
Reducing Circuit Design Complexity for
Neuromorphic Machine Learning Systems Based on

Non-Volatile Memory Arrays
Pritish Narayanan∗, Lucas L. Sanches∗, Alessandro Fumarola∗, Robert M. Shelby∗, Stefano Ambrogio∗,

Junwoo Jang∗, Hyunsang Hwang†, Yusuf Leblebici‡, and Geoffrey W. Burr∗
∗IBM Research – Almaden San Jose, CA 95120 Email: pnaraya@us.ibm.com

†Department of Material Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
‡EPFL, Lausanne, CH–1015, Switzerland

Abstract—Machine Learning (ML) is an attractive application
of Non-Volatile Memory (NVM) arrays [1,2]. However, achieving
speedup over GPUs will require minimal neuron circuit sharing
and thus highly area-efficient peripheral circuitry, so that ML
reads and writes are massively parallel and time-multiplexing
is minimized [2]. This means that neuron hardware offering
full ‘software-equivalent’ functionality is impractical. We analyze
neuron circuit needs for implementing back-propagation in NVM
arrays and introduce approximations to reduce design complexity
and area. We discuss the interplay between circuits and NVM
devices, such as the need for an occasional RESET step, the
number of programming pulses to use, and the stochastic nature
of NVM conductance change. In all cases we show that by
leveraging the resilience of the algorithm to error, we can
use practical circuit approaches yet maintain competitive test
accuracies on ML benchmarks.

I. INTRODUCTION

Non-Volatile Memory-based crossbar arrays can be used
in neuromorphic non-von Neumann computing schemes [1,2],
for example in multi-layer perceptrons trained using back-
propagation (Fig. 1) [3]. Here, pairs of conductances serve
as analog programmable weights and computation (specifi-
cally highly efficient multiply-accumulate operations) can be
achieved at the location of the data in a massively-parallel
analog operation along rows and columns of the array (Fig. 2).

To obtain significant speedup over conventional hardware
(e.g. GPUs), it is essential that large portions of the array
can operate in parallel with limited time-multiplexing. This
necessitates the use of low-area neuron circuits to minimize
‘circuit-sharing’ (cs parameter in Figs. 2, 4) [2]. Here, we
evaluate a series of circuit tradeoffs where we replace ‘exact’
but impractical neuron functionalities with approximate but
area-efficient alternatives. We show that by leveraging the
error tolerance of ML algorithms, such area-efficient neuron
designs are able to maintain competitive training performance
similar to the same deep neural network implemented entirely
in software (also referred to in the text as ’complete software
implementation), even in the presence of imperfect devices.

II. PRELIMINARIES

Supervised training of a fully-connected deep neural net-
work (DNN) proceeds in 3 phases. During Forward Prop-

agation (Fig. 3, middle), training data (e.g. an input image)
are propagated from left-to-right to produce a set of outputs
that is the network’s ‘best guess’ at classifying that image. The
forward-propagate operation at every layer involves a multiply-
accumulate operation along one direction (say, the columns)
of the crossbar array, followed by a non-linear ‘squashing’ or
activation function that generates the neuron activations of the
next stage.

250
hidden
neurons

125
hidden
neurons

10
output
neurons

wij

“0”
x1

Cropped
(22x24
pixel)

MNIST
images

“1”

“8”

“9”

528
input

neurons

xi

x528
A

A

A

x1
B

xj
B

x250
B

Cropped (22x24 pixel)
MNIST w/

Background Noise

Fig. 1 3-Layer Neural Network used in simulation studies with 528
input neurons, 10 output neurons and two hidden layers with 250 and
125 neurons each [1-3]. Benchmarks include the MNIST dataset of
handwritten digits[7], and the MNIST dataset with background noise[8].

Typical squashing functions used for Deep Neural Networks
include logistic, hyperbolic tangent (tanh) or unbounded
Rectified Linear Units (ReLU), all of which require extensive
floating point arithmetic and/or look-up tables. Unfortunately,
to interface analog crossbar arrays to any such digital compute
units, precise analog-to-digital (A-to-D) and digital-to-analog
(D-to-A) conversion would be required (Fig. 4, right), making
an exact neuron implementation highly infeasible. For exam-
ple, even highly-efficient A-to-D and D-to-A circuits require
an area of at least ∼1.5×106F 2 [4]. For comparison, a piece-
wise linear (PWL) approximation of the squashing function
would be fairly straightforward to implement in the analog
domain using a dedicated comparator and a common ramp
voltage.

+ - Mm
+ -

G–

+ -cs-wide multiplex

Cà

quick A-to-D

cs neurons are time-multiplexed
into the same circuitry

G+

N1

N2

Nn

Fig. 2 Neural network
weights are encoded
into pairs of NVM-
conductances (G+

and G−). Multiply–
accumulate operation
is achieved through
Ohm’s law and current
summation. cs is a
measure of how many
rows/columns share the
same neuron circuitry[2].

8

xA1

xA2

xAn

xB1

xB2

xBn

xB
j = f(wijx

A
i)

f(): non-linear
activation

Input/ Hidden
Neurons

Hidden/Output
Neurons

w11

Accumulated Sum

Ra
ng

e
of

N
eu

ro
n

St
at

es

δA
i = f’(x)●

(wij δB
j)

f’(): derivative

tanh
ReLU
PWL

Accumulated Error

Fig. 3 During forward propagation (middle), every downstream neuron
circuit must accumulate weighted contributions from upstream neurons, and
handle the non-linear ‘squashing’, or activation function f(). During reverse
propagation (right), each neuron must accumulate weighted errors from
downstream neurons, scaled by the derivative of the squashing function.

The precision with which the neuron activation is stored
and transmitted between stages is also an important design
parameter. Lower precision implies fewer digital bits and/or
smaller capacitors to hold a smaller number of distinct neuron
states, thereby also reducing circuit area.

1msec

100usec

10usec

100W

100mW

10mW

10W

1W

Training
time

Training power

(per example)

GPU

GPU

PCM (aggressive)

PCM (conservative)

1 2 4 8 16
Cs (circuit sharing)

[Network #4]

C

A-to-D

Exp()

Division

D-to-A

Floating Point Unit

tanh

–+

VRAMP

PWL

To next stage

Fig. 4 (Left) Achieving speed-up benefits over GPUs requires a low value
of cs, enabling large parts of the array to operate in parallel [2]. (Right)
Implementing exact squashing function (e.g. tanh) would be extremely area-
inefficient; Piece-wise Linear (PWL) is a much more efficient alternative.

During Reverse Propagation (Fig. 3, right), errors calcu-
lated from comparison against ground-truth labels are back-
propagated from the outputs to the inputs. Back-propagation
occurs in a direction orthogonal to forward propagation (e.g.
integration along rows). In addition to the same precision
consideration, back-propagation calls for the derivative of the
forward-propagated neuron activation to be incorporated into
the error term. The PWL derivative is a step function which
can be implemented with simple circuitry, whereas a more
precise tanh derivative would be complex and area-inefficient.

Parallel operation also needs a crossbar-compatible weight
update rule (Fig. 5). Here, instead of calculating an exact

weight gradient by exchanging information across pairs of
upstream and downstream neurons (a process that would be
extremely slow across possibly millions of synapses), each
neuron fires a series of pulses based only on local knowledge
of either neuron activation (for the upstream neuron) or back-
propagated error (for the downstream neuron) , and overlap
of these pulses achieves the weight change [1]. In fully bi-
directional NVMs with linear slope, device conductances can
be both increased and decreased in a smooth fashion. Each
weight change in this case is implemented in two phases with
both a SET and a RESET (e.g. a positive weight change is
implemented as a G+ increase and a G− decrease). This
crossbar-compatible weight update rule has been shown to
have no effect on neural network performance vs. the exact
weight update [1]. For this operation, the number of pulses to
be fired and the resulting response of the NVM devices are
important considerations for peripheral circuitry.

xi

j

Gij
+ Gij

–

TSET

TRESET

∆wij
+= 2 ∆Gij

+ +
2∆Gij

–

Fig. 5 During
parallel weight
update, upstream
and downstream
neurons fire pulses
based on local
knowledge of x and
δ [1,3,6]. Overlap
between these
pulses updates
conductances
(in ‘Fully Bi-
directional’ mode,
both G+ and
G− [3]).

III. RESULTS

We consider the MNIST dataset of handwritten digits [5],
adapting the same DNN computer simulation matched to PCM
experiments from [1]. Unless otherwise specified, we consider
a reduced training set (5000 examples), yet the full test set
of 10000 examples. For the network in Fig. 1, the baseline
implementation achieves 93.7% and 94.3% test accuracy for
the tanh and ReLU activation functions respectively, using
the crossbar-compatible weight update rule. In comparison, the
software implementation of tanh with the exact weight update
achieves 94.5% test accuracy. The PWL training (99%) and
test accuracies (93.7%) with bi-directional NVM and crossbar-
compatible weight update are quite comparable with the above
numbers.

Leaky derivatives are often needed in software neural nets,
to keep large error terms from being zeroed out during back-
propagation (vanishing gradient problem). An approximate
version of this is implementable by using a non-zero ‘low’
derivative value, which allows further tuning of test accuracy
(Fig. 6, left). While in this particular case, the zero derivative
offers the best result, this is not generally true for all problems
and having the flexibility to implement non-zero derivatives is
essential. In a digital implementation, one would be restricted
to powers of 2 in order to implement the multiplication as a
bit-shift operation. In an analog implementation, much more
flexibility and tunability is available.

The precision requirements for neurons during forward and
reverse propagate were studied. As shown in Fig. 6(right),
test accuracy on MNIST shows little to no degradation down
to 6 distinct neuron levels for both the tanh and PWL
implementations. Such a high tolerance to imprecision in the
storage and transfer of neuron values will be extremely helpful
in further reducing design complexity.

Derivative Low Value

Non-zero
Low Derivative

94

93.5

93

92.5

92
0.05 0.1 0.15 0.20

%
 T

es
t

Ac
cu

ra
cy

%
 T

es
t

Ac
cu

ra
cy

Number of Neuron States

tanh

piece-wise linear
with non-zero deriv.

≈

94

92

89

85

20

0
10

8 16 128 2564 32 64

Fig. 6 (Left) – Optimizing the low derivative value may be needed for
further improvements in test accuracy, yet requires some circuit complexity to
approximate the multiplication operation. (Right) – Neural Networks maintain
high test accuracies on MNIST even with a small number of distinct neuron
states, enabling area-efficient peripheral circuitry.

The x and δ values, multiplied by the appropriate learning
rates, would need to be quantized and stored for the subsequent
weight update step. Given that binary registers are large
circuits and total area increases at least linearly with the
number of pulses, it would be ideal if the weight update
could be implemented with a small number of pulses. From
Fig. 7, we see that 1-4 pulses per weight update event is more
than sufficient to achieve high test accuracy on MNIST. The
number of programming pulses is also strongly correlated to
the change in conductance per pulse (∆G). Given that NVM
device conductances are bounded, there exists a device-circuit
tradeoff. Devices with a large number of steps between min
and max conductance (e.g. small ∆G) could utilize more
precision in the weight update, leading to better test accuracies.
However, with a larger ∆G, it may actually be preferable
to use fewer pulses for programming, as too many pulses
will tend to over-correct the weights. Fig. 8 shows simulation
results of using all of these circuit approximations on the full
MNIST dataset with 60000 images. A crossbar-compatible
weight update rule where up to 2 pulses can be fired per
weight update is used, along with PWL and zero derivative.
A test accuracy of 96.32% is achieved, showing excellent
correlation with the complete software implementation of the
same network [1].

2 Pulse
3 Pulse

1 Pulse

4 Pulse

95

93

90

84

%
 T

es
t

Ac
cu

ra
cy

50 100 20025
of Conductance Steps

Fig. 7 A small num-
ber (1–4) of pro-
gramming pulses is
sufficient to achieve
high test accuracy.
Investing circuit re-
sources to increase
the maximum num-
ber of programming
pulses only helps for
devices with large
dynamic range.

Tanh

PWL

Training Epoch

97

94

90

85

99

5 10 15 200

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Test Accuracies

Fig. 8 Even on
the full MNIST
60K dataset,
area-efficient
circuitry can train a
network based on
bidirectional NVM
and approach the
performance of the
complete software
implementation.

Many NVM device candidates such as Phase Change Mem-
ory (PCM) and filamentary Resistive RAM (RRAM) show
incremental conductance change only in one direction, with an
abrupt conductance change in the opposite direction. Neural
network circuits built for such devices need to incorporate a
fourth mode of operation called Occasional RESET1 [1]. Dur-
ing training, since conductances can only increase, eventually
both G+ and G− would saturate, causing the net weight to
go to zero and the network to freeze (i.e. stop learning). To
prevent this, training is occasionally suspended, and individual
conductances are sensed. Any pair of conductances found in
a pre-defined ‘danger zone’ (right edges of the ‘G-diamond’
(Fig. 9, left)) are RESET, followed by SET pulses applied
to G+ or G− as appropriate to attempt to restore the same
weight. This leaves the conductance pair at the left edges of
the G-diamond, making it trainable again.

IBM Confidential

G+

G-
W
ei
gh
t+

–

10

15

0

5

200

300

0

100

Linear Device w/
Variability Experimental PCM

0 50 100 0 50 100
% of (maxG – minG)

Ch
an

ge
 in

 C
on

du
ct

an
ce

Fig. 9 (Left): A G-diamond shows values of synaptic weight (height above
center line) and individual conductances (projections to tilted axes). In NVMs
with highly asymmetric conductance response, conductances near the right
edges of the G-diamond cannot participate in further training, and need to be
occasionally RESET. A number of pulses, targeting the center of a bin, are
fired to approximate the weight. Without verification of the final conductance
value, there is no guarantee that weights will land in the correct bin; larger
weights are subject to higher variation. Middle: a linear device with 10%
standard deviation in every conductance change; Right: a model of PCM
conductance data matched to experiments over 33K PCM devices and 31M
partial-SET pulses[1].

Circuitry for occasional RESET requires sensing individual
conductances, applying RESET pulses and potentially ver-
ifying that an approximate weight was restored. ‘Binning’
weights into coarse regions has several advantages over pre-
cision sensing, including 1) simplifying sensing requirements
2) reducing wall clock time, as it would be easier to land a
weight in a particular bin and 3) preserving device endurance.

To study the impact of binning during occasional RESET,
we consider two device models with conductance change
in one direction. Both device characteristics are shown in

1RESET refers to the abrupt and large decrease in conductance of a PCM
element. However, this discussion is equally relevant for some filamentary
RRAM, which have Occasional SET with partial RESETs.

Fig. 9 in the form of jump tables [1], which plot distribution
of conductance change on the Y-axis as a function of the
instantaneous conductance. The first device is a linear device
with a nominal conductance change of 10 units (as compared
to a conductance range of ∼1000 units), and a standard
deviation of 1 unit. The second is the PCM device model from
our demonstration of a ∼165000 synapse neural network [1].

In the first RESET study, we assume a uniform distribution
of conductances within each bin after the RESET+ Partial
SET operation. We consider both the MNIST dataset [5] and a
more challenging benchmark, which adds background noise to
MNIST [6]. Baseline test accuracy for the latter with the com-
plete software implementation is ∼76%. From Fig. 10, we find
that both the linear device and our experimental PCM device
can achieve competitive ML performance on both benchmarks,
with as few as 8 bins during occasional RESET. Even with 2 or
4 bins, high test accuracies can be obtained. These runs also
incorporate all previous approximations discussed, including
PWL, step derivative and crossbar-compatible weight update.

%
 T

es
t

Ac
cu

ra
cy

Number of Conductance Bins

MNIST

PCM

MNIST+Background Noise

93.5

90
88
86

75

69

72

92

4 8 162

4 8 162

Fig. 10 Test accuracy
vs. precision in sensing and
readjusting of individual
conductances. Fewer con-
ductance bins will reduce
circuit requirements.

One further simplification that would considerably reduce
circuit complexity would be to eliminate the verification step
entirely. In this scenario, based on the statistics of the devices,
a number of partial SET pulses are fired post-RESET, to target
a particular bin. However, no guarantee is made that the final
conductance value obtained actually falls within that bin. Un-
der these conditions, larger conductances (which require more
programming steps to reach) are subject to more variation than
smaller conductances (Fig. 9). Results (Fig. 11) show that the
the PCM device test accuracy is slightly degraded with MNIST
(∼88% with 16 bins) but is more significantly degraded
(∼34%) with the MNIST background noise benchmark. This
implies that SET verification will continue to be necessary
with devices that exhibit these levels of stochastic variability.
However, with better devices that offer more linearity and
control over variability, verification of individual conductances
may no longer be needed during the training process.

Figure 12 shows results for MNIST with 60k training
images and 10k test images. Three cases are shown in both
plots - a baseline with the device characteristics in Fig. 9, a
second curve with PWL approximation but perfect RESET,
and a third curve with both PWL and uniform RESET-with-
verify assumptions. We find that our circuit simplifications
do not significantly deteriorate performance compared to the
baseline, demonstrating that there is a viable path towards
area-efficient circuitry for ML applications, taking into
account both device requirements and system performance

targets. However, baselines in both cases are below what a full
software implementation can achieve (∼97% for this network).
Therefore, circuit techniques presented here will need to be
combined with device optimizations for better linearity and
tighter variability control for practical, larger-scale networks.

%
 T

es
t

Ac
cu

ra
cy

Number of Conductance Bins

MNIST

PCM

Linear

MNIST+Background Noise

93.5

90
87
84

75

25

50

92

4 8 162

4 8 162

Fig. 11 Test accuracy vs. #
of conductance bins: open-loop
SET operation (without verify)
could work with a linear device
and tightly controlled variabil-
ity. However, current PCM de-
vices will need iterative closed-
loop re-programming.

%
 C

or
re

ct

#Training Epochs

86.5

85.5

84.5

82.5

83.5

5 15 200 10

tanh

PWL

PWL + RESET Binning

%
 C

or
re

ct

#Training Epochs

97

95

93

90

75

85

80

5 15 200 10

tanh

PWL

PWL + RESET Binning

Fig. 12 Training accuracy on with MNIST 60K. Stars are final test accuracy.
(Left) – PCM, test accuracies with approx. squashing function+ binning are
comparable to exact versions, but lower than with more linear models. (Right)
– linear device: test accuracy with PWL + perfect reset (95.75%), and PWL
+ binning (94.83%) are comparable to exact neuron functionality (95.21%).

IV. CONCLUSION

In non-von Neumann computing architectures with NVM-
based crossbar arrays, neuron circuitry must support a) all
standard neural network operations and b) special constraints
imposed by the finite conductance ranges of non-volatile mem-
ory devices. Several approaches to reduce design complexity
and enable speedup over GPUs were discussed. In fully-
bidirectional NVMs, the combination of algorithm approxi-
mations — such as PWL, step-derivative, limited number of
neuron states and careful selection of programming pulses —
can achieve competitive ML performance. Devices with abrupt
conductance change in one direction require coarse binning
of weights during Occasional RESET. Experimental PCM
devices may additionally need SET+verify capability, although
this could be eliminated with continued device improvements.

References
[1] G. W. Burr et. al., Experimental demonstration and tolerancing of a large-
scale neural network (165,000 synapses), using phase-change memory as the
synaptic weight element IEDM Tech. Digest, 29.5 2014.
[2] G. W. Burr et. al., Large–scale neural networks implemented with nonvolatile
memory as the synaptic weight element: comparative performance analysis
(accuracy, speed, and power) IEDM Tech. Digest, 4.4 2015.
[3] D. E. Rumelhart et. al., A General Framework for Parallel Distributed
Processing Parallel Dist Processing, MIT Press, 1986, pp. 45–76.
[4] L. Kull et. al., A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR ADC
with alternate comparators for enhanced speed in 32nm digital SOI CMOS Proc.

of ISSCC, 26.4 2013.
[5] Y. LeCun et. al., Gradient-Based Learning Applied to Document Recognition
Proc. of IEEE, 86(11), 1998, pp. 2278–2324.
[6] H. Larochelle et. al., An empirical evaluation of deep architectures on
problems with many factors of variation Proc. of ICML., pp. 473–478 (2007).

