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Abstract
Using 2 phase-change memory (PCM) devices per synapse, a

3–layer perceptron network with 164,885 synapses is trained on
a subset (5000 examples) of the MNIST database of handwritten
digits using a backpropagation variant suitable for NVM+selector
crossbar arrays, obtaining a training (generalization) accuracy of
82.2% (82.9%). Using a neural network (NN) simulator matched to
the experimental demonstrator, extensive tolerancing is performed
with respect to NVM variability, yield, and the stochasticity, linear-
ity and asymmetry of NVM-conductance response.

Introduction
Dense arrays of nonvolatile memory (NVM) and selector device-

pairs (Fig.1) can implement neuro-inspired non-Von Neumann com-
puting [1,2], using pairs [2] of NVM devices as programmable
(plastic) bipolar synapses. Work to date has emphasized the Spike-
Timing-Dependent-Plasticity (STDP) algorithm [1,2], motivated
by synaptic measurements in real brains, yet experimental NVM
demonstrations have been limited in size (≤100 synapses).

Unlike STDP, backpropagation [3] is a widely-used, well-studied
NN, offering benchmark-able performance on datasets such as hand-
written digits (MNIST) [4]. In forward evaluation of a multilayer
perceptron, each layer’s inputs (xi) drive the next layer’s neurons
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Fig. 1 Neuro-inspired non-Von Neumann computing [1,2], in which neurons
activate each other through dense networks of programmable synaptic weights,
can be implemented using dense crossbar arrays of nonvolatile memory (NVM)
and selector device-pairs.
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Fig. 2 In forward evaluation of a multilayer perceptron, each layer’s neurons
drive the next layer through weights wij and a nonlinearity f(). Input neurons
are driven by pixels from successive MNIST images (cropped to 22×24); the 10
output neurons identify which digit was presented.

through weights wij and a nonlinearity f() (Fig. 2). Supervised
learning occurs (Fig. 3) by back-propagating error terms δj to ad-
just each weight wij . A 3–layer network is capable of accuracies,
on previously unseen ‘test’ images (generalization), of ∼97% [4]
(Fig.4); even higher accuracy is possible by first “pre-training” the
weights in each layer [5]. Like STDP, low-power neurons should be
achievable by emphasizing brief spikes[7] and local-only clocking.

Considerations for a crossbar implementation
By encoding synaptic weight in conductance difference between

paired NVMs, wij = G+−G− [2], forward propagation simply
compares total read signal on bitlines (Fig.5). However, backprop-
agation [3] calls for weight updates ∆w ∝ xiδj (Fig. 6), requiring
upstream i and downstream j neurons to exchange information for
each synapse. In a crossbar, learning becomes much more effi-
cient when neurons modify weights in parallel, by firing pulses
whose overlap at the various NVM devices implements training [1]
(Fig.7). Fig.8 shows, using a simulation of the NN in Figs.2,3, that
this adaptation for NVM implementation has no effect on accuracy.

However, the conductance response of any real NVM device
exhibits imperfections that could still decidedly affect NN per-
formance, including nonlinearity, stochasticity, varying maxima,
asymmetry between increasing/decreasing responses, and non-re-
sponsive devices at low or high conductance (Fig. 9). This paper
explores the relative importance of each of these factors.
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Fig. 4 A 3–layer perceptron network can clas-
sify previously unseen (’test’) MNIST hand-
written digits with up to ∼97% accuracy[4].
Training on a subset of the images sacrifices
some generalization accuracy but speeds up
training.

Fig. 5 By comparing total read
signal between pairs of bitlines,
summation of synaptic weights
(encoded as conductance differ-
ences, wij = G+ −G−) is
highly parallel.
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Fig. 8 Computer NN simulations show that a crossbar-compatible weight-update
rule (Fig.7) is just as effective as the conventional update rule (Fig.6).

While boundingG values reduces NN training accuracy slightly
(Fig.10), unidirectionality and nonlinearity in theG-response strong-
ly degrade accuracy. Figure insets (Fig.10) map NVM-pair synapse
states on a diamond-shaped plot ofG+ vs. G− (weight is vertical po-
sition). In this context (Fig.11), a synapse with a highly asymmetric
G-response moves only unidirectionally, from left-to-right. Once
one G is saturated, subsequent training can only increase the other
G value, reducing weight magnitude, deleting trained information,
and degrading accuracy. Nonlinearity in G-response further en-
courages weights of low value (Fig.11), which can lead to network
“freeze-out” (no weight changes, Fig. 10 inset). One solution to
the highly asymmetric response of PCM devices is occasional RE-
SET [2], moving synapses back to the left edge of the “G-diamond”
while preserving weight value (with iterative SETs, Fig. 12 inset).
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Fig. 9 The conductance response of an NVM device exhibits imperfections,
including nonlinearity, stochasticity, varying maxima, asymmetry between in-
creasing/decreasing responses, and non-responsive devices (at low or high G).
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Fig. 10 Bounding G values reduces NN training accuracy slightly, but unidi-
rectionality and nonlinearity in G-response strongly degrade accuracy. Figure
insets map NVM-pair synapse states on a diamond-shaped plot of G+ vs. G−

(weight is vertical position) for a sampled subset of the weights.
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Fig. 11 IfG values can only be increased (asymmetricG-response), a synapse
at point A (G+ saturated) can only increase G−, leading to a low weight value
(B). If response at small G values differs from that at large G (nonlinear G-
response), alternating weight updates can no longer cancel. As synapses tend
to get herded into the same portion of the G-diamond (C→ D), the decrease in
average weight can lead to network freeze-out.

However, if this is not done frequently enough, weight stagnation
will degrade NN accuracy (Fig.12).

Experimental results
We implemented a 3–layer perceptron of 164,885 synapses

(Figs.2,3) on a 500 × 661 array of mushroom-cell [6], 1T1R PCM
devices (180nm node, Fig.13). While the update algorithm (Fig.7)
is fully compatible with a crossbar implementation, our hardware
allows only sequential access to each PCM device (Fig. 14). For
read, a sense amplifier measures G values and thus weights for the
software-based neurons, mimicking column- and row-based inte-
grations. Weights are increased (decreased) by identical “partial–
SET” pulses (Fig.7) to increase G+ (G−) (Fig.15). The deviation
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Fig. 14 A 1-bit sense amplifier measures G
values, passing the data to software-based neu-
rons. Conductances are increased by identical
25ns “partial–SET” pulses to increaseG+ (G−)
(Fig. 7), or by RESETs to both G followed by
an iterative SET procedure (Fig.12).
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from true crossbar implementation occurs upon occasional RESET
(Fig.12), triggered when either G+ or G− are large, thus requiring
both knowledge of and control over individual G values.

Fig.16 shows measured accuracies for a hardware-synapse NN,
with all weight operations taking place on PCM devices. To
reduce test time, weight updates for each mini-batch of 5 MNIST
examples were applied together. Fig.17 plots measuredG-response,
stochasticity, variability, stuck-ON pixel rate, and RESET accuracy.
By matching all parameters including stochasticity (Fig.18) to those
measured during the experiment, a NN computer simulation can
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precisely reproduce the measured accuracy trends (Fig.16).

Tolerancing and power considerations
We use this matched NN simulation to explore the importance
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of NVM imperfections. Fig. 19 shows final training (test) accu-
racy as a function of variations in NVM and NN parameters. NN
performance is highly robust to stochasticity, variable maxima, the
presence of non-responsive devices, and infrequent RESETs. A
mini-batch of size 1 allows weight updates to be applied immedi-
ately. However, as mentioned earlier, nonlinearity and asymmetry in
G-response limit the maximum possible accuracy (here, to ∼85%),
and require precise tuning of the learning rate and neuron-response
(f ′). Too low a learning rate and no weights receive any updates; too
high, and the imperfections in the NVM response generate chaos.

NN performance with NVM-based synapses offers high accu-
racy if G-response is linear and symmetric (Fig. 20, green curve)
rather than nonlinear (red curve). Asymmetry in G-response (blue
curve) strongly degrades performance. While the asymmetric G-
response of PCM makes it necessary to occasionally stop training,
measure all conductances, and apply RESETs and iterative SETs,
energy usage can be reasonable if RESETs are infrequent (Fig.21,
inset), and learning rate is low (Fig.21).

Conclusions
Using 2 phase-change memory (PCM) devices per synapse, a

3–layer perceptron with 164,885 synapses was trained with back-
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RRAM requiring no RESET and offering low-power (1pJ per pulse) can lead to
large training energy.

Table of conclusions
Large 3-layer network with 2 PCM Moderately high accuracy (82%) 
devices/synapse. (Figs. 1-3, 5) Back-
propagation weight update rule 
compatible with crossbar array. 
(Figs. 6-8)

achieved on MNIST handwritten digit 
recognition with two training epochs. 
(Fig. 16)

NVM models identified issues for 
training: Conductance bounds, 
nonlinearity, and asymmetry must 
be considered. (Figs. 9-10, 20)

PCM response and asymmetry 
mitigated by RESET strategy, mapping
of response, choice of update pulse. 
(Figs. 11, 12, 17)be considered. (Figs. 9 10, 20) (Figs. 11, 12, 17)

Model of PCM allows well-matched 
simulation of experiment (Figs. 16-
18), variation of network parameters 
allows tolerancing (Fig 19)

NN is resilient to NVM variations (Figs. 
19a-e) and RESET strategy (Figs. 19f-
g), but sensitive to learning rate and 
neuron response function (Figs 19i j)allows tolerancing. (Fig. 19) neuron response function. (Figs. 19i-j)

Bidirectional NVM with no special 
RESET strategy and good 
performance requires scheme for 

For PCM, keeping RESET frequency
down and learning rate above “freeze-
out” threshold allows reasonable 

symmetric response. (Fig. 20) training energy. (Fig. 21)

Fig. 22 NN built with NVM-based synapses tend to be highly sensitive to
“gradient” effects (nonlinearity and asymmetry in G-response) that “steer” all
synaptic weights towards either high or low values, yet are highly resilient to
random effects (NVM variability, yield, and stochasticity).

propagation on a subset (5000 examples) of the MNIST database of
handwritten digits to high accuracy of (82.2%, 82.9% on test set).
A weight-update rule compatible for NVM+selector crossbar arrays
was developed; the “G-diamond” concept illustrates issues created
by nonlinearity and asymmetry in NVM conductance response. Us-
ing a neural network (NN) simulator matched to the experimental
demonstrator, extensive tolerancing was performed (Fig.22). NVM-
based NN are highly resilient to random effects (NVM variability,
yield, and stochasticity), but highly sensitive to “gradient” effects
that act to steer all synaptic weights. A learning-rate just high
enough to avoid network “freeze-out” is shown to be advantageous
for both high accuracy and low training energy.
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that a crossbar-compatible weight-update
rule (Fig.7) is just as effective as the con-
ventional update rule (Fig.6).
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responsive devices, and
infrequent or inaccurate
RESETs. Mini-batch
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Fig. 21 Despite the higher
power involved in RESET
rather than partial-SET (30pJ
and 3pJ for highly-scaled
PCM [1]), total energy costs
of training can be minimized
if RESETs are sufficiently in-
frequent (inset). Low-energy
training requires low learn-
ing rates, which minimizes
the number of synaptic pro-
gramming pulses. At higher
learning rates, even a bi-
directional, linear RRAM re-
quiring no RESET and offer-
ing low-power (1pJ per pulse)
can lead to large training en-
ergy.

Table of conclusions
Large 3-layer network with 2 PCM Moderately high accuracy (82%) 
devices/synapse. (Figs. 1-3, 5) Back-
propagation weight update rule 
compatible with crossbar array. 
(Figs. 6-8)

achieved on MNIST handwritten digit 
recognition with two training epochs. 
(Fig. 16)

NVM models identified issues for 
training: Conductance bounds, 
nonlinearity, and asymmetry must 
be considered. (Figs. 9-10, 20)

PCM response and asymmetry 
mitigated by RESET strategy, mapping
of response, choice of update pulse. 
(Figs. 11, 12, 17)be considered. (Figs. 9 10, 20) (Figs. 11, 12, 17)

Model of PCM allows well-matched 
simulation of experiment (Figs. 16-
18), variation of network parameters 
allows tolerancing (Fig 19)

NN is resilient to NVM variations (Figs. 
19a-e) and RESET strategy (Figs. 19f-
g), but sensitive to learning rate and 
neuron response function (Figs 19i j)allows tolerancing. (Fig. 19) neuron response function. (Figs. 19i-j)

Bidirectional NVM with no special 
RESET strategy and good 
performance requires scheme for 

For PCM, keeping RESET frequency
down and learning rate above “freeze-
out” threshold allows reasonable 

symmetric response. (Fig. 20) training energy. (Fig. 21)

Fig. 22 NN built with NVM-based synapses
tend to be highly sensitive to “gradient”
effects (nonlinearity and asymmetry in G-
response) that “steer” all synaptic weights
towards either high or low values, yet are
highly resilient to random effects (NVM
variability, yield, and stochasticity).
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