event (Fig. 5) identifies the
external voltages (VB , VW ) required for a successful write. Default
NVM, MIEC AD, and array parameters are shown in Table.1. Total
required power is examined just before and just after switching for
both the LRS-to-HRS and HRS-to-LRS transitions.

Design space for NVM write
In our approach, only voltage choices which trigger a success-

ful write are even considered. A design point becomes unfavor-
able when the total applied power becomes much larger than the
base 1AD+1R write power. For instance, even a 10% increase in
VHRS causes applied power to increase by two orders of magnitude
(Fig.6). This extra applied voltage at the far-edge selected device
(Fig. 4(a)) exponentially increases leakage in nearby half-selected
devices (Fig.4(b)). The resulting larger voltage drops in the wiring
then exacerbate voltage stress at near-edge half-selected devices.
While this positive feedback effect is roughly the same for the
worst-case (all LRS) and for random stored data patterns, it can be

suppressed by the high resistance of the HRS state (Fig. 6, inset).
Like VHRS , there is a VLRS threshold, beyond which write power
grows dramatically. However, the array design is quite robust to
increases in switching currents IHRS , ILRS (Fig.6).

Fig.7 shows that small increases in VHRS dramatically reduce
achievable array size. When the design works (blue region at left),
almost all the externally applied power reaches the selected device,
opening up opportunities for parallel writes; when the design fails,
almost all external power is dissipated in half-selected 1AD+1R
devices. Figs. 8 and 9 show that, similar to NVM voltage VHRS ,
maintaining a sufficiently large AD voltage margin Vm is critical to
successful array design. Degradations in AD slope S lead to excess
power (Fig.8), yet can be offset by Vm improvements (Fig.9).

For a given NVM, improvements in either the slope S or the
voltage margin Vm of the MIEC-based AD can enable significant
increases in the achievable array size (Fig. 10), or can be used to
accommodate the increases in line resistances expected at scaled
technology nodes (Fig. 11). Fig. 12 shows the achievable array
size for both the scaled MIEC AD (Vm ∼ 1.54V) and a stacked
combination of two MIEC ADs. The larger voltage margin far out-
weighs the degradation in AD slope and series resistance, allowing
a stacked MIEC diode to support 1Mb arrays for NVM switching
voltages as large as 2.4V. Note that large SPICE simulations are
enabled by modeling all unselected 1AD+1R device pairs with a
single aggregate device (Fig.13).

Design space for NVM read
Read margin is the change in voltage across a peripheral load

resistor RLOAD (Fig.13) when the selected device moves between
the HRS and LRS states. The applied read voltage is determined
based on avoiding a disturb (Fig.13(A)) on the near-edge cell, the
two reads are performed with a true V/2 scheme and data patterns
shown in Fig.13(B,C)) (other schemes/patterns showed similar per-
formance, not shown). The load resistance is chosen to increase
read margin (Fig. 14, inset) without excessive RC timing issues.
While read margin degrades with lower read voltage/disturb con-
dition (Fig.14), and higher interconnect resistance (Fig.15, inset),
NVM resistance contrast has the most significant impact (Fig.15).
Read margin does depend upon AD parameters (Fig.16), but write
power considerations are clearly far more stringent (Figs.8,9).

Conclusions
We have explored the design of 1AD+1R crossbar arrays us-

ing highly nonlinear Access Devices (AD) based on Mixed Ionic-
Electronic Conduction (MIEC) [1-5]. Circuit-level SPICE simu-
lations were used to show that achievable array size and excess
required power during write depends strongly on careful match-
ing between the turn-on voltage Vm of the AD and the switching
voltage VNV M of the NVM. This implies that research in this field
should be directed towards NVMs with lower VNV M (and ADs
with higher Vm), as opposed to decreases in raw NVM switching
current. Scaled MIEC devices (Vm ∼ 1.54V [4]) are shown to
support VNV M up to 1.2V (for 1Mb arrays), and two stacked MIEC
devices enable VNV M ∼ 2.4V .
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Fig. 2 Crossbar array with selected, par-
tially (WL) selected, partially (BL) se-
lected, and unselected 1AD+1R cells.
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Fig. 3 Generic NVM model for SPICE, with
switching between an ohmic LRS and an HRS
exhibiting Poole-Frenkel conduction. Inset
shows equivalent circuit for SPICE modeling
of the bipolar, highly non-linear MIEC AD.
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Fig. 4 Total applied voltage at switch-
ing is a) NVM voltage VNV M + AD
voltage + wiring IR-drop, identified by
b) sweeping select-lines VW and VB

at fixed unselect bias (and leakage).
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Fig. 5 Cell currents vs. total applied voltage
for the HRS-to-LRS (“SET”) operation on a
64×64 array, exhibiting NVM transition.

SET Switching VHRS , IHRS 1.2V, 3µA
RESET Switching VLRS , ILRS 0.8V, 30µA
Holding V during SET Vh 0.5V
Read Disturb Voltage VDIS 0.25×VHRS
Resistance States RLRS , RHRS 26.67kΩ, 400kΩ
PF HRS @ 0.1V RHRS−PF 10MΩ

Voltage Margin Vm 1.54V
Turn-on Slope S 85mV/dec
Series Resistance Rs 2850Ω
Noise Floor INF 3pA

Array Size N ×M 1Mb (1024×1024)
Interconnect R/cell[6] Rint 2.215Ω
Table. 1 Default simulation parameters.
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Inset: impact of
data patterns.
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Fig. 7 Write power vs. VHRS and array size: small
changes in VHRS dramatically reduce achievable ar-
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Fig. 8 Voltage margin Vm (at 10nA) is the most
critical AD parameter in 1AD+1R crossbar Design.
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Fig. 9 Write power as a function of voltage margin Vm

and AD slope S.
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Fig. 16 The impact ofVm andS changes
on read margin is significantly less criti-
cal than their write power impact (Fig.8).


