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Abstract—Large arrays of the same nonvolatile memories
(NVM) being developed for Storage-Class Memory (SCM) –
such as Phase Change Memory (PCM) and Resistance RAM
(ReRAM) – can also be used in non-Von Neumann neuromor-
phic computational schemes, with device conductance serving
as synaptic “weight.” This allows the all-important multiply-
accumulate operation within these algorithms to be performed
efficiently at the weight data.

In contrast to other groups working on Spike-Timing De-
pendent Plasticity (STDP), we have been exploring the use of
NVM and other inherently-analog devices for Artificial Neural
Networks (ANN) trained with the backpropagation algorithm.
We recently showed a large-scale (165,000 two-PCM synapses)
hardware-software demo (IEDM 2014, [1], [2]) and analyzed the
potential speed and power advantages over GPU-based training
(IEDM 2015, [3]).

In this paper, we extend this work in several useful directions.
We assess the impact of undesired, time-varying conductance
change, including drift in PCM and leakage of analog CMOS ca-
pacitors. We investigate the use of non-filamentary, bidirectional
ReRAM devices based on PrCaMnO, with an eye to develop-
ing material variants that provide suitably linear conductance
change. And finally, we explore tradeoffs in designing peripheral
circuitry, balancing simplicity and area-efficiency against the
impact on ANN performance.

I. INTRODUCTION

By performing computation at the location of data, non-Von
Neumann (non–VN) computing ought to provide significant
power and speed benefits (Fig. 1) on specific and assumably
important tasks. For one such non–VN approach — on-chip
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Fig. 1. In the Von Neumann architecture (a), data (both operations and
operands) must move to and from the dedicated Central Processing Unit (CPU)
along a bus. In contrast, in a Non–Von Neumann architecture, distributed
computations take place at the location of the data, reducing the time and
energy spent moving data around [1].

training of large-scale ANN using NVM-based synapses [1]–
[4] — viability will require several things. First, despite the
inherent imperfections of NVM devices such as Phase Change
Memory (PCM) [1], [2] or Resistive RAM (RRAM) [4], such
NVM-based networks must achieve competitive performance
levels (e.g., classification accuracies) when compared to ANN
trained using CPUs or GPUs. Second, the benefits of perform-
ing computation at the data (Fig. 2) must confer a decided
advantage in either training power or speed (or preferably,
both). And finally, any on-chip accelerator should be appli-
cable towards networks of different types (fully–connected
“Deep” NN or Convolutional NN) and/or be reconfigurable
for networks of different shapes (wide, with many neurons, or
deep, with many layers).

We briefly review our work [1]–[4] in assessing the accu-
racy, speed and power potential of on-chip NVM–based ML.

A. Comparative analysis of speed and power

We have previously assessed the potential advantages, in
terms of speed and power, of on-chip machine learning (ML)
of large-scale artificial neural networks (ANN) using Non-
Volatile Memory (NVM)-based synapses, in comparison to
conventional GPU–based hardware [3].

Under moderately-aggressive assumptions for parallel–read
and –write speed, PCM-based on-chip machine learning can
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Fig. 2. Neuro-inspired non-Von Neumann computing [1]–[4], in which
neurons activate each other through dense networks of programmable synaptic
weights, can be implemented using dense crossbar arrays of nonvolatile
memory (NVM) and selector device-pairs [1].
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Fig. 3. Predicted training time (per ANN example) and power for 5
ANNs, ranging from 0.2GB to nearly 6GB [3]. Under moderately-aggressive
assumptions for parallel–read and –write speed, PCM-based on-chip machine
learning can offer lower power and faster training for both large and small
networks [3].

250 125 10528 250
hidden
neurons

125
hidden
neurons

10
output
neurons

“0”

x1
Cropped
(22x24

528
input

neurons

A

A

x1
B

wij

(22x24
pixel)
MNIST
images 

“1”

xi
A

xj
B

ij

x wA

xj
“8”

B

xi wij

xj =f(xi wij)

xj
“9”

x528

B A
A

x250
B

Fig. 4. In forward evaluation of a multilayer perceptron, each layer’s neurons
drive the next layer through weights wij and a nonlinearity f(). Input neurons
are driven by input (for instance, pixels from successive MNIST images
(cropped to 22×24)); the 10 output neurons classify which digit was presented
[1].

potentially offer lower power and faster training (per ANN
example) than GPU-based training for both large and small
networks (Fig. 3), even with the time and energy required for
occasional RESET (forced by the large asymmetry between
gentle partial-SET and abrupt RESET in PCM). Critical here
is the design of area-efficient read/write circuitry, so that many
copies of this circuitry operate in parallel (each handling a
small number of columns (rows), cs).

B. Potential for competitive classification accuracies

Using 2 phase-change memory (PCM) devices per synapse,
we demonstrated a 3–layer perceptron (fully-connected ANN)
with 164,885 synapses [1], trained with backpropagation [5]
on a subset (5000 examples) of the MNIST database of
handwritten digits [6] (Fig. 4), using a modified weight-update
rule compatible with NVM+selector crossbar arrays [1]. We
proved that this weight-update modification does not degrade
the high “test” (generalization) accuracies such a 3–layer
network inherently delivers on this problem when trained in
software [1]. However, nonlinearity and asymmetry in PCM

conductance response limited both “training” and “test” accu-
racy in our original, mixed hardware-software experiments to
82–83% [1] (Fig. 5).

Asymmetry (between the gentle conductance increases of
PCM partial–SET and the abruptness of PCM RESET) was
mitigated by an occasional RESET strategy, which could be
both infrequent and inaccurate [1]. While in these initial
experiments, network parameters such as learning rate η had
to be tuned very carefully, a modified ‘LG’ algorithm offered
wider tolerance to η, higher classification accuracies, and
lower training energy [3] (Fig. 6).

Tolerancing results showed that all NVM-based ANN can
be expected to be highly resilient to random effects (NVM
variability, yield, and stochasticity), but highly sensitive to
“gradient” effects that act to steer all synaptic weights
[1]. We showed that a bidirectional NVM with a symmetric,
linear conductance response of finite but large dynamic range
(e.g., each conductance step is relatively small) can deliver the
same high classification accuracies on the MNIST digits as
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Fig. 5. Training accuracy for a 3–layer perceptron of 164,885 hardware-
synapses [1], with all weight operations taking place on a 500 × 661 array of
mushroom-cell PCM devices. Also shown is a matched computer simulation
of this NN, using parameters extracted from the experiment [1].
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a conventional, software-based implementation (Fig. 7). One
key observation is the importance of avoiding constraints on
weight magnitude that arise when the two conductances are
either both small or both large — e.g., synapses should remain
in the center stripe of the “G-diamond” [2].

In this paper, we extend upon these observations and address
several different yet useful topics. We assess the impact of
undesired, time-varying conductance change, including drift in
Phase Change Memory (PCM) and leakage of analog CMOS
capacitors. We investigate the use of non-filamentary, bidi-
rectional ReRAM devices based on PrCaMnO (PCMO), with
an eye to developing material variants that provide suitably
linear conductance change. And finally, we explore tradeoffs in
designing peripheral circuitry, balancing simplicity and area-
efficiency against the impact on ANN performance.

C. Jump-table concept

A highly useful concept in modeling the behavior of real
NVM devices for neuromorphic applications is the concept
of a “jump-table.” For backpropagation training, where one
or more copies of the same programming pulse are applied
to the NVM for adjusting the weights [1], we simply need
one jump-table for potentiation (SET) and one for depression
(RESET).

With a pair of such jump-tables, we can capture the nonlin-
earity of conductance response as a function of conductance
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Fig. 7. When the dynamic range of the linear response is large, the
classification accuracy can now reach the peak accuracy supported by the
original neural network (a test accuracy of 94% when trained with 5,000
images; of 97% when trained with all 60,000 images) [2].
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Fig. 8. (a) Example median (blue) and ±1σ (red) conductance response
for potentiation. (b) associated jump-table that fully captures this (artificially
constructed in this case) conductance response, with cumulative probability
plotted in color (from 0 to 100%) of any conductance change ∆G at any
given initial conductance G.

(e.g., the same pulse might create a large “jump” at low
conductance, but a much smaller jump at high conductance),
the asymmetry between positive (SET) and negative (RESET)
conductance changes, and the inherent stochastic nature of
each jump. Fig. 8(a) plots median conductance change for
potentiation (blue) together with the ±1σ stochastic variation
about this median change (red). Fig. 8(b) shows the jump-
table that fully captures this conductance response, plotting
the cumulative probability (in color, from 0 to 100%) of any
conductance change ∆G at any given initial conductance G.
This table is ideal for computer simulation because a random
number r (uniform deviate, between 0.0 and 1.0) can be
converted to a resulting ∆G produced by a single pulse by
scanning along the row associated with the conductance G
(of the device before the pulse is applied) to find the point at
which the table entry just exceeds r.

We have previously used a measured jump-table to simulate
the SET response of PCM devices [1]. We have recently
published a study of various artificially-constructed jump-
tables, in order to help develop an intuitive understanding of
the impact that various features of such jump-tables have on
the classification performance in the ANN application [7].

II. TIME-DEPENDENT CONDUCTANCE RESPONSE

One aspect of Phase Change Memory that we did not
address in our original tolerancing paper [1] was the role
of resistance drift [8], also known as amorphous relaxation.
As shown in Fig. 9, after a RESET operation, amorphous
relaxation causes conductances to decrease, rapidly at first
but then more and more slowly. Here we model this in our
Neural Network simulator for the network of Fig. 4, for
an otherwise near-perfect PCM device, in which partial-SET
conductance increases are gentle and linear (each ∼0.5% of
the conductance extent) and Occasional-RESET is performed
fairly frequently (every 100 examples) with high precision.
The time response for drift starts upon RESET operations, with
partial-SET operations assumed only to shift the conductance
states without affecting the underlying time-response of the
amorphous relaxation.

As expected, as drift coefficients increase dramatically (to
the values of ν ∼ 0.1 observed for fully amorphous (strong
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linear- (right) scales, for two different values of drift coeffcient ν.



RESET) states), then accuracy is eventually affected (Fig. 10).
However, for the much lower ν values (ν ∼ 0.005 – 0.01)
associated with SET and the near-SET states relevant to PCM-
based implementations of neural networks, accuracy is only
minimally affected.

We performed a similar study for the case of fully volatile
analog memory elements, such as CMOS capacitors, in which
any conductance state immediately begins to decay towards
zero after a programming operation. This study was performed
with perfectly linear bidirectional conductances with ∼0.5%
conductance change per pulse, and thus without drift, is
identical to the right-hand side of Fig 7, where accuracy
becomes extremely high for high synaptic dynamic range.

In this study, we quantify the effective decay constant (the
“RC time constant”) not in absolute units, but relative to
the time required for training of a single data example (e.g.,
forward evaluation, reverse propagation, and weight update).
As shown in Fig. 11, accuracy is strongly affected as soon
as the ratio between the RC time-constant and the time-per-
example falls below 10,000. However, these initial results
revealed an extremely interesting dependence on the choice
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Fig. 10. At the large drift coefficients associated with fully-amorphous
RESET phase change memory devices (ν ∼ 0.1), neural network accuracy
is significantly degraded. At the values of ν ∼ 0.005–0.01 relevant to the
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Fig. 11. Neural network accuracy is strongly affected as soon as the RC
time-constant becomes less than 10,000× larger than the time needed for
each training example. (Results shown for 10 epochs of simulated training on
5000 examples from the MNIST dataset, all at the same global learning rate,
η ∼ 1).

of learning rate, implying that some further optimization may
be possible. Fig. 12 shows that the same global learning rate
which is optimal for a truly non-volatile conductance (infinite
RC time-constant) is decidedly sub-optimal when the RC time-
constant becomes lower. This implies that it is better to either
update so many weights that one can counteract the loss of
conductance by retraining those weights, or so few that the
number of weights being touched (and thus placed into a mode
where they will decay rapidly) is much lower.

III. IMPACT OF MEASURED PCMO CONDUCTANCE
RESPONSE

We have previously studied the impact of the conductance
response of PCMO material by fitting a set of functions to
the average conductance response [4]. However, this approach
is limited by the discrepancy between the real conductance
response and the function chosen, and it does not include any
stochastic aspect of the conductance response, for scenarios
where the conductance response can vary significantly from
the average conductance response.

Here, we study the use of measured jump-tables for the non-
filamentary RRAM material PrxCa1−xMnO3, also known as
PCMO.

A. Analog Bidirectional Switching

Resistive switching in PCMO-based devices is caused by
slow and gradual drift of oxygen ions and vacancies in the
polycrystalline PCMO layer. Injection (removal) of oxygen
ions takes place at the PCMO-oxide (-metal) interface through
oxidation (reduction) reactions. Asymmetry in the device
structure and the oxidation-reduction reactions contribute to
the asymmetry in the switching characteristics, but PCMO-
based NVMs show gradual SET and RESET characteristics.
Thus, unlike Phase Change Memory (PCM) materials, there is
no need to stop training and perform an Occasional–RESET
operation [1]. Both the average conductance response and its
statistical behavior can be described by a measured jump table
(Fig. 13). (Note that unlike non-filamentary RRAM such as

0.1 1 10 100

Learning Rate
0

10

20

30

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
tio

n
a

c
c
u

ra
c
y

RC time-constant / time-per-training-example

=/

= 104

= 3000

= 1000

solid: training
open: test

Fig. 12. For truly non-volatile weights (infinite RC time constant), neural
network accuracy is optimized by using a global learning rate that is large
enough to affect a moderate number of weights, but not so many that chaos
ensues. However, as the RC time constant decreases, the volatility of the
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the decaying weights by retraining many more of them) or, curiously, lower
learning rates (assumably reducing the number of recently-touched weights
that cannot be trusted not to move without being actively programmed).



PCMO, a filament-based RRAM such as HfOx, TaOx, or
TiOx exhibits only gradual RESET characteristics, meaning
that such filamentary RRAM devices will likely still require
an “Occasional–SET” step just like PCM.)

B. Fabrication process

A 10nm PCMO polycrystalline layer was deposited on
a 50-nm-thick Pt layer, which served as bottom electrode.
Next, an 100-nm-thick SiNx layer was deposited by plasma-
enhanced chemical vapor deposition, and via-holes (from 0.15
to 1.0 µm) were formed by conventional lithography and
reactive ion etching. The Al and Mo layers (20nm and 3nm,
respectively) and an 50-nm-thick Pt layer (top electrode) were
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Fig. 13. Jump-table of Al/Mo/PCMO-based RRAM devices for positive (SET)
and negative (RESET) conductance changes. Unlike Phase Change Memory
(PCM) devices, these materials provide both gradual RESET and gradual
SET, enabling truly bidirectional programming. 50000 total SET pulses (-
4.0V, 10ms) and RESET pulses (3.5V, 10ms) followed by -1V read pulses
were used on three identically-sized (200nm) devices.
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Fig. 14. Schematic showing crossbar-compatible [1] weight-update rule for
Analog bidirectional NVMs. Weight increases (decreases) can be implemented
either as a SET operation on G+ (G−) or a RESET operation on G− (G+)
devices. Asymmetry in the partial SET and RESET operation is compensated
by applying a different learning rate parameter (ηSET , ηRESET ) that
modulates the number of pulses fired from the neurons into the array.

deposited and patterned by conventional lithography. Electrical
characteristics of the Al/Mo/PCMO-based resistive memory
devices were measured using an Agilent B1500A.

C. Simulated performance

A three-layer perceptron with two PCMO-based devices
per synapse was simulated performing a classification task
on the MNIST database (same network shown in Fig. 4).
Fig. 13 plots the modeled conductance response of the resistive
switching elements. For average values of conductance G (e.g.,
the central region of the plot), the response is mostly linear,
although somewhat asymmetric, with different average jump
values for SET and RESET. In constrast, for extreme values
of the conductances (left and right edges of each jump-table),
a high degree of non-linearity is observed. However, we have
previously observed that when the extent of the non-linear
region is sufficiently small, high classification accuracies can
still be achieved [7].

The network parameters were tuned to achieve a good
performance, with particular focus given to the ratio of
ηSET/ηRESET, used to compensate the asymmetry of the jump-
table. Fig. 14 shows a schematic version of the crossbar-
compaibile weight update rule for backpropagation, in which
upstream neurons fire a set of pulses (shown in red) along the
horizontal word-lines, based solely on their knowledge of xi
and the global learning rate (η = ηSET) [1]. Simultaneously, the
downstream neuron first pulses (shown in magenta) along the
vertical bit-lines connected to a large number of G+ and G−

conductances. These pulses are based only on the downstream
neuron’s knowledge of δj and the global learning rate.

Because these pulses affect all the devices along the shared
word-lines and bit-lines, their amplitude and duration cannot
be tuned to optimize the programming of any one particular
conductance value. This leads to significant problems when
conductance response is nonlinear, since the same pulse can
cause small conductances to increase much more significantly
than conductances that are already large.

Fig. 15. Simulated training and test accuracy for a three-layer perceptron
using PCMO-based devices as synaptic weights. The asymmetry between
positive and negative jumps can be compensated by tuning individually
the learning rates for SET and RESET (see Fig. 14). The classification
accuracy of the network improves as the ratio of SET to RESET learning
rate (ηSET/ηRESET) increases.



However, the downstream neuron can easily fire different
pulse-trains on the separate G+ and G− bit-lines, and knowl-
edge of δj can be sufficient to identify whether SET or RESET
will occur (xi need only be constrained to be non-negative).
Thus it is straightforward to apply a different global learning
rate for RESET and for SET, thus leading to more or fewer
pulses, and providing a way to compensate for jump-table
asymmetry. Fig. 15 shows that classification accuracy can be
improved for the Al/Mo/PCMO jump-tables shown in Fig. 13,
with an optimal ratio of ηSET / ηRESET of approximately 3–4.

D. Switching Energy

The switching energy of the devices was measured by
integrating the product between the voltage and the current for
the duration of a programming pulse (10ms). The conductance
was measured with read pulses of −1V . PCMO-based memory
devices (like other non-filamentary switching elements) show
a dependence of the programming energy on the active area.
Switching energy ranging from sub-nJ to tens of µJ were
measured on devices with hole sizes from 0.15nmto 1µm
(Fig. 16(a). The switching energy was then normalized with
respect to the active device area (Fig. 16(b)) to show a good
linear dependence between switching current and device hole-
size. Following the trend from 150nm down to 25nm, one
can anticipate an improvement in switching energy by roughly

Fig. 16. Switching (a) energy as a function of conductance and (b) energy
density as a function of conductance density, measured for Al/Mo/PCMO-
based devices with -1V reading voltage.

35×. If the switching time could potentially be reduced from
10ms down to 10ns, then one would be able to achieve femto-
Joule switching energy. Such aggressive scaling of both device
area and switching time would be necessary in order to enable
highly-parallelized weight update operations.

IV. CIRCUIT NEEDS

A crossbar-array-based neural network implements the
multiply-accumulate operations at the heart of most neural
network algorithms extremely efficiently, through Ohm’s law
followed by current summation (Kirchoff’s Current law).
However, an important consideration is the design of highly
area-efficient neuron circuits that reside at the edges of these
arrays enabling read and write of many synaptic rows or
columns in parallel. Such high parallelism is essential if we
wish to achieve orders of magnitude performance and power
benefits over conventional CPU/GPU approaches [3]. Given
this need for a large number of distinct copies of neural
circuits that can be executed in parallel, it is critical to embrace
approximate functionality (for e.g. non-linear squashing func-
tions, calculating and multiplying derivatives etc.) rather than
rigorously-precise yet highly area-inefficient functionality.

In this section, we present examples of design choices that
simplify the underlying hardware by leveraging the inherent
tolerance of ANN algorithms to error. We discuss circuit
needs for the forward- and reverse-evaluate operations, in-
cluding precision/range of the computed neuron activations
and backpropagated errors, using piecewise linear (PWL)
approximations of non-linear squashing functions, and sim-
plifying the derivatives included during reverse propagation to
avoid complex floating-point arithmetic operations. We then
demonstrate that these approximations do not significantly
degrade classification accuracies as compared to neuron im-
plementations with rigorously-precise functionality.

A. Circuit-Needs for Forward and Reverse Propagate

Forward propagation (Fig. 17) in a fully connected neural
network involves the calculation of the neuron activations of
a hidden/output layer, based on the neuron activations of the
previous layer and the intervening synaptic weights. This is
a two-stage process, with the multiply- accumulate operation
occurring in the crossbar array, and the non-linear squashing
function applied at the periphery. One commonly used function
in software implementations is tanh() (the hyperbolic-tangent
function), which is difficult to implement exactly unless a
large number of transistors are included. However, a piece-
wise linear implementation of this squashing function would
be fairly straightforward to implement (Fig. 17).

A second design choice is the range of distinct neuron
activation values that need to be supported by the hardware. In
a digital implementation this translates into the number of bits,
which would have area implications depending on the amount
of local storage required, as well as the resolution of any ana-
log to digital conversion circuits used to convert signals from
the crossbar array into those bits. In an analog implementation,
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Fig. 17. Forward Propagation operation in a Deep Neural Network. The
multiply-accumulate operation occurs on the crossbar array. Neuron circuitry
must handle the non-linear squashing function.

this would directly translate into the resolution between analog
voltage levels and/or time-steps.

Reverse propagation (Fig. 18) is similar to forward propaga-
tion, but from output/hidden neurons to preceding hidden neu-
rons. The quantity δ, known as the correction or error, together
with the forward-propagated neuron activations, control the
weight updates for neural network training (see Fig. 14). An
important distinction from forward propagation is that the non-
linear squashing function is not applied. Instead, the multiply-
accumulated sum (integrated on the crossbar array, but in a
direction orthogonal to the integration performed during the
forward-propagate step) needs to be scaled by the derivative
of the activation function, as evaluated at the neuron activation
value. Again, an exact tanh() derivative is not efficient to
compute and multiply.

Instead, a step-function derivative with two distinct states
can be used. Multiplication by derivative values of zero and
one is fairly straightforward to implement in hardware. This
corresponds to simply enabling or disabling the transmission
of an accumulated sum-of-deltas from any neuron stage to
the preceding stage. However, multiplication by arbitrary
scale factors may be difficult to achieve since floating-point
multipliers are not readily available. The impact of such
approximations on neural network training is studied in the
next subsection.

B. Results: Circuit Approximations

We explored the impact of the aforementioned circuit
approximations on the training and test performance of the
MNIST dataset of handwritten digits through simulations. A
subset of only 5000 training images from the original dataset
of 60000 images is used. Images are cropped to 24× 22
pixels. The same 3-layer neural network (528-250-125-10) is
used (Fig. 4. A crossbar-compatible weight update rule [1]
is used to emulate how weight updates would be done on a
real crossbar array. The baseline training and test accuracies
assuming 20 epochs of training, 256 neuron activation states,
a tanh() activation function and exact derivatives were found
to be 99.7% and 93.6% respectively (blue curve and star,
Fig. 19). Note that, as per Fig. 7, both training and test
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Fig. 19. Training and test accuracies obtained on MNIST with tanh() and
piece-wise linear activation functions. PWL achieves test accuracy comparable
to tanh().

accuracy increase (to ∼100% and ∼97-98%) when all 60,000
examples are used for training.

Fig. 19 also shows the training and test accuracies using
a piece-wise linear (PWL) activation function. On MNIST,
one observes that the test accuracy obtained (92.7%) is al-
ready comparable to the full tanh() implementation. Further
improvements in test accuracy can be obtained by optimizing
the low value of the derivative. This is akin to the intentional
implemention of ‘leaky’ derivatives in some conventional
machine learning techniques, especially in the case of Rectified
Linear Units (ReLU). A leaky derivative ensures that some
contribution from the downstream neuron gets passed on to
earlier stages, thereby participating in the programming of
those weights.

Fig. 20 shows that the test accuracy can be further improved
to 93.2% when the derivative of the piecewise-linear squashing
function at extreme values is made non-zero. However, the
multiplication operation is non-trivial. In a digital implemen-
tation, one might be able to do bit-shift operations (restricting
derivative values to powers of 2). An analog implementation
can offer more freedom, since we need only enable one of two
non-zero scale factors when transmitting accumulated analog
voltages to preceding stages.

In addition to the squashing function and its derivative,
the impact of the number of distinct neuron activation and
error states on the test accuracy was analyzed. Values from 8
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Fig. 21. If the number of distinct neuron activation and error states is lower
than 32, then test accuracy degrades. However, reducing the total number
of neuron states can help enable significantly more area-efficient peripheral
circuitry.

to 256 were considered (Fig. 21). High test accuracies are
maintained down to 32 distinct neuron states for both the
tanh() and piece-wise linear implementations. Reducing the
total number of neuron states can be extremely beneficial in
area-efficient circuit design. In a digital implementation, this
allows a reduction in the total number of latches or flip-flops.
In an analog implementation, it permits a wider separation of
analog voltage levels, relaxing noise constraints and enabling
simpler circuits.

V. CONCLUSION

We have studies several aspects of system design when Non-
Volatile Memory (NVM) devices are employed as the synaptic
weight element for on-chip acceleration of the backpropaga-
tion training of large-scale artificial neural networks (ANN).

We have assessed the impact of undesired, time-varying
conductance change, including drift in Phase Change Memory
(PCM) devices and leakage of analog CMOS capacitors. We
have investigated the use of non-filamentary, bidirectional
ReRAM devices based on PrCaMnO, which can be considered
a promising material variant that could potentially provide both
gradual conductance increase and conductance decrease. And
finally, we have explored some of the tradeoffs in designing
peripheral circuitry, balancing simplicity and area-efficiency
against the impact on ANN performance for the nonlinear
squashing function, the evaluation of its derivation, and the

number of resolvable levels when integrating both x (forward-
propagate) and δ (reverse-propagate) values.

We briefly reviewed our previous work towards achieving
competitive performance (classification accuracies) for such
ANN with both Phase-Change Memory [1], [2] and non-
filamentary ReRAM based on PrCaMnO (PCMO) [4], and
towards assessing the potential advantages for ML training
over GPU–based hardware in terms of speed (up to 25× faster)
and power (from 120–2850× lower power) [3]. We discussed
the “jump-table” concept, previously introduced to model
real-world NVM such as PCM [1] or PCMO, to describe
the full cumulative distribution function (CDF) of resulting
conductance-change at each possible conductance value, for
both potentiation (SET) and depression (RESET).

While the ‘LG’ algorithm, together with other approaches,
should help a nonlinear, asymmetric NVM (such as PCM) act
more like an ideal linear, bidirectional NVM, the identification
of NVM devices and/or pulse-schemes that can offer a con-
ductance response that is at least partly linear, using circuitry
that can be highly area-efficient (and thus massively-parallel),
will help significantly in achieving equally-high classification
accuracies while offering faster and lower-power training than
conventional GPUs and CPUs.
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