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Abstract—We assess the impact of the conductance response
of Non-Volatile Memory (NVM) devices employed as the synap-
tic weight element for on-chip acceleration of the training of
large-scale artificial neural networks (ANN). We briefly review
our previous work towards achieving competitive performance
(classification accuracies) for such ANN with both Phase-Change
Memory (PCM) [1], [2] and non-filamentary ReRAM based
on PrCaMnO (PCMO) [3], and towards assessing the potential
advantages for ML training over GPU–based hardware in terms
of speed (up to 25× faster) and power (from 120–2850× lower
power) [4]. We then discuss the “jump-table” concept, previously
introduced to model real-world NVM such as PCM [1] or PCMO,
to describe the full cumulative distribution function (CDF) of
conductance-change at each device conductance value, for both
potentiation (SET) and depression (RESET). Using several types
of artificially–constructed jump-tables, we assess the relative
importance of deviations from an ideal NVM with perfectly linear
conductance response.

I. INTRODUCTION

By performing computation at the location of data, non-Von
Neumann (non–VN) computing ought to provide significant
power and speed benefits (Fig. 1) on specific and assumably
important tasks. For one such non–VN approach — on-chip
training of large-scale ANN using NVM-based synapses [1]–
[4] — viability will require several things. First, despite the
inherent imperfections of NVM devices such as Phase Change
Memory (PCM) [1], [2] or Resistive RAM (RRAM) [3], such
NVM-based networks must achieve competitive performance
levels (e.g., classification accuracies) when compared to ANN
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Fig. 1. In the Von Neumann architecture (a), data (both operations and
operands) must move to and from the dedicated Central Processing Unit (CPU)
along a bus. In contrast, in a Non–Von Neumann architecture, distributed
computations take place at the location of the data, reducing the time and
energy spent moving data around [1].

trained using CPUs or GPUs. Second, the benefits of perform-
ing computation at the data (Fig. 2) must confer a decided
advantage in either training power or speed (or preferably,
both). And finally, any on-chip accelerator should be appli-
cable towards networks of different types (fully–connected
“Deep” NN or Convolutional NN) and/or be reconfigurable
for networks of different shapes (wide with many neurons, or
deep with many layers).

We briefly review our work [1]–[4] in assessing the accu-
racy, speed and power potential of on-chip NVM–based ML.

A. Potential for competitive classification accuracies

Using 2 phase-change memory (PCM) devices per synapse,
we demonstrated a 3–layer perceptron with 164,885 synapses
[1], trained with backpropagation [5] on a subset (5000
examples) of the MNIST database of handwritten digits [6]
(Fig 3), using a modified weight-update rule compatible
with NVM+selector crossbar arrays [1]. We proved that this
modification does not degrade the high “test” (generalization)
accuracies such a 3–layer network inherently delivers on this
problem when trained in software [1]. However, nonlinearity
and asymmetry in PCM conductance response limited both
“training” and “test” accuracy in these initial experiments to
82–83% [1] (Fig. 4).
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Fig. 2. Neuro-inspired non-Von Neumann computing [1]–[4], in which
neurons activate each other through dense networks of programmable synaptic
weights, can be implemented using dense crossbar arrays of nonvolatile
memory (NVM) and selector device-pairs [1].



Asymmetry (between the gentle conductance increases of
PCM partial–SET and the abruptness of PCM RESET) was
mitigated by an occasional RESET strategy, which could be
both infrequent and inaccurate [1]. While in these initial
experiments, network parameters such as learning rate η had
to be tuned very carefully, a modified ‘LG’ algorithm offered
wider tolerance to η, higher classification accuracies, and
lower training energy [4].

Tolerancing results showed that all NVM-based ANN can
be expected to be highly resilient to random effects (NVM
variability, yield, and stochasticity), but highly sensitive to
“gradient” effects that act to steer all synaptic weights
[1]. We showed that a bidirectional NVM with a symmetric,
linear conductance response of finite but large dynamic range
(e.g., each conductance step is relatively small) can deliver the
same high classification accuracies on the MNIST digits as
a conventional, software-based implementation (Fig. 5). One
key observation is the importance of avoiding constraints on
weight magnitude that arise when the two conductances are
either both small or both large — e.g., synapses should remain
in the center stripe of the “G-diamond” [2].

In this paper, we extend upon this observation to explore
the impact of specific deviations from such an idealized linear

Fig. 3. In forward evaluation of a multilayer perceptron, each layer’s neurons
drive the next layer through weights wij and a nonlinearity f(). Input neurons
are driven by input (for instance, pixels from successive MNIST images
(cropped to 22×24)); the 10 output neurons classify which digit was presented
[1].
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Fig. 4. Training accuracy for a 3–layer perceptron of 164,885 hardware-
synapses [1], with all weight operations taking place on a 500 × 661 array of
mushroom-cell PCM devices. Also shown is a matched computer simulation
of this NN, using parameters extracted from the experiment [1].

conductance response.

B. Comparative analysis of speed and power

We have also assessed the potential advantages, in terms
of speed and power, of on-chip machine learning (ML)
of large-scale artificial neural networks (ANN) using Non-
Volatile Memory (NVM)-based synapses, in comparison to
conventional GPU–based hardware [4].

Under moderately-aggressive assumptions for parallel–read
and –write speed, PCM-based on-chip machine learning can
potentially offer lower power and faster training (per ANN
example) than GPU-based training for both large and small
networks (Fig. 6), even with the time and energy required for
occasional RESET (forced by the large asymmetry between
gentle partial-SET and abrupt RESET in PCM). Critical here
is the design of area-efficient read/write circuitry, so that many
copies of this circuitry operate in parallel (each handling a
small number of columns (rows), cs).

II. JUMP-TABLE CONCEPT

A useful concept in modeling the behavior of real NVM
devices for neuromorphic applications is the concept of a
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Fig. 5. When the dynamic range of the linear response is large, the
classification accuracy can now reach that of the original network (a test
accuracy of 94% when trained with 5,000 images; of 97% when trained with
all 60,000 images) [2].
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“jump-table.” For backpropagation training, where one or more
copies of the same programming pulse are applied to the NVM
for adjusting the weights [1], we simply need one jump-table
for potentiation (SET) and one for depression (RESET).

With a pair of such jump-tables, we can capture the nonlin-
earity of conductance response as a function of conductance
(e.g., the same pulse might create a large “jump” at low
conductance, but a much smaller jump at high conductance),
the asymmetry between positive (SET) and negative (RESET)
conductance changes, and the inherent stochastic nature of
each jump. Fig. 7(a) plots median conductance change for
potentiation (blue) together with the ±1σ stochastic variation
about this median change (red). Fig. 7(b) shows the jump-
table that fully captures this conductance response, plotting
the cumulative probability (in color, from 0 to 100%) of any
conductance change ∆G at any given initial conductance G.
This table is ideal for computer simulation because a random
number r (uniform deviate, between 0.0 and 1.0) can be
converted to a resulting ∆G produced by a single pulse by
scanning along the row associated with the conductance G
(of the device before the pulse is applied) to find the point at
which the table entry just exceeds r.

III. IMPACT OF NONLINEAR CONDUCTANCE RESPONSE

We have previously used a measured jump-table to sim-
ulate the SET response of PCM devices [1], and are cur-
rently exploring the use of similarly measured jump-tables
for PCMO. In order to develop an intuitive understanding
of the impact that various features of such jump-tables have
on the classification performance in the ANN application, we
study various artificially-constructed jump-tables. Except for
the specific jump-tables, these simulations are identical to
those performed in Ref [1], spanning 20 epochs.

The first question we address is the impact of asymmetry
in conductance response. Here we assume both conductance
responses are linear (Fig. 8(a)), but RESET conductance
response is much steeper than SET, so that the stepsize of
the depression (RESET) jump-table is increased (Fig. 8(b)).
As shown by the solid curves with filled symbols in Fig. 8(c),
even a small degree of asymmetry can cause classification
accuracy to fall steeply. However, each downstream neuron has
knowledge of the sign of the backpropagated correction, δ, and
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Fig. 7. (a) Example median (blue) and ±1σ (red) conductance response
for potentiation. (b) associated jump-table that fully captures this (artificially
constructed in this case) conductance response, with cumulative probability
plotted in color (from 0 to 100%) of any conductance change ∆G at any
given initial conductance G.
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Fig. 8. (a) For a set of constructed linear conductance responses where the
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Fig. 9. Impact of relative extent of linear region on neural network
performance. (RESET conductance response remains linear at all times). a)
Conductance vs. number of pulses, b) hypothetical jump tables studied, and
c) impact on training and test accuracy. A substantial non-linear conductance
region (up to ∼50%) can be accommodated without loss in application
performance.

thus knows whether it is attempting a SET or RESET. This
implies that asymmetry can be partly offset by “correcting”
a steeper RESET response by firing commensurately fewer
RESET pulses (or more SET pulses). As shown by the dotted
curves with open symbols in Fig. 8(c), this markedly expands
the asymmetry that could potentially be accommodated.

Fig. 9 examines jump-tables that incorporate some degree
of initial non-linearity in the SET conductance response
(Fig. 9(a)). The relative extent of the linear region is varied
from 100% (fully linear) down to near 0% (fully nonlinear).
For this and all subsequent studies, we assume that RESET
operations remain perfectly linear and symmetric to SET
(Fig. 9(b)). We find that a substantial non-linear conductance
region (up to ∼50%) can be accommodated without a signif-
icant drop-off in the neural network performance (Fig. 9(c)).

Fig. 10 examines the impact of the strength of this initial
non-linearity on the neural network performance. In these
experiments, a stronger (weaker) non-linearity implies fewer
(more) steps to traverse the extent of the non-linear region
(representing 25% of the total conductance range, Fig. 10(a)).
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The strength is defined as the ratio between the size of the
final (minimum) conductance jump and the initial (maximum)
conductance jump (Fig. 10(b)). Again, we find that the strength
of the non-linearity has little impact on the test accuracy
(Fig. 10(c)), so long as the linear region is sufficiently large.

We also investigate fully non-linear conductance responses
of varying strengths (Figs. 11(a) and (b)). We find that it is still
possible to achieve high classification accuracies (Fig. 11(c)),
so long as the ratio of the minimum to maximum conductance
jumps is >0.5. However, larger non-linearities cause a marked
drop-off in network performance, as a large portion of the
dynamic range can be used up by just a few training pulses.

IV. CONCLUSION

We have assessed the impact of the conductance response of
Non-Volatile Memory (NVM) devices employed as the synap-
tic weight element for on-chip acceleration of the training
of large-scale artificial neural networks (ANN). We briefly
reviewed our previous work towards achieving competitive
performance (classification accuracies) for such ANN with
both Phase-Change Memory [1], [2] and non-filamentary

ReRAM based on PrCaMnO (PCMO) [3], and towards assess-
ing the potential advantages for ML training over GPU–based
hardware in terms of speed (up to 25× faster) and power (from
120–2850× lower power) [4]. We discussed the “jump-table”
concept, previously introduced to model real-world NVM
such as PCM [1] or PCMO, to describe the full cumulative
distribution function (CDF) of resulting conductance-change at
each possible conductance value, for both potentiation (SET)
and depression (RESET).

Using various artificially–constructed jump-tables, we as-
sessed the relative importance of deviations from an ideal
NVM with a linear conductance response. While even a small
SET/RESET asymmetry between otherwise linear conduc-
tance responses can cause performance to fall off steeply,
downstream neurons can partially compensate for this asym-
metry by firing fewer RESET pulses (or more SET pulses),
allowing reasonable performance even in the presence of a sig-
nificant asymmetry. We also found that a substantial non-linear
conductance region (up to ∼50%) can be accommodated, and
that the strength of this initial non-linearity (ratio of minimum
to maximum conductance change) can be significant, so long
as a sufficiently large linear region is available. Even with fully
nonlinear responses, it is possible to achieve high performance
so long as the ratio of minimum to maximum conductance
change is sufficiently close to unity (>0.5).

While the ‘LG’ algorithm, together with other approaches,
should help a nonlinear, asymmetric NVM (such as PCM) act
more like an ideal linear, bidirectional NVM, the identifica-
tion of NVM devices and/or pulse-schemes that can offer a
conductance response that is at least partly linear will help
significantly in achieving high classification accuracies.
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