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Note: This paper describes the copy-on-write, copy-1 Introduction
on-read, and adaptive prefetching capabilities of FVD.
The compact image capability of FVD is described Cloud Computing is widely considered as the next big
separately in a companion paper entitled “Compact thing in IT evolution. In a Cloud like Amazon EC2 [1],
Image Support in Fast Virtual Disk (FVD)"which  the storage space for virtual machines’ virtual disks can
is available athttps://researcher.ibm conl be allocated from multiple sources: the host's direct-

researcher/vi ewproj ect. php?i d=1852 attached storage (DAS, i.e., local disk), network-attdche
storage (NAS), or storage area network (SAN). These op-
Abstract tions offer different performance, reliability, and avail

. - ability at different prices. DAS is at least several times
This paper analyzes the gap between existing ypefgaaner than NAS and SAN, but DAS limits the avail-
visors’ virtual disk capabilities and the requirements i”ability and mobility of VMs.

a Cloud, and proposes a solution called FVD (Fast Vir- ) )
Prop ( To get the best out of the different technologies, a

tual Disk). FVD consists of an image format and a loud v off binafi  block-devi
block device driver designed for QEMU. Despite the ex- /0ud usually offers a combination of block-device stor-
age services to VMs. For instance, Amazon Web Ser-

istence of many popular virtual machine (VM) image ©:
formats, FVD came out of our unsatisfied needs in theV_ICeS (AWS) [2] offers to a VM both ephemeral storage

IBM Cloud. FVD distinguishes itself in both perfor- (-€. DAS) and persistent storage (i.e., NAS). Amazon

mance and features. It supports instant VM creation and C2 Provides each VM with 170GB or more ephemeral
instant VM migration, even if the VM image is stored on storage space at no additional charge. Persistent stor-

direct-attached storage. These are important use casf8g® IS MOre expensive, which is charged not on_ly for
in an elastic Cloud, but are not well supported by ex.the storage space consumed but also for every disk 1/O

isting image formats. FVD supports these use cases b erfo(rjmed. qu example, if a VM's r:oot fil,e ZYSIIG;“ is
adopting a combination of copy-on-write, copy-on-read,>tored on persistent storage, even the VM's disk 1/O on

and adaptive prefetching. The latter two features are noffs temporary directorytmp incurs additional costs. As

available from existing image formats and their drivers. a result, ,'t IS a pODUIar choice to use epheme_ral sto_rage
In the design of FVD, performance is even more im_for a_VI\/_I s root file system, especially for data-intensive
portant than features. With copy-on-read and adaptivéﬁlolm'Ca“onS such as Hadoop.
prefetching disabled, FVD can function as a pure copy- DAS is simple, cheap, and scalable. The aggregate
on-write image format. In this case, the throughput ofstorage space and I/O bandwidth of DAS scales linearly
FVD is 249% higher than that of QEMU QCOW?2 when as hosts are added. However, using DAS slows down
using the PostMark benchmark to create files. This suthe process of VM creation and VM migration, and di-
perior performance is due to aggressive Optimizations enminiSheS the benefits of an elastic Cloud. The discussion
abled by debunking a common practice in popular copyfelow uses KVM [13] and QEMU [3] as examples, be-
on-write image formats (including QCOW2, VirtualBox cause we work on the KVM-based IBM Cloud [23].

VDI, VMware VMDK, and Microsoft VHD), which un- In a Cloud, VMs are created based on read-only im-
necessarily mixes the function of storage space allocaage templates, which are stored on NAS and accessible
tion with the function of dirty-block tracking. to all hosts. A VM'’s virtual disk can use different im-

The implementation of FVD in QEMU is mature. Its age formats. The RAW format is simply a byte-by-byte
performance is excellent and its features (copy-on-writecopy of a physical block device’s full content stored in a
copy-on-read, and adaptive prefetching) are valuable imegular file. If a VM uses the RAW format, the VM cre-
both Cloud and non-Cloud environments. We activelyation process may take a long time and cause resource
seek for adoption of FVD into the QEMU mainline (see contentions, because the host needs to copy a complete
http://sites.google.com/site/tangchg/gemu-fvd). image template (i.e., gigabytes of data) across a heavily



shared network in order to create a new RAW image orDisk) image format and the corresponding driver. In ad-

DAS. This problem is illustrated in Figure 1.

QCOW?2 [16] is another image format supported by

dition to copy-on-write (CoW), FVD also does copy-on-
read (CoR) and adaptive prefetching. CoR avoids repeat-

QEMU. It does copy-on-write, i.e., the QCOW?2 image €dly reading a data block from NAS, by saving a copy
only stores data modified by a VM, while unmodified of the returned data on DAS for later reuse. Adaptive
data are always read from the backing image. QCow:®refetching uses idle time to copy from NAS to DAS the
supports fast VM creation. The host can instantly cre-"est of the image that have not been accessed by the VM.
ate and boot an empty QCOW?2 image on DAS, whosel hese features are illustrated in Figure 1.

backing image points to an image template stored on
NAS. Using QCOW?2, however, limits the scalability of
a Cloud, because a large number of VMs may repeated|
read unmodified data from the backing image, generat-
ing excessive network traffic and I/O load on the share

NAS server.
Our solution to this problem is the FVD (Fast Virtual
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Figure 1: Comparison of VM creation processes. T|
example creates three VMs concurrently. Using
RAW image format, it has to wait for a long time until g
entire image template is copied from NAS to DAS, 4
then boots the VM. The key observation is that, much

ing process and may even never be accessed throug
the VM’s lifetime. FVD instead boots the VM instantl
without any image data on DAS, and copies data fr
NAS to DAS on demand as they are accessed by
VM. In addition, FVD’s prefetching mechanism finds r
source idle time to copy from NAS to DAS the rest of t
image that have not been accessed by the VM. Prefg
ing is conservative in that if FVD detects a contention
any resource (including DAS, NAS, or network), F\
pauses prefetching temporarily and resumes prefetc
later when congestion disappears.

the copied image data is not needed during the VM bo

A main challenge in FVD is to provide the rich fea-
tures without degrading runtime disk 1/0 performance.
Yhisis areal challenge even for the widely used and sup-
osedly well-understood feature of Cow. We analyzed
he popular CoW image formats, including QCOW2,
VirtualBox VDI [25], VMWare VMDK [26], and Mi-
crosoft VHD [17]. A key finding is that they all unneces-
sarily mix the function of storage space allocation with
the function of dirty-block tracking. As a result, they
not only generate more disk I/Os for metadata access but
also increase the average disk seek distance due to an un-
desirable data layout on the physical disk. By contrast,
FVD only performs dirty-block tracking and delegates
the responsibility of storage space allocation entirely to
the underlying layer, which can be a host file system, a
host logical volume manager, or simply a raw partition.
This simplicity allows FVD to aggressively optimize not
only CoW, but also CoR and adaptive prefetching. These
optimizations are critical. The throughput of FVD as a
pure CoW format is 249% higher than that of QCOW?2
when using the PostMark [12] benchmark to create files.

In addition to instant VM creation, FVD also sup-
ports instant VM migration, even if the VM’s image is
stored on DAS. Live migration is an important mech-
anism for workload management. A public Cloud of-
ten leverages the hypervisor's memory over-commit ca-
pability to pack a large number of VMs on a host. As
the workload changes, the memory working sets of those

Ms may increase beyond the host’s physical mem-
the . )
lr]ory capacn_y and cause thrashlng. Ideally, some VMs
N hould be immediately migrated to other hosts to mit-

|$ate thrashing. Unfortunately, among all existing hy-

ervisors, KVM/QEMU is the only one that can migrate
hlrﬁa%ges stored on DAS, and even QEMU only supports
) prlé-copy storage migration, i.e., the VM’s disk data must
grl%e copied from the source host to the target host in its en-
A irety before the VM can start to run on the target host.
N ‘?e—copy may take a long time due to the large size of the
héjisk image, and VMs may experience long periods of se-
" (\:/e_re thrashing. By contrast, FVD can instantly migrate
Oa VM without first transferring its disk image. As the
D{}M runs uninterruptedly on the target host, FVD uses
hi%oR and adaptive prefetching to gradually copy the im-
age from the source host to the target host, without user-

perceived downtime.

S
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Guest VM all hosts. Below is one example of the process to pre-
pare a Linux image template. The image template uses

bl ol | the RAW image format. Suppose the initial image tem-
1| Raw | [ Qcow2 | [ Fvp |
| |

QEMU 1/0 plate size is 50GB. It is first installed with the needed
| _Block Device Drivers | software and fully tested. Then the ext3 file system in
the image template is resized to its minimum size (e.qg.,

Host Linux Kernel from 50GB down to 12GB) by using thesize2fgool.

The image template is truncated to fit the minimum file

system size (i.e., from 50GB to 12GB). The resizing and
truncating step gets rid of garbage data generated during
1.1 Contributions installgtipn and.testing, anq produces an image template

of a minimum size. A small image template helps reduce

We make the following contributions in this paper.  the amount of data transferred from NAS to DAS when

e We analyze the gap between existing hypervisorscréate new VMs based on the imag_e tempIaFe.
virtual disk capabilities and the requirements in a Following the example above, this 12GB image tem-

Cloud, and propose the FVD solution that combinesPlate can be used to create VMs whose root file systems
CoW, CoR, and adaptive prefetching. are of different sizes, depending on how much a user

pays for a VM! For example, the following command
e We achieve a high-performance implementation ofcreates a 30GB QCOW?2 image on DAS, based on the
these features through aggressive optimizations ent2GB image template stored on NAGemu-img create
abled by debunking a common practice adopted inf gcow? -b /nfs/template.raw vm.qcow2 30GB
popular Cow image formats. After using gemu-nbdto mount the 30GB QCOW2

« We bring to the open-source community for the firstMage and usingdiskto expand the disk partition from
time an extremely high-performance CoW imple- 12GB to 30GBesize2fcan be used to expand the im-

mentation and the new features of CoR and adaptiv@9€'s €3 file system from 12GB to 30GB, which will
; be the VM’s root file system. Note that usingsize2fs
prefetching. ) ! ; ,
to expand (as opposed to shrink) a file system is a quick
The rest of the paper is organized as follows. Sec-operation because it need not relocate blocks.
tion 2 provides background. Sections 3 and 4 present and
evaluate FVD, respectively. Related work is discussed ir2.3  Limitations of Existing Copy-on-Write
Section 5. Section 6 concludes the paper. Image Formats

Figure 2: Architecture of KVM and QEMU.

2 Background Belcauze ofls_tc|>rage virttl)Ja:cIizati.on, a rkzlockhaddrr]es.s isI
translated multiple times before it reaches the physica
2.1 KVMand QEMU disk. When the guest VM issues a disk 1/0 request
KVM [13] is a Linux kernel virtualization infrastruc- to the hypervisor using wirtual block address(VBA),
ture. It uses QEMU [3] to perform I/O emulation in the QEMU'’s block device driver translates the VBA into an
user space. QEMU is also used in other hypervisors, inimage block addres$BA), which specifies where the re-
cluding Xen-HVM and VirtualBox. Figure 2 shows the quested data are stored in the image file, i.e., IBA is an
architecture of KVM and QEMU. When the guest VM offset in the image file. How the translation is performed
issues an I/O instruction, it is trapped by the host LinuXis specific to an image format. If the image is stored as a
kernel, which redirects the request to QEMU running inregular file in a host file system, the host file system fur-
the user space. QEMU gets services from the host Linuxnher translates the IBA tophysical block addreé®BA)
kernel through system calls, just like a normal user-and the 1/O request is issued to the physical disk using
space process. For example, when handling the gueghe PBA. If the VM image is stored directly on a raw
VM's disk read request for a block, QEMU’s QCOW2 partition, IBA and PBA are identical.
driver may invoke system calls to read the block from a QCOW?2 uses the lookup index in Figure 3 to translate
QCOW?2 image file stored on a host ext3 file system. For, \/ga jnto an IBA. A VBA dis split into three parts, i.e.,
readers familiar with Xen, conceptually QEMU's block ; _ (d1,ds, ds). Thed, entry of the L1 table points to
device driver handles a gust VM's I/O requests in a way,p, | 2 tapleX . Theds entry of the L2 tableX points to
similar to how theapdiskprocess works in Xen's Dom0. 5 gata block. The requested data are located at offset

2.2 Virtual Machine Image Creation Process s In the data block’.

In a Cloud, a VM isf created based on a read'only im- 1This capability is not available in Amazon EC2 but is avaiainl
age template, which is stored on NAS and accessible tee IBM Cloud.




L1 Table L2 Tables ~ Data Blocks partition may improve performance by 63%, compared
g > with storing the RAW image on a host ext3 file system.
By contrast, storing a QCOW2 image on a raw partition

— may only improve performance by 15%, partially due to
» the mismatch between VBAs and IBAs.

x This problem is not unique to QCOW?2. It exists in all
other popular CoW image formats, including VirtualBox
v VDI, VMWare VMDK, and Microsoft VHD. Although
these formats use different storage space allocation, units
they all use an index structure to translate between VBAs
Figure 3: The two-level lookup index in QCOW2. and IBAs, and allocate storage space for a data unit at the
end of the image file when the first write to that data unit
After a QCOW2 image is created, it initially only con- occurs. As a result, a data unit's IBA solely depends on
tains the L1 table with all entries empty, indicating that when it is written for the first time, regardless of its VBA.
the L2 tables and the data blocks are not yet allocated. In addition to causing mismatch between VBAs and
The size of the QCOW?2 image file is only the size of IBAs, another problem with the lookup index in Figure 3
the L1 table plus some header fields. When the guess the performance overhead in reading and updating this
VM writes data at the VBAI=(d;, ds, d3), the QCOW2  on-disk metadata. The in-memory cache maintained by
driver checks if thel; entry of the L1 table is empty. If QCOW?2 helps metadata reads but not metadata writes.
so, it allocates an L2 table at the end of the image fileMoreover, random disk I/Os issued by the guest VM may
(which accordingly grows the size of the image file) andcause frequent cache misses. Experiments in Section 4
initializes thed; entry of the L1 table with the IBA of the show FVD can achieve 126% higher disk I/0 throughput
newly allocated L2 table. Similarly, upon the first write than QCOW2 does by eliminating this overhead.
to a data block, the data block is allocated at the end of
the image file, and the corresponding entry in an L2 ta-3  The FVD Image Format
ble is initialized with the IBA of the data block. When  pyp supports instant VM creation and instant VM

the guest VM reads data at the VBR(d,, d3, d3), the  migration, by adopting a combination of copy-on-write
QCOW?2 driver checks whether the data block is allo-(cow), copy-on-read (CoR), and adaptive prefetching.

cated in the QCOW2 image. If so, the data is read fromrhese features are illustrated in Figure 1. Figure 4 shows
the QCOW?2 image; otherwise, the data is read from they simplified view of the FVD image format.

backing image. In other words, data not modified by the
VM are always read from the backing image. 3.1 Key Difference as a CoW Format

In QCOW?2, a block’s IBA solely depends on when it Even without the new features of CoR and prefetch-
is written for the first time, regardless of its VBA. This ing, FVD differs from existing popular Cow image for-
mismatch between VBAs and IBAs may end up with anmats (including QCOW2, VDI, VMDK, and VHD) in
undesirable data layout on the physical disk and degradg simple but fundamental way. All those formats use a
performance. For example, when a guest OS creates @sokup index to track storage space allocation, which as
resizes a file system, it writes out the file system metaa side effect also tracks dirty blocks written by a VM.
data, which are all grouped together and assigned conFhese two functions are unnecessarily mingled together.
secutive IBAs by QCOW2, despite the fact that the metaiwe argue that a CoW image format should only perform
data's VBAs are deliberately scattered for better reliabil dirty-block tracking, while delaying and delegating the
ity and locality, e.g., co-locating inodes and file contentdecision of storage space allocation to the host OS.
blocks in block groups. As a result, it may cause a long This approach offers several advantages. First, the
disk seek distance between accessing a file's metadatst OS has abundant storage options to optimize for a
and accessing the file's content blocks. specific workload, e.g., storing a VM image on a raw

To improve performance, it is a common practice topartition, on a logical volume, or as a regular file in
store a VM image directly on a raw partition, bypass-a host file system, with the choices of ext2/ext3/ext4,
ing the overhead of a host file system. In this case, PBAIFS, XFS, ReiserFS, etc. An image format is merely
equals to IBA. If the VM uses the RAW image format, a middle layer. Prematurely deciding storage space al-
IBA further equals to VBA. As a result, the block ad- location in an image format destroys opportunities for
dress perceived by the guest OS matches with the actuahd-to-end optimizations, and causes problems such as
data layout on the physical disk, which makes many opti-mismatch between VBAs and IBAs. Second, separating
mizations in the guest file system effective. Experimentdirty-block tracking from storage allocation avoids the
in Section 4 show that storing a RAW image on a rawoverhead associated with reading or updating the on-disk




on a read-only backing image. The FVD header stores a
reference to the backing image. The header is followed
by a bitmap, with one bit for each data block in the vir-
tual disk. If a bit is set, the corresponding block’s cur-
‘ rent content is stored in the FVD image. Otherwise, the
header! bitmap ZP ace for | space for expanded block’s current content is stored in the backing image.
! isk data ! disk data
; | FVD maintains a linear mapping between a block’s
FVD metadata File FVD Data File VBA and IBA. When the VM writes to a block with
. . . VBA d, the FVD driver stores the block at offsétof
Figure 4: An abstract view of the FVD image format. the FVD data file, without any address translation. FVD
i , _totally relies on the host OS for storage allocation. If the

lookup index needed for performing storage allocation.gy/p a4 file is stored on a host file system that supports
The Iookup index n Figure 3 is almost identical to th_e sparse files, no storage space is allocated for a data block
one used in a host file system. Doing storage allocation, 1 yjrtyal disk until data are written into that block.
twice (first time in a CoW image and second time in a To start a new VM, the host creates an FVD metadata
host file system) is simply redundant and unnecessary. file on its DAS, who;;e backing image points to an im-

The main function of a CoW image format is to keep " L )
track of dirty blocks written by the VM. This function Sﬁ;\ ;ﬁ,me%a;tey_or:nNﬁzhlrrgtf”{H;hE\fg ?j:tzt?igeislsé:)grgr
can be more easily and more efficiently fulfilled by  than the backing image v’vhich reflects the fact that a
simple bitmap without using a lookup index. The differ- ingle backing image ca'n be used to create VMs whose
ence may seem trivial, but the consequence is prOfoun(flirtual disks are of different sizes (see Section 212).

W'thQUt beln_g burde_:ned with the function of storf_:lge al'_sizerS:an expand the file system in the backing image to
location, a simple bitmap enables many aggressive opti;

mizations that would otherwise be impossible. An image he full size of the virtual disk. During this process, new
. s ‘ or modified file system metadata are stored in the FVD
format in QEMU (which is simply called “COW”) also med e sy !

bit 1o track dirty blocks. but it | ve f data file because of the copy-on-write behavior. The VM
uses a bitmap 1o track dirty blocks, BUt LIS a Nave 1orq 1o pooted with the expanded root file system. At this
mat that by design does not guarantee data integrity "boint, the FVD data file is still almost empty.
thig\;giﬂ: hc;ﬁtecrlizi'u index in Figure 3 loses The FVD driver in QEMU handles disk I/O requests

g P 9 issued by a VM. Below, we first describe a naive imple-

fevy features of QCOW2. In. addition to COPY-ON" o ntation of the FVD driver to illustrate the basic oper-
write, QCOW?2 features sparse image, encryption, snap-

shot, and compression. Without the lookup index,atlons’. and then present optimizations that help signifi-
cantly improve performance.

sparse image can be supported by a host file sys- . : . .
tem’s sparse file capability, since almost every mod- When handling a disk write request issued by a VM,

em file system supports sparse files, including GI:Sthe FVD driver executes the following steps sequentially

NTFS, FFS, LFS, ext2/ext3/ext4, reiserFS, Reiser4t,10 gtuaracr;t?e _ditha igtigrgytinfftlhe e\(/jen (')tf a Plofht C(;a?h:
XFS, JFS, VMFS, and ZFS. (The only notable exception®) Stor€ data in the atafiie and wait until the data

is FAT12/FAT16/FAT32, which is unlikely to be used as are persisted on the physical disk, 2) update the bitmap

a hypervisor’s file system anyway.) Encryption does notand wait until the bitmap is persisted on the physical

depend on the lookup index. Snapshot can be impIegiSk’ a_nd 3) acknpwledge to_ the VM the completiqn qf
mented without the lookup table, by following VMware the write. Step 2 is sk|pped if the _C(_)rrespo_ndmg bits in
VMDK's approach of starting a new Cow image for each the bitmap are set previously. A bit in the bitmap repre-
snapshot, as opposed to QCOW?2's approach of storin epts the state of a full block. .If the 1/0 reque_st is not
all snapshots in one image. Compression is the only fea-“gned on the block boundary, in Step 1, the driver reads

ture that cannot be supported by a simple bitmap. Give T”bbk.mk fro.?: the bgcqug |r;1hagfe,”rrl1)(|arg(|=(,\st 'tt\rllv'tr::i?s
the high overhead of doing runtime de-compression ancﬁja a being written, and writes the fufl block to the

its limited use in production, we decide to forgo com- data file. ) _
pression. When handling a disk read request from the VM, the

FVD driver checks the bitmap to determine if the re-
3.2 The FVD Format and Basic Operations quested data are in the FVD data file. If so, the data are
read from the FVD data file. Otherwise, the data are read

Figure 4 shows a simplified view of the FVD image L )
format. An FVD image consists of a metadata file and al;omvtlcle bactklng |rrt1age and rettrl]Jrne(jt to thde ;/l\t/l V.Vh'tlﬁ
data file? Similar to QCOW2, an FVD image is based € continues 1o process the returned data, in the

background, a copy of the returned data is saved in the
2FVD also supports storing metadata and data in a single file. FVD data file and the bitmap is updated accordingly. Fu-

Backing Image| .
»|original disk data




ture reads for the same data will get them from the FVD3.3.1 In-memory Bitmap
data file on DAS rather than from the backing image on  gocause of its small size, it is trivial to keep the en-
NAS. This copy-on-read behavior helps avoid generating;.o bitmap in main memory.

. X In Figure 4, the size of
excessive network traffic and /O load on NAS.

the bitmap is proportional to the size of the (smaller)
backing image rather than the size of the (larger) FVD
data file. No state bits are needed for blocks residing in
Compared with the RAW image format, a copy-on- the “space for expanded disk data”, because those “no-
write image format always incurs additional overheadsbacking” blocks simply cannot be in the backing im-
in reading and updating its on-disk metadata. In FVD, adge. The FVD driver always reads and writes no-backing
sequence of sequential write requests from the VM mayplocks directly without checking the bitmap.
generate the following write sequence on the physical QCOW2's unit of storage space allocation is 64KB. If
disk: write dy, write bit(d,), write dy, write bit(ds), one bit in FVD’s bitmap represents the state of a 64KB
write ds, write bit(ds), - - -, and so forth. Herel;, do, block, the size of the bitmap is only 20KB for a 1TB
andds are blocks with consecutive VBAs, ahét(d;) is ~ FVD image based on a 10GB backing image. As a ref-
the state bit in the bitmap for bloak. In this example, —erence point, 10GB is the maximum backing image size
the disk head moves back and forth between the Fv®llowed for an Amazon EC2 VM running on DAS (al-
metadata file and the FVD data file, which is obviously though the IBM Cloud allows backing images larger than
inefficient. 10GB). Even if the backing image is unreasonably as
Below, we first summarize and then explain in detail large as 1TB, the size of the bitmap is still only 2MB.
several o_ptimizations_that_elimin(_;lte disk 1/Os for reading3'3'2 Free Writes to No-backing Blocks
or updating the on-disk bitmap in common cases. The

word “free” below means no need to update the on-disk As described in Section 2.2, it is a best practice to re-
bitmap. duce an image template to its minimum size. Note that

1) a minimum-sized image template has no unused free
space, and 2) most data in an image template are read-
only and rarely overwritten by a running VM due to the
template nature of those data, e.g., program executable.
As a result, disk writes issued by a running VM mostly
target blocks residing in the “space for expanded disk
data” in Figure 4. Since those “no-backing” blocks have
no state bits in the bitmap, there is simply no need to
update the bitmap when writing to those blocks.

3.3 Optimizations

e In-memory bitmap: eliminate the need to repeat-
edly read the bitmap from disk by always keeping a
complete copy of the bitmap in memory.

e Free writes to no-backing blocks eliminate the
need to update the on-disk bitmap when the VM
writes to a block residing in the “space for expanded
disk data” in Figure 4. This is a common case if the

backing image is reduced to its minimum size by 3.3.3 Free Writes to Zero-Filled Blocks

resize2fs It is a best practice but not mandatory to reduce an

image template to its minimum size usiresize2fs If
an image template is not reduced to its minimum size, it
) > X can be a sparse file with many “empty” data blocks never
writes to a block whose original content in the back-, vittan pefore. Reading an empty block returns an ar-
ing image is cqmpletely fllleq with Z€eros. Thisis a ray of zeros. Below, we describe a VM creation process
common case if the backing image is not reduced Qpat help eliminate the need to update the on-disk bitmap
its minimum size and has many empty spaces. hen the VM writes to a block whose original content in
o the backing image is completely filled with zeros. These
» Free copy-on-read eliminate the need to update ,erqfilled blocks can be either empty blocks in a sparse
the on-disk bitmap when the FVD driver saves afjje or non-empty blocks whose contents happen to be
block in the FVD data file due to copy-on-read. Zer0s.
For an image templatenage.rawstored in the RAW
e Free prefetching eliminate the need to update format, we use thgemu-imgool to create an FVD meta-
the on-disk bitmap when the FVD driver saves aata fileimage.fvdwith image.rawas its backing im-
prefetched block in the FVD data file. age. LetS;,_f,g=1 andSi, _packing=0 denote the two
states of a bit in the bitmap. When creatimgage.fvd
e Zero overhead once prefetching finishesentirely  gemu-imgsearches for zero-filled blocks and set their
eliminate the need to read or update the bitmapstates in the bitmap t6;,_;,4. The states for non-zero
once all blocks in the backing image are prefetchedp|ocks are set t®in_backing. The creation ofmage.fvd

e Free writes to zero-filled blocks eliminate the
need to update the on-disk bitmap when the VM



is an offline process and is only done once for an imagd-VD data file and updates the block’s accurate-state
template.image.fvdis stored on NAS together witim- from Sip,_packing 10 Sin_sva. HoOwever, the block’s on-
age.raw When creating a new VM on a host, it copies disk bitmap and stale-state are not updated and remain
image.fvdfrom NAS to DAS, and optionally expand the S;, packing, Which reduces disk I/O overhead. The
size of the virtual disk by changing thiisk-sizefield in accurate-state is flushed to update the on-disk bitmap
image.fvd Copyingimage.fvds fast because itis a small lazily, either periodically (e.g., once every hour) or only
FVD metadata file consisting of mostly the bitmap. when the VM is shut down or suspended.

When the VM boots, the FVD driver automatically = When the VM issues a write request for a block, the
creates an empty, sparse FVD data file according to th&VD drivers checks the stale-state (as opposed to the
virtual disk size specified ilmage.fvd Suppose the VM  accurate-state) to determine the appropriate action. |If
issues a read request for a block whose original conterthe block’s stale-state is already,_¢.q, the FVD driver
in the backing image is filled with zeros, and the VM did simply writes the block to the FVD data file. If the
not write to the block before. Because the block’s state idblock’s stale-state i, _pqcking, the FVD driver writes
initialized to .S;,,_rv,q When creatingmage.fvdthe FVD  the block to the FVD data file, updates the block’s on-
driver reads the block from the FVD data file. Becausedisk bitmap state, stale-state, and accurate-state all to
the VM did not write to the block before, the block is an S;,_f.q, and finally acknowledges to the VM the com-
empty block in the FVD data file, and the read returns arpletion of the write operation.
array of zeros. This outcome is correct and is identical to . o
reading from the backing image. This optimization elim- 3-3.5  Zero Overhead once Prefetching Finishes
inates the need to read the block from the backing image A block’s state may be initialized 16,,_fuq i its oOFig-
stored on NAS. When the VM writes to this block, the inal content in the backing image is completely filled
FVD driver stores the data in the FVD data file without with zeros. As the VM runs, a block’s state may also be
updating the on-disk bitmap, because the block’s initialchanged froMS;n_packing 10 Sin_fva due to a write is-
state inimage.fvds alreadyS;,,_fva- sued by the VM, a copy-on-read operation, or a prefetch-

. ing operation. Once prefetching finishes, every block’s
3.3.4 Free Copy-on-Read and Free Prefetching  gia¢0 isS;,,_rva. The FVD metadata file can be discarded

When the FVD driver copies a block from the back- and the FVD data file can be used as a pure RAW image.
ing image into the FVD data file due to either copy-on- Even it is still opened as an FVD image, a field in the
read or prefetching, it does not immediately update the=VD metadata file indicates that prefetching has finished
block’s state in the on-disk bitmap fro,, pecring o and the FVD driver simply passes through all disk I/0
Sin_fvd, Which reduces disk I/O overhead. This does notrequests issued by the VM to the RAW driver without
compromise data integrity in the event of a host crashadding any overhead in reading or updating the bitmap.
because the block’s content in the FVD data file is iden- . . . o
tical to that in the backing image and reading from either3-3:6  Discussion of Alternative Optimizations
place gets the correct data. FVD stores the bitmap and the data blocks separately.

This optimization needs to handle the subtle case thaDne optimization is to partition data blocks into block
a block brought in through copy-on-read or prefetch-groups, like that in file systems. Each block group has its
ing is later overwritten by the VM. For this purpose, own bitmap and data blocks. This optimization reduces
the FVD driver maintains three copies of the bitmap, disk seek time between writing a block and updating its
calledon-disk bitmapin-memoryaccurate-stateand in-  state bit. However, we decide not adopt this optimiza-
memorystale-staterespectively. When a VM boots, the tion because 1) with the other optimizations, it is a rare
on-disk bitmap is loaded into memory to initialize both operation to update the on-disk bitmap, and 2) this opti-
the accurate-state and the stale-state. At runtime, thmization makes the layout of the FVD data file different
FVD driver always keeps the accurate-state up-to-dateffom that of a RAW image. Once prefetching finishes,
but lazily updates the on-disk bitmap in order to reducean FVD data file is identical to a RAW image, which has
disk I/O overhead. The stale-state is an in-memory mirthe best performance and can be easily manipulated by
ror of the on-disk bitmap for efficient access. many existing tools.

When handling the VM's read request for a block When the FVD driver performs a copy-on-read opera-
whose accurate-state i5,,_r.q, the FVD drivers reads tion, one potential optimization is to delay the action of
the block from the FVD data file. When handling saving the data block into the FVD data file. This of-
the VM’s read request for a block whose accurate-statdéers two benefits. First, it may avoid interference with
iS Sin_vacking, the FVD driver reads the block from other disk reads or writes that are on the critical path of
the backing image and returns it to the VM. In the the VM’s execution. Second, after a short delay, the save
background, the FVD driver writes the block into the operation may no longer be needed, if the VM’s oper-



ation on the block follows a read-modify-write pattern, 3.4 Adaptive Prefetching
i.e., the VM reads the block, modifies it, and then writes £/ uses copy-on-read to bring data blocks from

itback. Since the block is modified, it is unnecessary ant\|as to DAS on demand as they are accessed by the VM.
actually incorrect to save the old content to the disk. Optionally, prefetching uses idle time to copy not-yet-
touched blocks from NAS to DAS. Below, we describe

All the optimizations discussed so far focus on im- the details of FVD’s adaptive prefetching algorithm.
proving runtime performance. Other optimizations may

help offline manipulation of an FVD image, e.g., image 3.4.1 What to Prefetch

backup and format conversion. A main challenge isto ef- There are multiple ways of choosing the data to
ficiently identify parts of an FVD image that are sparse.prefetch: locality-based prefetching, profile-directed
Due to the lack of support in Linux system calls, a user-prefetching, and whole-image prefetching. With
level program cannot tell whether a block is empty until |ocality-based prefetching, when the VM reads a data
it reads the block and checks if the block is filled with p|gck 4 that is currently stored on NAS, the driver copies
zeros. Our measurement shows that a singled-threadeghm NAS to DAS not only blocki but also other blocks
program can perform the reading and checking operaghose VBAs are close to the VBA df FVD does not do
tion on a sparse file at the throughput of about 822MB/sthjs type of prefetching, because it is already performed
At this rate, it takes 22 minutes to scan through a 1TBby other components, e.g., guest OS, NFS server, and
completely empty file. disk controller.
FVD supports profile-directed prfetching. It uses of-

To facilitate offline image manipulation, FVD can fline profiling to identify data blocks that are read dur-
be configured to track the sparseness of “no-backing’ing typical uses of a VM image template, e.g., booting
blocks residing in the “space for expanded disk data” inthe VM, starting a Web server, and serving some Web
Figure 4, by adding state bits for those blocks. Whenrequests. The VBAs of those blocks are sorted based
handling the VM’s write request for a no-backing block, on priority and locality (e.g., blocks needed earlier have
the FVD driver writes the block to the FVD data file, a higher priority and blocks with close-by VBAs are
updates the in-memory bitmap, but does not update thgrouped together) and stored in the header of the FVD
on-disk bitmap immediately. The in-memory bitmap is metadata file. At runtime, the FVD driver prefetches
flushed to update the on-disk bitmap lazily, either peri-those blocks from NAS to DAS accordingly.
odically or when the VM is shut down, which reduces  After profile-directed prfetching finishes, the FVD
disk I/O overhead. The FVD metadata file has a fielddriver may optionally perform whole-image prefetching.
that indicates whether the VM went through a clean shutit finds idle time to sequentially copy the entire im-
down last time and hence the on-disk bitmap is up-to-age from NAS to DAS. A data block is skipped during
date. In the rare event of a host crash, an offline toobrefetching if it is already stored on DAS. Once whole-
can scan through the image and fix incorrect states in thignage prefetching finishes, a flag is set in the FVD meta-
bitmap. The does not compromise data integrity or a rundata file, and all subsequent reads or writes to the image
ning VM’s correctness. incur no overhead in checking or updating the bitmap, as

described in Section 3.3.5.

To facilitate offline image manipulation, FVD can also
be configured to more precisely track the state of a block’g""'2 When to Prefetch
residing in the “space for disk data” in Figure 4. Instead Prefetching is a resource intensive operation, as it may
of using one bit, it can use two bits to represent fourtransfer gigabytes of data across a heavily shared net-
states: Sin_packing_zeror Sin_backing, Sin_fvd_clean, @Nd  Work. To avoid causing a contention on any resource
Sin_fod_dirty- Sin_backing_zero Means the block’s cur- (including network, NAS, and DAS), FVD can be con-
rent content is in the backing image, and that content igigured to 1) delay prefetching, 2) limit prefetching rate,
filled with zeros. Si,, _packing Means the block’s current and/or 3) automatically pause prefetching when a re-
content is in the backing image, and that content is nosource contention is detected.
filled with zeros. S;,_fvd_cican Means the block’s con- A policy controls when prefetching starts. For in-
tent is in the FVD data file, and this content is identical stance, for the use case of instant VM creation, prefetch-
to that in the backing imagesS;,_fv4_dirty Means the ing may start after a VM runs for 12 hours so that
block’s current content is in the FVD data file, and this prefetching is not performed for short-lived VMs. For
content differs from that in the backing image. The FVD the use case of VM migration, prefetching may start im-
driver updates the on-disk bitmap lazily. Only a statemediately after the VM runs at the new location.
change taS;,,_tva_dirty N€Ed be written to the disk im- Once prefetching starts, its operation follows a
mediately. producer-consumer pattern. A producer reads data from



the backing image, and puts the data in a constant-sizZEEMU 0.12.30 and Linux 2.6.32-24 with the KVM
in-memory buffer pool. A consumer writes data in the kernel modules. QEMU is configured to use di-
buffer pool to the FVD data file. At any moment in rect 1/0. The benchmarks include PostMark [12],
time, the producer has at most one outstanding read ttperf [11], IBM WebSphere Application Server
the backing image, and the consumer has at most onttp://www.ibm.com/software/websphere), Linux boot-
outstanding write to the FVD data file. If the buffer pool ing, Linux kernel compilation, and a micro benchmark
is full, the producer stalls. If the buffer pool is empty, the similar to iozone [10]. A QCOW2 or FVD image
consumer stalls. V is stored on the local disk of a blad€, whereas
Two throughput limits (KB/s) for the producer are the backing image of” is stored on another bladg
specified in the FVD metadata file, i.e., the lower limit accessible through NFS. A RAW image is always stored
and the upper limit. The producer periodically measuresn the local disk of a blade.
and adapts the throughput of reading the backing image. )
The throughput is capped at the upper limit using a leaky?*-1 ~ Copy-on-Write
bucket algorithm. If the throughput drops below the To evaluate the CoW feature, we compare QCOW2
lower limit, the producer concludes that somebody elseyith a version of FVD that disables copy-on-read and
is using the network or NAS, and a resource contentiorprefetching. QCOW2 is a good baseline for compari-
has occurred. The producer then makes a randomizesbn, because both QCOW2 and FVD are implemented in
decision. With a 50% probability, it temporarily pauses QEMU, and QCOW?2 is the well-maintained “native” im-
prefetching for a randomized period of time. If the age format of QEMU. Out of the 15 image formats sup-
throughput is still below the lower limit after prefetch- ported by QEMU, only QCOW2 and RAW are “primary
ing resumes, with a 50% probability it pauses prefetchfeatures” (see http://wiki.qemu.org/Features). QCOW2
ing again, and so forth. If multiple VMs run on different has also been ported to Xen, since Xen does not have its
hosts and their FVD drivers attempt to do prefetchingown CoW image format,
from the same NAS server at the same time, they will de-
tect the contention and 50% of them will pause prefetch4.1.1 Microbenchmark Results

ing in each round, until either all of them pause prefetch- Figure 5 presents the results of running RandlO
ing or the bottleneck resource is relieved of congestionmicro benchmark we developed. RandIO is similar to
whichever comes first. If an FVD driver contends with a e random 1/0 mode of iozone [10] but with a key dif-
non-FVD component (e.g., another VM accessing persisgerence. iozone does not differentiate the first write and
tent storage stored on NAS), on average, the FVD drivethe second write to a block, while RandlO does. This dif-
pauses prefetching after two rounds of making a randomsarence is important in evaluating a Cow image format,

ized decision (note that 1+0.5+0.25+0.1256+2). because the first write incurs metadata update overhead
Similarly, the consumer is controlled by two through- 534 hence is slower than the second write.

put limits. The consumer’s throughput drops below the |, Figure 5, “H: Hypervisor’ means running Ran-
lower limit if there is a contention on DAS. To filter out 40 girectly in a native Linux without virtualization, and
noises, the FVD driver measures prefetching throughpug andio performs random 1/Os on a 50GB raw disk par-
as a moving average. _ tition not formatted with any file system. “R: RAW”
Unlike PARDA [9] and TCP congestion control, means running RandlO in a VM whose virtual disk uses
FVD's prefetching is more conservative in using re-the RAW image format. The host stores the RAW im-
sources. In the face of a contention, it pauses prefetchingge on a raw partition. Inside the VM, the virtual disk
rather than trying to get a fair share of the bottleneck re4s gjyided into two partitions. The first partition of 1GB
source, because prefetching is not an urgent operation. giores the root ext3 file system, while the second parti-
. tion of 50GB is unformatted. RandlO runs in the VM
4 Experimental Results and performs random 1/Os on the second raw partition.
We implemented FVD in QEMU. Currently, the alter- Using raw partitions both in the host and in the VM, it
native optimizations described in Section 3.3.6 are notvoids the overhead of a file system and precisely mea-
supported. The features of FVD include copy-on-writesures the performance of a QEMU block device driver.
(CoW), copy-on-read (CoR), and adaptive prefetching. In Figure 5, the configuration of “F: FVD” is similar to
We evaluate these features both separately and in a corthat of “R: RAW” except that the image format is FVD.
bination. The backing image of the FVD image uses the RAW
The experiments are conducted on IBM HS21format, contains a basic installation of Ubuntu server
blades connected by 1Gb Ethernet. Each blade ha8.04, and is reduced to its minimum size (501MB)rby
two 2.33GHz Intel Xeon 5148 CPUs and a 2.5-inchsize2fs The backing image’s root file system is expanded
hard drive (model MAY2073RC). The blades run to occupy the first 1GB partition of the FVD image. The



EH: Hypervisor ER: RAW #F:FVD MQ: QCOWZ‘ actions, where each transaction consists of some file op-

’g 81 o H R H R F erations (creation, deletion, read, and append). In this
= 74 ;ﬁ [ F = experiment, the total size of files created in the first phase
3 6 % | % is about 50GB, and the size of an individual file ranges
= / . individual file range:
3 51 / § % from 10KB to 50KB. The setup of this experiment is sim

S 4 % % ilar to that in Figure 5, but the second 50GB patrtition in
g . / / the virtual disk is formatted into an ext3 file system, on
'5 2| % % which PostMark runs.

= 1 / i % In Figure 6, the “Hypervisor” bar means running Post-
g 1 aia/ i : / : . : : Lo

g o i ‘ i ‘ H Mark in a native Linux without virtualization. The

& First Write  Second Write Read ‘RAW”, “FVD", and “QCOW?2" bars mean running

PostMark in a VM whose image uses the different for-
Figure 5: Comparing different image formats by per- mats, respectively. For the “virtio-ext3” group, the VM’s
forming random I/Os on a 50GB raw disk partition. block device uses the paravirtualizeidio interface and
the VM image is stored on a host ext3 file system. For

image creation procedure is trivial. It is automated bythe “IDE-partition” group, the VM'’s block device uses
a shell script with only five commands: 1) “gemu-img the IDE interface and the VM image is stored on a raw
create” to create the FVD image; 2) “gemu-nbd -C” to partition in the host.
mount the image; 3) “fdisk” to change the partition ta-  The paravirtualizedirtio interface shows significant
ble; 4) “resize2fs” to expand the root file system; and 5)performance advantages over the IDE interface. In Fig-
“gemu-nbd -d” to unmount the image. The execution of yre 6(a), the throughput of virtio is 35% higher than that
the script takes only 0.4 seconds. The configuration obf |DE (by comparing the “RAW” bar in the “virtio-
“Q: QCOWZ“ is similar to that of “F: FVD” except that partition" group with the “RAW” bar in the “IDE-
it uses the QCOW format. partition” group). However, even with virtio, storage

Figure 5 shows that FVD significantly outperforms virtualization still incurs significant overhead. The “Hy-
QCOW?2. For the different I/O operations (first write, pervisor” bar is 22% higher than the “RAW” bar in the
second write, and read), the throughput of FVD is 211%virtio-partition” group.
116%, and 126% higher than that of QCOW2, respec- Storing the VM image on a raw partition provides
tively. The overhead in QCOW?2 is mainly due to two mych better performance than storing the image on a host
factors: 1) on the first write, QCOW2 needs to allocateext3 file System_ In Figure G(a), the throughput of raw
storage space and update is on-disk metadata; and 2) @artition is 63% higher than that of ext3 (by comparing
read or the second write, QCOW2 needs to load partghe “RAW” bar in the “virtio-partition” group with the
of its on-disk metadata into memory in order to locate“RAW" bar in the “virtio-ext3” group).
the read or write target. QCOWZ2's in-memory meta- Figure 6 again shows the significant advantages of
data cache is not large enough to hold all metadata anflyp over QCOW2. In the file creation phase, the
the cache hit rate is low for random I/Os. By contrast, throughput of FVD is 249% higher than that of QCOW?2
FVD incurs almost no overhead in reading or updating itS(py comparing the “FVD” bar and the “QCOW2 bar
on-disk metadata, due to the optimization of “free write, the “virtio-partition” group of Figure 6(a)). In the
to no-backing blocks” described in Section 3.3.2. Theyransaction phase, the throughput of FVD is 77% higher
throughput of “F: FVD” and “R: RAW” is only about  than that of QCOW2 (by comparing the “FVD” bar and
2.4% lower than that of “H: Hypervisor”, indicating that {he “QCOW2 bar in the “virtio-partition” group of Fig-
the overhead of storage virtualization is low. This opti- yre g(p)).
mistic result is due to the experiment setup—the I/O size 14 nderstand the root cause of the performance dif-
is relatively large (64KB), it uses paravirtualizatiosir- ference, we perform a deep analysis for the results in
i0), and it_incur; no overhead of a host file system. Nihe “virtio-partition” group of Figure 6(a). We run the
other configurations, the overhead can be much higher. pjirace tool in the host to monitor disk 1/0 activities.
QCOW?2 causes 45% more disk I/Os than FVD does, due
4.1.2 PostMark Results to QCOW2's reads and writes to its metadata. However,

Figure 6 shows the performance of PostMark [12] un-this still does not fully explain the 249% difference in
der different configurations. PostMark is a popular file throughput between FVD and QCOW?2. The other factor
system benchmark created by NetApp. The executions increased disk seek distance, as explained below.
of PostMark consists of two phases. In the first “file- Figure 7(a) and (b) shows the histogram of of disk I/Os
creation” phase, it generates an initial pool of files. Inissued by QCOW2 and FVD, respectively. A point on the
the second “transaction” phase, it executes a set of trang=-axis is a normalized location of the raw partition that

10



T 1000 | 50 |
8 o
@ 800 & 40
o o
5 [
& 600 ® 30
° []
£ 400 2 20
o o
o 200 g 10
: L LT
- 06 z0¢g z0¢g zo0g §06 z0¢% zo0¢g zo0%g
] > > > 2 > > >
g | =%g§ | 2E5| 28 5| =F8 | 2f8| =2F8
=3 o o3 e o (o] o7 (o7
T virtio-partition | virtio-ext3 |IDE-partition T virtio-partition virtio-ext3 | IDE-partition
(a) File creation throughput (b) Transaction throughput
Figure 6: Performance of PostMark under different imagentds.
100000 — T T T T 100000 —
o o
= 80000 - < 80000 o
i) Q =
o [a] X
5 60000¢ s 600001 2
£ £ 5
g 40000 g 40000( w
<} [} a
B 3 | O
T 20000 - T 20000 -
0 o
0 02 04 06 08 1 0 02 04 06 08 1 0 0.10.20.30.40.50.60.70.80.9 1
Normalized Physical Block Address Normalized Physical Block Address Normalized Disk Seek Distance
(a) Histogram of disk 1/Os (b) Histogram of disk 1/Os (c) Camnipg CDF of disk seek
issued by FVD. issued by QCOW?2. distances in FVD and QCOW?2.

Figure 7: QCOW?2 increases disk seek distance because i stibreetadata of the guest file system at the beginfing
of the image, despite the fact that the metadata’s VBAs dibeatately scattered for better reliability and locality.

guest file system’s metadata and journal file. As de-
scribed in Section 2.3, QCOW2 puts all those metadata
at the beginning of the raw partition, despite of their scat-
tered VBAs. As aresult, in QCOW?2, the disk head trav-
els through a long distance between accessing the met
data of a file in the guest file system and accessing th
file's content blocks. This effect is clearly shown in Fig-
ure 7(c). Thez-axis is the normalized disk seek dis-
tance between two back-to-back 1/0 operations, wher
1 means the disk head moves all the way from one en : ,
of the raw partition to the other end. The average of thgl'l'3 Disk 1/O's Impact on Network I/O

normalized seek distance is 0.146 for QCOW?2, whereas Unlike the FVD driver’s fully asynchronous imple-

it is only 0.026 for FVD, i.e., 5.6 times lower. The long mentation, the QCOW?2 driver synchronously reads and

Hypervisor VM-disk- RAW FVD QCow2
idle

stores the VM image. Here means the beginning of g 1000 ——

the partition0.5 means the middle of the partition, ahd 2 800 I

means the end of the partition. Theaxis is the number % I _

of I/O requests that fall on a location of the raw partition. = ¢

Figure 7(b) has a spike in the middle of the raw par- 3

tition, which is due to frequent accesses to the guest file 5 400

system’s journal file. Figure 7(a) has a different shape. 3

QCOW?2 causes two large spikes at the beginning of the = 200

raw partition, which are due to frequent accesses to the B ’_‘
E 0
z

Figure 8: QCOW?2'’s disk activities can severely impact
g_etwork performance.

%isk seek distance is the reason why QCOW?2 issues only

45% more disk I/0Os than FVD does, but the difference in
efile creation throughput is as high as 249%.
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Figure 10: Both QCOW2 and FVD work well with

Figure 9: FVD still outperforms QCOW2 even if the ex- SParse images. The disk space usage grows as needed.
periment is designed to favor QCOW?2. )
QCOW?2’'s VBA-IBA mismatch problem much less se-

writes its on-disk metadata in a critical region that blocksVere than that shown in Figure 7. This condition favors
all other (disk or non-disk) I/O activities. Because disk QCOW2. In Figure 9, the difference between "QCOW2-
I/Os are slow, the blocking time can severely affect otherc0ld” and "QCOW2-warm” is that, before running Post-
/O activities. To measure disk 1/0’s impact on network Mark, “*QCOW2-warm” warms up QCOW2 by writing
/0, the experiments in Figure 8 run two benchmarksOnce to all unused free spaces in the guest ext3 file sys-

concurrently: PostMark to drive disk I/O and Iperf [11] M- As a result, all the storage spaces that will be

to drive network I/0. The VM's configuration is the same US€d by PostMark have alread¥ been allocated in the
as that for the “virtio-partition” group in Figure 6(a), QCOW2 image, and all QCOW?2's metadata are cached

except that it is configured with two virtual CPUs to N memory. Both conditions favor QCOW2. Even in
ensure that CPU is not the bottleneck. The VM usedhis case, FVD still outperforms QCOW2. The file cre-
the paravirtualizedirtio interface for both network and ation throughput of “FVD-cold” is 252% and 16% higher
disk. Figure 8 reports the network throughput achievedhan that of “QCOW2-cold” and “QCOW2-warm”, re-

by Iperf during the file creation phase of PostMark. TheSPectively. The transaction throughput of “FVD-cold" is
“Hypervisor” bar means running Iperf directly in native 19% and 1.6% higher than that of “QCOW2-cold” and
Linux, without virtualization and without running Post- - QCOW2-warm”, respectively.

Mark. The “VM-disk-idle” bar means running Iperfin a 4.1.5 Sparse Image Support

VM alone, without running PostMark. In this case, the ) o
choice of image format does not matter. The “RAW” The experiment in Figure 10 demonstrates that both

“FVD”, and “QCOW2" bars means running Iperf and QCOWZ and EVD support sparse images. In_this exper-
PostMark in a VM concurrently, while using different IMment, the VM image is stored in a host ext3 file system,
image formats. The network throughput achieved withWhose sparse file capability is leveraged by FVD to sup-
FVD is 253% higher than that with QCOW2. QCOW?2’s POrt sparse images. In the VM, a script repeatedly com-

synchronous access to its on-disk metadata is a knowRi€S :[’he Linux kernel by executirignake” and“make
issue, but it is difficult to fix due to the complexity of Cléan”. Figure 10 records the the actual disk spaces

QCOW2. used by QCOW?2 and FVD after each round of compila-
tion. Both QCOW2 and FVD work well sparse images.
4.1.4 An Experiment that Favors QCOW?2 The actual disk spaces consumed grow as needed, and

are much smaller than the full size of the virtual disk.

To understand the “potential” of QCOW2, we delib- QCOW?2 uses about 23% more disk spaces than FVD,
erately design one experiment that allows QCOW?2 tobecause QCOW? allocates disk spaces at a granularity
work most efficiently. This experiment’s setup is simi- larger than ext3 does, i.e., 64KB vs. 4KB.
lar to that for the “virtio-partition” group in Figure 6(a), . .
but PostMark is configured to work on about 900MB data""l'6 Different Ways of Using FVD
stored on a 1.2GB patrtition of the virtual disk. QCOW2's  Figure 11 compares the different ways of using FVD.
metadata for these 900MB data can completely fit inThe experiment setup is similar to that for the “virtio-
QCOW?2’'s in-memory metadata cache. Moreover, dugartition” group in Figure 6(a). “Min-size FVD” enables
to the small size of this 1.2GB partition (1.2GB is only the optimization described in 3.3.2, which reduces the
1.7% of the 73GB physical disk), the disk seek dis-backing image to its minimum size. “Zero-aware FVD”
tance on this 1.2GB partition is short, which makesenables the optimization described in 3.3.3, which ini-
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to the overhead of the host ext3 file system rather than the

Figure 12: Time to boot a VM under different configura- overhead of FVD itself. Without using the host ext3 file
tions. system, the VM boot time of “FVD (partition)” is only
o ) o 0.4 seconds longer than that of “QCOW2 (partition)”.
tializes a block’s state t6;,,_rv p if the block’s original Copying data into a sparse image file stored on ext3 in-
content in the backing image is filled with zeros. “Naive- 15 a high overhead, because it requires storage space
FVD” enables neither optimization. The results show g)igcation. However, the overhead of CoR is a one-time
that “min-size FVD” has significant advantages. The file gffect. Rebooting an FVD image (the “FVD (reboot)”
creation throughput of “min-size FVD” is 65% and 146% bar) is actually faster than rebooting an QCOW2 image
higher than that of “zero-aware FVD” and “naive-FVD”, (the “QCOW?2 (reboot)” bar).
respectively. The transaction throughput of “min-size R avoids repeatedly reading a data block from NAS,
FVD" is 8.6% higher than that of “zero-aware FVD" and py saving a copy of the returned data on DAS for later
“naive-FVD". “Zero-aware FVD" is less efficient than reyse, which helps avoid generating excessive network
“min-size FVD" because the guest file system's meta-yaffic and 1/0 load on NAS. This effect is shown in Fig-
data blocks are non-zeros and writing to those blocks in,e 13, This experiment boots a Linux VM and then
“zero-aware FVD” still requires updating FVD’s on-disk giarts IBM WebSphere Application Server (WAS) in the
bitmap. On the other hand, even the less efficient “naiveVM’ during which we measure the network traffic for
FVD" outperforms QCOW?2 by 42% and 59% in file cre- reading data from the backing image. The VM and WAS
ation and transaction, respectively. are rebooted once to test the effect of CoR. With FVD,
the first boot of WAS takes 51.0 seconds, and the sec-
ond boot of WAS takes 42.1 seconds. The second boot

Figure 12 compare the time it takes to boot a VM is faster and introduces no network traffic because CoR
under different configurations. “RAW (partition)”, during the first boot already saved the needed data on
“QCOW2 (partition)”, and “FVD (partition)” store the DAS. With QCOW2, the first boot and the reboot both
VM image on a raw partition in the host. All the other take about 55.1 seconds, and generate roughly the same
configurations store the VM image on a host ext3 file sys-amount of network traffic.
tem. The “FVD-CoW” configuration only enables copy- ) i
on-write, whereas the other “FVD” configurations enable?-3  Adaptive Prefetching
both copy-on-write (CoW) and copy-on-read (CoR). As Figure 14 evaluates FVD’s adaptive prefetching capa-
the VM boots, CoR-enabled FVD stores about 30MBbility. The z-axis shows the time since a V¢, boots.
data into the FVD data file due to the copy-on-read be-The y-axis shows the network traffic generated by read-

4.2 Copyon Read
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= mizations implemented in guest file systems (see the dis-
g 357 cussion in Section 2.3).
g 307 resume _ Existing vi_rtual disks Sl_Jppor_t ngither CqR nor adap-
g 27 prefetchin tive prefetching. Some virtualization solutions do sup-
T 201 refséfcram port CoR or prefetching, but they are implemented for
2 151 P 9 pause certain specific use cases, e.g., virtual appliance [6], mo-
g 104 boot prefetchiny bile computing [15], or VM migration [21]. By contrast,
T 5| WM / FVD provides CoR and prefetching as standard features
Z . . . N .

0 I\ ‘ rrrresterrnd of a virtual disk, which can be easily deployed in many

0 30 60 90 120 150 180 210 different use cases.
Time (seconds) Collective [6] provides virtual appliances, i.e., desktop

as a service, across the Internet. It uses CoW and CoR
Figure 14: FVD automatically finds resource idle time to to hide network latency. Its local disk cache makes no
perform prefetching. effort to preserve a linear mapping between VBAs and

IBAs. As a result, it may cause a long disk seek dis-
ing data from the backing image stored on NAS. Con-tance as that in popular CoW image formats. Collective
trolled by a policy, prefetching automatically starts at also performs adaptive prefetching. It halves the prefetch
time 80 seconds. At time 120 seconds, another ¥M  rate if a certain “percentage” of recent requests experi-
on another host starts to run PostMark on a EBS-like perencing a high latency. Our experiments show that it is
sistent virtual disk whose image is stored on NAS. Thehard to set a proper “percentage” to re|iab|y detect con-
disk 1/Os generated by the two VMs cause a contentioitentions. Because storage servers and disk controllers
on NAS, and the FVD driver of VM5, quickly detects  perform read-ahead in large chunks for sequential reads,
that the prefetching throughput drops below the specified very large percentage (e.g., 90%) of a VM's prefetch-
lower limit (20MB/s) and pause prefetching. From time ing reads hit in read-ahead caches and experience a low
to time, it temporarily resumes prefetching to check if|atency' When a storage server becomes busy, the “per-
the contention disappears. Finally, as PostMark running:entage” of requests that hit in read-ahead caches may
in VM 5, finishes at time 178 seconds, the FVD driver change little, but the response time of those cache-miss

of VM S; resumes prefetching permanently. requests may increase dramatically. In other words, this
“percentage” does not correlate well with the achieved
5 Related Work disk 1/0 throughput.

FVD supports copy-on-write (CoW), copy-on-read Both Xen [7] and VMware [18] support live VM mi-
(CoR), and adaptive prefetching. These features are magration if the VM image is stored on NAS or SAN.
tivated by the use cases in a Cloud, especially, instanfEMU can migrate a VM image stored on DAS, but it
VM creation and instant VM migration. An image tem- takes a pre-copy approach, i.e., first copying the virtual
plate in a Cloud is used to create many VMs repeatedlydisk and then making the VM fully functional at the new
Therefore, it is worthwhile to perform one-time offline location. We argue that FVD’s copy-on-read approach is
optimizations on the image template in exchange for sumore suitable for storage migration, because 1) storage
perior VM runtime performance. Many optimizations in has much more data than memory and hence pre-copy
FVD follow this philosophy (see Section 3.3). These op-takes a long time, and 2) unlike memory accesses, disk
timizations are novel and critical for performance. Pre-l/Os are less sensitive to the network latency experienced
vious works use the CoW and CoR techniques in variougluring copy-on-read.
settings [5, 6, 15, 21], but do not study how to optimize In terms of the CoW and CoR techniques, the VM mi-
the CoW and CoR techniques themselves. gration work by Sapuntzakis et al. [21] is the closest to

Despite the widespread use of VMs and the availabil-FVD. It also uses a bitmap to track the states of data
ity of VM image format specifications to the public, there blocks, but performs no optimizations to reduce the over-
is no published research on how image formats impachead in updating the on-disk bitmap, which is critical to
disk 1/0 performance. Our study reveals that all popu-disk I/O performance, as shown in Figure 11. It suffers
lar CowW image formats (including QCOW?2 [16], Virtu- from the residual dependency problem, as pointed out by
alBox VDI [25], VMware VMDK [26], and Microsoft ~ Bradford et al. [5], i.e., after migration, a VM at the new
VHD [17]) use an index structure to translate betweenlocation still depends on data at the old location. FVD
VBAs and IBAs, and allocate storage space for a datsolves this problem using prefetching.
block at the end of the image file when the block is writ- CoW has also been implemented in logical volume
ten for the first time, regardless of its VBA. This mis- managers and file systems [4, 19], where data locality is-
match between VBAs and IBAs invalidates many opti- sues exist, similar to the VBA-IBA mismatching problem
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in CoW virtual disks. Peterson [20] and Shah [22] pro- [7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

pose techniques to put the CoW data close to the original ~ C. Limpach, I. Pratt, and A. Warfield. Live Migra-

data, assuming they are stored on the same disk. Thisis tion of Virtual Machines. IrNSDI, 2005.

not an issue in a Cloud because the CoW data are stored

on DAS while the original data are stored on NAS. [8] J. R. Douceur and W. J. Bolosky. Progress-based
Several existing works are related to FVD's adap- regulation of low-importance processes. SOSP

tive prefetching algorithm. MS Manners [8] measures 1999.

the progress of a low-importance process and suspenctg] A. Gulati, I. Ahmad, and C. A. Waldspurger.
it when its progress is low so that it does not degrade = * paRpA: Proportional Allocation of Resources for

the performance of high-importance processes. TCP Distributed Storage Access. FAST, 2009.
Nice [24] and TCP-LP [14] use network resources con- '

servatively to transfer low-priority traffic. [10] IOzone Filesystem Benchmarkht t p: / / vww.
i ozone.org/.

6 Conclusion
This paper presents the FVD image format and its de—[ll] Ip_erf Netvyork Measqre_ment Toohttp://en.
wi Ki pedi a. org/wi ki /| perf.

vice driver for QEMU. FVD distinguishes itself in both

performance and features. It supports copy-on-write[12] J. Katcher. PostMark: A New File System Bench-

copy-on-read, and adaptive prefetching. These features ~ mark. Technical Report TR-3022, Network Appli-
enable instant VM creation and instant VM migration, ance Inc., October 1997.

even if the VM image is stored on direct-attached stor- . .
age. To achieve high performance, the design of FVD[13] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and

debunks the common practice of mixing the function A. Liguori. KVM: the Linux Virtual Machine Mon-
of storage space allocation with the function dirty-block itor. In Proceedings of the Linux Symposiyrages
tracking. Experiments show that FVD significantly out- 225-230, 2007.

performs QCOW2, owing to the aggressive optimiza-

[14] A. Kuzmanovic and E. W. Knightly. TCP-LP: A
Distributed Algorithm for Low Priority Data Trans-
fer. InINFOCOM, 2003.

tions.

Although FVD is motivated by our unsatisfied needs
in the IBM Cloud, it is equally applicable in both
Cloud and non-Cloud environments. At the very least[15] M. Satyanarayanan et al. Pervasive Personal Com-
FVD's copy-on-write feature can be a high-performance  puting in an Internet Suspend/Resume System.

alternative to QCOW2. FVD is mature and we ac- IEEE Internet Computing2007.

tively seek for adoption in the QEMU mainline (see

http://sites.google.com/site/tangchg/qemu-fvd). [16] M. McLoughlin. The QCOW2 Image Format.
htt p:// peopl e. gnone. or g/ ~mar knt/
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Data Integrity in the Basic Version of FVD
A bit in the bitmap can be in one of two states,
Sin_backing=0 0Or Sin_sva=1, Which means the corre-
sponding block’s content is in the backing image or
[24] A. Venkataramani, R. Kokku, and M. Dahlin. TCP the FVD data file, respectively. A block’s state can
Nice: A Mechanism for Background Transfers. In only change fromS;,, yacking 10 Sin_fva, @and can never
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i bm conl servi ces/ us/igs/
cl oud- devel oprent /.

OSDI, 2002. change fromS;,,_fvq 10 Sin_tacking. Three operations
) can change a block’s state frof,_vacking t0 Sin_fud:
[25] VirtualBox VDI http://forums.  copy-on-write, copy-on-read, and prefetching. We first
virtual box. org/vi ewt opi c. php?t = discuss copy-on-write.
8046. Copy-on-write happens when the FVD driver han-

[26] VMware Virtual Disk Format 1.1ht t p: / / ww. dles a disk write request from the VM. For brevity, the
vivar e. coni t echni cal - r esour ces/ discussion below assumes that the write request spans

i nterfaces/vndk. ht m . over two disk blockgdy,ds). Let bit(dy) andbit(ds)
denote the states af; and d, in the bitmap, respec-
Appendix 1: FVD Guarantees Data In- tively. We further assume that, before the write opera-
tegrity in the Event of a Host Crash tion, bit(d1) = Sin_backing andbit(dz) = Sin_backing-
Suppose the following events happen in a sequencether cases with more data blocks involved and differ-
(1) the VM submits a disk write request; (2) the FvD €ntinitial states can be analyzed in a way similar to the
driver (after some processing) acknowledges the succes§xa@mple below.
ful completion of the write operation; and (3) the hostim- It involves the following sequence of operations when
mediately loses power. After power recovers and the vmthe basic'version of FVD (described in Section 3.2) han-
reboots, the VM'’s next read to the same block should geflles a write request:
the content written before the failure. Otherwise, data
integrity is compromised, which may fail applications
(e.g., databases) that rely on strong data integrity.
When a user boots a VM, QEMU allows the user o pyp:w2: the FVD driver stores, in the FVD data

e FVD:W1: the VM issues a write request for two
blocks(dy, ds).

to specify different caching policies for a virtual disk: file.

cache=nongcache=writethroughor cache=writeback

In Linux, cache=nondranslates to th®_DIRECT flag e FVD:W3:the FVD driver stored, in the FVD data
for disk I/Os, andcache=writethrougttranslates to the file.

O_DSYNCiflag for disk 1/Os. Both of them guarantees ) )
that the data are safely stored on the physical disk be- ® FYD:W4: the FVD driver updates the on-disk
fore the write operation finishes. By design, QEMU does ~ Pitmap statéit(dy) from Si, _packing t0 Sin_fuva-

not _guara_ntee_data integrity for theach_e—wrlteback e FVD:W5: the FVD driver updates the on-disk

configuration (in exchange for better disk I/O perfor- bitmap statéit(ds) from S oS

mance), because some dirty data may be cached in mem- P a2 in-backing = 2in_fud:

ory and not yet flushed to the physical disk when the o FvD:we:the FVD driver acknowledges to the VM

host crashes. The discussion below assumes that the the completion of the write operation.

virtual disk is configured with eithecache=noneor

cache=writethrough Note thatFVD:W2andFVD:W3may be performed in
Figure 4 on page 5 shows a simplified view of the FVD a single write. We separate them for a worst-case anal-

image format. When performing copy-on-write, copy- ysis. Similarly, bit(d;) andbit(d2) may belong to the

on-read, or prefetching, the FVD driver needs to sepasame block, and hendeVD:W4 and FVD:W5 may be

rately update the FVD data file and the FVD metadataperformed in a single update. We sepaffe#:W4and

file. Therefore, a host crash between the two updatesVD:W5for a worst-case analysis.

might compromise data integrity. Below, we prove that The host may crash after any step above. We will

this is not the case and FVD preserves data integrity reprove that FVD preserves data integrity regardless of

gardless of when the host crashes. when the crash happens. Specifically, FVD introduces no
We first prove that the basic version of FVD describedmore complication than what may happen to the RAW

in Section 3.2 preserves data integrity in the event of dmage format. In other words, we prove that the data
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e Fail after FVD:W5. After reboot, the VM's next
read tod; or ds, gets the new content from the FVD
data file (becauskit(di) = Siy,_soq @andbit(ds) =
Sin_fod)- This behavior is correct and is equivalent
to having a host crash with the RAW image format
afterRAW:W3i.e., the write operation is completed
but not yet acknowledged.

integrity of FVD is as good as the data integrity of the
RAW image format.

If the VM uses the RAW image format, handling this
disk write involves the following sequence of operations:

e RAW:W1: the VM issues a write request for two
blocks(dy, ds).

e RAW:W2:the RAW driver stored; on disk. e Fail after FVD:W6. After reboot, the VM’'s next
read tod; or ds gets the new content from the FVD
data file (becauskit(d,) = Si,_fva andbit(ds) =
Sin_fvd)- This behavior is correct and is equivalent
to having a host crash with the RAW image format
afterRAW:W4

e RAW:W3:the RAW driver stored, on disk.

e RAW:W4:the FVD driver acknowledges to the VM
the completion of the write operation.

Note thatRAW:W2andRAW.W3may be performed ina  The analysis above shows that FVD's copy-on-write

single write. We separate them for a worst-case analysigperation preserves data integrity. Following a similar
Now we consider all possible failure cases with FVD. process, it can be proven that FVD also preserves data in-
Note that before the VM’s write operation, the “old” con- tegnty during Copy-on-read and prefetching’ by follow-

tents ofd; andd, are stored in the backing image. After ing the correct update sequence—first updating the FVD
the VM's write operation finishes successfully, the “new” gata file and then updating the on-disk bitmap.

contents are stored in the FVD data file. o o )
Data Integrity in the Optimized Version of FVD

e Fail after FVD:WL In this case, FVD's behavior — nayi e show that the optimizations described in Sec-

is equivalent to having a host crash with the RAW
image format afteRAW:W1 The effect is that the
write operation is simply lost, which is an allowed,
correct behavior, since the driver did not yet ac-
knowledge to the VM the completion of the write.

e Fail afterFVD:W2 In this cased; is written to
the FVD data file, bubit(d;) is not updated and
remainsSi,_packing. After reboot, the VM’'s next
read tod, gets its old content from the backing im-
age, as ifl;’s new content in the FVD data file does
not exist. This behavior is correct and is equivalent
to having a host crash with the RAW image format
afterRAW:W1 The effect is that the write operation
is simply lost, which is an allowed, correct behav-
ior, since the driver did not yet acknowledge to the
VM the completion of the write.

e Fail after FVD:W3 Similar to the one above, af-
ter reboot, the VM's next read t@, or ds gets the
old content from the backing image, as if the new
content in the FVD data file does not exist. This be-
havior is correct and is equivalent to having a host
crash with the RAW image format aftRAW:W1

o Fail after FVD:W4. After reboot, the VM's next
read tod; gets its new content from the FVD data
file, whereas the VM’s next read 6 gets its old
content from the backing image (becauséd; ) =
Sin_fva andbit(da) = Sin_packing)- This behavior
is correct and is equivalent to having a host crash
with the RAW image format afteRAW:W2
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tion 3.3 do not compromise data integrity in the event of
a host crash.

e In-memory bitmap: This is merely a performance

optimization. The FVD driver immediately update
the on-disk bitmap whenever such an update is re-
quired to preserve data integrity. For bitmap up-
dates that do not compromise data integrity, the
FVD driver may update the physical disk lazily.

Free writes to no-backing blocks Since the
bitmap has no state bits for the no-backing blocks,
writing to those blocks need not update the bitmap.
Therefore, this optimization introduces no compli-
cation for data integrity.

Free writes to zero-filled blocks Since those
blocks’ states are initialized t6;,,_s,q and never
change afterwards, this optimization introduces no
complication for data integrity.

a host crash does not affect those blocks.

Free copy-on-read 3.3.4 When the FVD driver

copies a block from the backing image into the FVD
data file due to copy-on-read, it does not immedi-
ately update the block’s state in the on-disk bitmap
from Sin_backing t0 Sin_pva, Which reduces disk

I/0 overhead. This does not compromise data in-
tegrity in the event of a host crash, because the
block’s content in the FVD data file is identical

to that in the backing image and reading from ei-
ther place gets the correct data. When the VM



overwrites a block that was previously saved in the
FVD data file due a copy-on-read operation, the
block’s state in the on-disk bitmap is immediately
updated fromSi,_vacking 10 Sin_fva, by follow-
ing the operation sequenE®/D:W1—FVD:W6de-
scribed above, which guarantees data integrity.

e Free prefetching In terms of the impact on data
integrity, this case is the same as the case above.

e Zero overhead once prefetching finishes Once
prefetching finishes, the FVD driver no longer reads
or writes the bitmap. It simply passes through all
disk 1/0O requests issued by the VM to the RAW
driver. Therefore the data integrity of an FVD im-
age is identical to that of a RAW image.

In summary, the analysis shows that both the basic ver-
sion and the optimized version of FVD preserve data in-
tegrity in the even of a host crash.
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