
FVD: a High-Performance Virtual Machine Image Format for Cloud

Chunqiang Tang
IBM T.J. Watson Research Center

ctang@us.ibm.com
http://www.research.ibm.com/people/c/ctang/

Note: This paper describes the copy-on-write, copy-
on-read, and adaptive prefetching capabilities of FVD.
The compact image capability of FVD is described
separately in a companion paper entitled “Compact
Image Support in Fast Virtual Disk (FVD)”, which
is available athttps://researcher.ibm.com/
researcher/view project.php?id=1852

Abstract

This paper analyzes the gap between existing hyper-
visors’ virtual disk capabilities and the requirements in
a Cloud, and proposes a solution called FVD (Fast Vir-
tual Disk). FVD consists of an image format and a
block device driver designed for QEMU. Despite the ex-
istence of many popular virtual machine (VM) image
formats, FVD came out of our unsatisfied needs in the
IBM Cloud. FVD distinguishes itself in both perfor-
mance and features. It supports instant VM creation and
instant VM migration, even if the VM image is stored on
direct-attached storage. These are important use cases
in an elastic Cloud, but are not well supported by ex-
isting image formats. FVD supports these use cases by
adopting a combination of copy-on-write, copy-on-read,
and adaptive prefetching. The latter two features are not
available from existing image formats and their drivers.

In the design of FVD, performance is even more im-
portant than features. With copy-on-read and adaptive
prefetching disabled, FVD can function as a pure copy-
on-write image format. In this case, the throughput of
FVD is 249% higher than that of QEMU QCOW2 when
using the PostMark benchmark to create files. This su-
perior performance is due to aggressive optimizations en-
abled by debunking a common practice in popular copy-
on-write image formats (including QCOW2, VirtualBox
VDI, VMware VMDK, and Microsoft VHD), which un-
necessarily mixes the function of storage space alloca-
tion with the function of dirty-block tracking.

The implementation of FVD in QEMU is mature. Its
performance is excellent and its features (copy-on-write,
copy-on-read, and adaptive prefetching) are valuable in
both Cloud and non-Cloud environments. We actively
seek for adoption of FVD into the QEMU mainline (see
http://sites.google.com/site/tangchq/qemu-fvd).

1 Introduction

Cloud Computing is widely considered as the next big
thing in IT evolution. In a Cloud like Amazon EC2 [1],
the storage space for virtual machines’ virtual disks can
be allocated from multiple sources: the host’s direct-
attached storage (DAS, i.e., local disk), network-attached
storage (NAS), or storage area network (SAN). These op-
tions offer different performance, reliability, and avail-
ability at different prices. DAS is at least several times
cheaper than NAS and SAN, but DAS limits the avail-
ability and mobility of VMs.

To get the best out of the different technologies, a
Cloud usually offers a combination of block-device stor-
age services to VMs. For instance, Amazon Web Ser-
vices (AWS) [2] offers to a VM both ephemeral storage
(i.e., DAS) and persistent storage (i.e., NAS). Amazon
EC2 provides each VM with 170GB or more ephemeral
storage space at no additional charge. Persistent stor-
age is more expensive, which is charged not only for
the storage space consumed but also for every disk I/O
performed. For example, if a VM’s root file system is
stored on persistent storage, even the VM’s disk I/O on
its temporary directory/tmp incurs additional costs. As
a result, it is a popular choice to use ephemeral storage
for a VM’s root file system, especially for data-intensive
applications such as Hadoop.

DAS is simple, cheap, and scalable. The aggregate
storage space and I/O bandwidth of DAS scales linearly
as hosts are added. However, using DAS slows down
the process of VM creation and VM migration, and di-
minishes the benefits of an elastic Cloud. The discussion
below uses KVM [13] and QEMU [3] as examples, be-
cause we work on the KVM-based IBM Cloud [23].

In a Cloud, VMs are created based on read-only im-
age templates, which are stored on NAS and accessible
to all hosts. A VM’s virtual disk can use different im-
age formats. The RAW format is simply a byte-by-byte
copy of a physical block device’s full content stored in a
regular file. If a VM uses the RAW format, the VM cre-
ation process may take a long time and cause resource
contentions, because the host needs to copy a complete
image template (i.e., gigabytes of data) across a heavily

1

shared network in order to create a new RAW image on
DAS. This problem is illustrated in Figure 1.

QCOW2 [16] is another image format supported by
QEMU. It does copy-on-write, i.e., the QCOW2 image
only stores data modified by a VM, while unmodified
data are always read from the backing image. QCOW2
supports fast VM creation. The host can instantly cre-
ate and boot an empty QCOW2 image on DAS, whose
backing image points to an image template stored on
NAS. Using QCOW2, however, limits the scalability of
a Cloud, because a large number of VMs may repeatedly
read unmodified data from the backing image, generat-
ing excessive network traffic and I/O load on the shared
NAS server.

Our solution to this problem is the FVD (Fast Virtual

B o
o t
VM

Co
W
+C

oR
VM

 Re
ad
y Find idle time to

prefetch the rest
of the image

Pause prefetching
due to contention

Contend with
other traffic

Copy
image

VM ready
for login

Boot
VM

Time

Time

VM1
VM2
VM3

Other
Traffic

VM1
VM2
VM3

Other
Traffic

Resume
prefetching

a) VM creation using RAW images

b) VM creation using FVD images

Figure 1: Comparison of VM creation processes. This
example creates three VMs concurrently. Using the
RAW image format, it has to wait for a long time until an
entire image template is copied from NAS to DAS, and
then boots the VM. The key observation is that, much of
the copied image data is not needed during the VM boot-
ing process and may even never be accessed throughout
the VM’s lifetime. FVD instead boots the VM instantly
without any image data on DAS, and copies data from
NAS to DAS on demand as they are accessed by the
VM. In addition, FVD’s prefetching mechanism finds re-
source idle time to copy from NAS to DAS the rest of the
image that have not been accessed by the VM. Prefetch-
ing is conservative in that if FVD detects a contention on
any resource (including DAS, NAS, or network), FVD
pauses prefetching temporarily and resumes prefetching
later when congestion disappears.

Disk) image format and the corresponding driver. In ad-
dition to copy-on-write (CoW), FVD also does copy-on-
read (CoR) and adaptive prefetching. CoR avoids repeat-
edly reading a data block from NAS, by saving a copy
of the returned data on DAS for later reuse. Adaptive
prefetching uses idle time to copy from NAS to DAS the
rest of the image that have not been accessed by the VM.
These features are illustrated in Figure 1.

A main challenge in FVD is to provide the rich fea-
tures without degrading runtime disk I/O performance.
This is a real challenge even for the widely used and sup-
posedly well-understood feature of CoW. We analyzed
the popular CoW image formats, including QCOW2,
VirtualBox VDI [25], VMWare VMDK [26], and Mi-
crosoft VHD [17]. A key finding is that they all unneces-
sarily mix the function of storage space allocation with
the function of dirty-block tracking. As a result, they
not only generate more disk I/Os for metadata access but
also increase the average disk seek distance due to an un-
desirable data layout on the physical disk. By contrast,
FVD only performs dirty-block tracking and delegates
the responsibility of storage space allocation entirely to
the underlying layer, which can be a host file system, a
host logical volume manager, or simply a raw partition.
This simplicity allows FVD to aggressively optimize not
only CoW, but also CoR and adaptive prefetching. These
optimizations are critical. The throughput of FVD as a
pure CoW format is 249% higher than that of QCOW2
when using the PostMark [12] benchmark to create files.

In addition to instant VM creation, FVD also sup-
ports instant VM migration, even if the VM’s image is
stored on DAS. Live migration is an important mech-
anism for workload management. A public Cloud of-
ten leverages the hypervisor’s memory over-commit ca-
pability to pack a large number of VMs on a host. As
the workload changes, the memory working sets of those
VMs may increase beyond the host’s physical mem-
ory capacity and cause thrashing. Ideally, some VMs
should be immediately migrated to other hosts to mit-
igate thrashing. Unfortunately, among all existing hy-
pervisors, KVM/QEMU is the only one that can migrate
images stored on DAS, and even QEMU only supports
pre-copy storage migration, i.e., the VM’s disk data must
be copied from the source host to the target host in its en-
tirety before the VM can start to run on the target host.
Pre-copy may take a long time due to the large size of the
disk image, and VMs may experience long periods of se-
vere thrashing. By contrast, FVD can instantly migrate
a VM without first transferring its disk image. As the
VM runs uninterruptedly on the target host, FVD uses
CoR and adaptive prefetching to gradually copy the im-
age from the source host to the target host, without user-
perceived downtime.

2

����� ����	
��	
 ���
���� ����� ������

����� ������ �������� �! "#$

Figure 2: Architecture of KVM and QEMU.

1.1 Contributions
We make the following contributions in this paper.

• We analyze the gap between existing hypervisors’
virtual disk capabilities and the requirements in a
Cloud, and propose the FVD solution that combines
CoW, CoR, and adaptive prefetching.

• We achieve a high-performance implementation of
these features through aggressive optimizations en-
abled by debunking a common practice adopted in
popular CoW image formats.

• We bring to the open-source community for the first
time an extremely high-performance CoW imple-
mentation and the new features of CoR and adaptive
prefetching.

The rest of the paper is organized as follows. Sec-
tion 2 provides background. Sections 3 and 4 present and
evaluate FVD, respectively. Related work is discussed in
Section 5. Section 6 concludes the paper.

2 Background
2.1 KVM and QEMU

KVM [13] is a Linux kernel virtualization infrastruc-
ture. It uses QEMU [3] to perform I/O emulation in the
user space. QEMU is also used in other hypervisors, in-
cluding Xen-HVM and VirtualBox. Figure 2 shows the
architecture of KVM and QEMU. When the guest VM
issues an I/O instruction, it is trapped by the host Linux
kernel, which redirects the request to QEMU running in
the user space. QEMU gets services from the host Linux
kernel through system calls, just like a normal user-
space process. For example, when handling the guest
VM’s disk read request for a block, QEMU’s QCOW2
driver may invoke system calls to read the block from a
QCOW2 image file stored on a host ext3 file system. For
readers familiar with Xen, conceptually QEMU’s block
device driver handles a gust VM’s I/O requests in a way
similar to how thetapdiskprocess works in Xen’s Dom0.

2.2 Virtual Machine Image Creation Process
In a Cloud, a VM is created based on a read-only im-

age template, which is stored on NAS and accessible to

all hosts. Below is one example of the process to pre-
pare a Linux image template. The image template uses
the RAW image format. Suppose the initial image tem-
plate size is 50GB. It is first installed with the needed
software and fully tested. Then the ext3 file system in
the image template is resized to its minimum size (e.g.,
from 50GB down to 12GB) by using theresize2fstool.
The image template is truncated to fit the minimum file
system size (i.e., from 50GB to 12GB). The resizing and
truncating step gets rid of garbage data generated during
installation and testing, and produces an image template
of a minimum size. A small image template helps reduce
the amount of data transferred from NAS to DAS when
create new VMs based on the image template.

Following the example above, this 12GB image tem-
plate can be used to create VMs whose root file systems
are of different sizes, depending on how much a user
pays for a VM.1 For example, the following command
creates a 30GB QCOW2 image on DAS, based on the
12GB image template stored on NAS:qemu-img create
-f qcow2 -b /nfs/template.raw vm.qcow2 30GB.

After using qemu-nbdto mount the 30GB QCOW2
image and usingfdisk to expand the disk partition from
12GB to 30GB,resize2fscan be used to expand the im-
age’s ext3 file system from 12GB to 30GB, which will
be the VM’s root file system. Note that usingresize2fs
to expand (as opposed to shrink) a file system is a quick
operation because it need not relocate blocks.

2.3 Limitations of Existing Copy-on-Write
Image Formats

Because of storage virtualization, a block address is
translated multiple times before it reaches the physical
disk. When the guest VM issues a disk I/O request
to the hypervisor using avirtual block address(VBA),
QEMU’s block device driver translates the VBA into an
image block address(IBA), which specifies where the re-
quested data are stored in the image file, i.e., IBA is an
offset in the image file. How the translation is performed
is specific to an image format. If the image is stored as a
regular file in a host file system, the host file system fur-
ther translates the IBA to aphysical block address(PBA)
and the I/O request is issued to the physical disk using
the PBA. If the VM image is stored directly on a raw
partition, IBA and PBA are identical.

QCOW2 uses the lookup index in Figure 3 to translate
a VBA into an IBA. A VBA d is split into three parts, i.e.,
d = (d1, d2, d3). Thed1 entry of the L1 table points to
an L2 tableX. Thed2 entry of the L2 tableX points to
a data blockY . The requested data are located at offset
d3 in the data blockY .

1This capability is not available in Amazon EC2 but is available in
the IBM Cloud.

3

L1 Table L2 Tables Data Blocks

X

Y

Figure 3: The two-level lookup index in QCOW2.

After a QCOW2 image is created, it initially only con-
tains the L1 table with all entries empty, indicating that
the L2 tables and the data blocks are not yet allocated.
The size of the QCOW2 image file is only the size of
the L1 table plus some header fields. When the guest
VM writes data at the VBAd=(d1, d2, d3), the QCOW2
driver checks if thed1 entry of the L1 table is empty. If
so, it allocates an L2 table at the end of the image file
(which accordingly grows the size of the image file) and
initializes thed1 entry of the L1 table with the IBA of the
newly allocated L2 table. Similarly, upon the first write
to a data block, the data block is allocated at the end of
the image file, and the corresponding entry in an L2 ta-
ble is initialized with the IBA of the data block. When
the guest VM reads data at the VBAd=(d1, d2, d3), the
QCOW2 driver checks whether the data block is allo-
cated in the QCOW2 image. If so, the data is read from
the QCOW2 image; otherwise, the data is read from the
backing image. In other words, data not modified by the
VM are always read from the backing image.

In QCOW2, a block’s IBA solely depends on when it
is written for the first time, regardless of its VBA. This
mismatch between VBAs and IBAs may end up with an
undesirable data layout on the physical disk and degrade
performance. For example, when a guest OS creates or
resizes a file system, it writes out the file system meta-
data, which are all grouped together and assigned con-
secutive IBAs by QCOW2, despite the fact that the meta-
data’s VBAs are deliberately scattered for better reliabil-
ity and locality, e.g., co-locating inodes and file content
blocks in block groups. As a result, it may cause a long
disk seek distance between accessing a file’s metadata
and accessing the file’s content blocks.

To improve performance, it is a common practice to
store a VM image directly on a raw partition, bypass-
ing the overhead of a host file system. In this case, PBA
equals to IBA. If the VM uses the RAW image format,
IBA further equals to VBA. As a result, the block ad-
dress perceived by the guest OS matches with the actual
data layout on the physical disk, which makes many opti-
mizations in the guest file system effective. Experiments
in Section 4 show that storing a RAW image on a raw

partition may improve performance by 63%, compared
with storing the RAW image on a host ext3 file system.
By contrast, storing a QCOW2 image on a raw partition
may only improve performance by 15%, partially due to
the mismatch between VBAs and IBAs.

This problem is not unique to QCOW2. It exists in all
other popular CoW image formats, including VirtualBox
VDI, VMWare VMDK, and Microsoft VHD. Although
these formats use different storage space allocation units,
they all use an index structure to translate between VBAs
and IBAs, and allocate storage space for a data unit at the
end of the image file when the first write to that data unit
occurs. As a result, a data unit’s IBA solely depends on
when it is written for the first time, regardless of its VBA.

In addition to causing mismatch between VBAs and
IBAs, another problem with the lookup index in Figure 3
is the performance overhead in reading and updating this
on-disk metadata. The in-memory cache maintained by
QCOW2 helps metadata reads but not metadata writes.
Moreover, random disk I/Os issued by the guest VM may
cause frequent cache misses. Experiments in Section 4
show FVD can achieve 126% higher disk I/O throughput
than QCOW2 does by eliminating this overhead.

3 The FVD Image Format
FVD supports instant VM creation and instant VM

migration, by adopting a combination of copy-on-write
(CoW), copy-on-read (CoR), and adaptive prefetching.
These features are illustrated in Figure 1. Figure 4 shows
a simplified view of the FVD image format.

3.1 Key Difference as a CoW Format

Even without the new features of CoR and prefetch-
ing, FVD differs from existing popular CoW image for-
mats (including QCOW2, VDI, VMDK, and VHD) in
a simple but fundamental way. All those formats use a
lookup index to track storage space allocation, which as
a side effect also tracks dirty blocks written by a VM.
These two functions are unnecessarily mingled together.
We argue that a CoW image format should only perform
dirty-block tracking, while delaying and delegating the
decision of storage space allocation to the host OS.

This approach offers several advantages. First, the
host OS has abundant storage options to optimize for a
specific workload, e.g., storing a VM image on a raw
partition, on a logical volume, or as a regular file in
a host file system, with the choices of ext2/ext3/ext4,
JFS, XFS, ReiserFS, etc. An image format is merely
a middle layer. Prematurely deciding storage space al-
location in an image format destroys opportunities for
end-to-end optimizations, and causes problems such as
mismatch between VBAs and IBAs. Second, separating
dirty-block tracking from storage allocation avoids the
overhead associated with reading or updating the on-disk

4

original disk data

FVD metadata File

Backing Image

header bitmap space for
disk data

space for expanded
disk data

FVD Data File
Figure 4: An abstract view of the FVD image format.

lookup index needed for performing storage allocation.
The lookup index in Figure 3 is almost identical to the
one used in a host file system. Doing storage allocation
twice (first time in a CoW image and second time in a
host file system) is simply redundant and unnecessary.

The main function of a CoW image format is to keep
track of dirty blocks written by the VM. This function
can be more easily and more efficiently fulfilled by a
simple bitmap without using a lookup index. The differ-
ence may seem trivial, but the consequence is profound.
Without being burdened with the function of storage al-
location, a simple bitmap enables many aggressive opti-
mizations that would otherwise be impossible. An image
format in QEMU (which is simply called “COW”) also
uses a bitmap to track dirty blocks, but it is a naive for-
mat that by design does not guarantee data integrity in
the event of a host crash.

Abandoning the lookup index in Figure 3 loses
few features of QCOW2. In addition to copy-on-
write, QCOW2 features sparse image, encryption, snap-
shot, and compression. Without the lookup index,
sparse image can be supported by a host file sys-
tem’s sparse file capability, since almost every mod-
ern file system supports sparse files, including GFS,
NTFS, FFS, LFS, ext2/ext3/ext4, reiserFS, Reiser4,
XFS, JFS, VMFS, and ZFS. (The only notable exception
is FAT12/FAT16/FAT32, which is unlikely to be used as
a hypervisor’s file system anyway.) Encryption does not
depend on the lookup index. Snapshot can be imple-
mented without the lookup table, by following VMware
VMDK’s approach of starting a new CoW image for each
snapshot, as opposed to QCOW2’s approach of storing
all snapshots in one image. Compression is the only fea-
ture that cannot be supported by a simple bitmap. Given
the high overhead of doing runtime de-compression and
its limited use in production, we decide to forgo com-
pression.

3.2 The FVD Format and Basic Operations

Figure 4 shows a simplified view of the FVD image
format. An FVD image consists of a metadata file and a
data file.2 Similar to QCOW2, an FVD image is based

2FVD also supports storing metadata and data in a single file.

on a read-only backing image. The FVD header stores a
reference to the backing image. The header is followed
by a bitmap, with one bit for each data block in the vir-
tual disk. If a bit is set, the corresponding block’s cur-
rent content is stored in the FVD image. Otherwise, the
block’s current content is stored in the backing image.

FVD maintains a linear mapping between a block’s
VBA and IBA. When the VM writes to a block with
VBA d, the FVD driver stores the block at offsetd of
the FVD data file, without any address translation. FVD
totally relies on the host OS for storage allocation. If the
FVD data file is stored on a host file system that supports
sparse files, no storage space is allocated for a data block
in the virtual disk until data are written into that block.

To start a new VM, the host creates an FVD metadata
file on its DAS, whose backing image points to an im-
age template on NAS. Initially, the FVD data file is com-
pletely empty. In Figure 4, the FVD data file is larger
than the backing image, which reflects the fact that a
single backing image can be used to create VMs whose
virtual disks are of different sizes (see Section 2.2).re-
size2fscan expand the file system in the backing image to
the full size of the virtual disk. During this process, new
or modified file system metadata are stored in the FVD
data file because of the copy-on-write behavior. The VM
is then booted with the expanded root file system. At this
point, the FVD data file is still almost empty.

The FVD driver in QEMU handles disk I/O requests
issued by a VM. Below, we first describe a naive imple-
mentation of the FVD driver to illustrate the basic oper-
ations, and then present optimizations that help signifi-
cantly improve performance.

When handling a disk write request issued by a VM,
the FVD driver executes the following steps sequentially
to guarantee data integrity in the even of a host crash:
1) store data in the FVD data file and wait until the data
are persisted on the physical disk, 2) update the bitmap
and wait until the bitmap is persisted on the physical
disk, and 3) acknowledge to the VM the completion of
the write. Step 2 is skipped if the corresponding bits in
the bitmap are set previously. A bit in the bitmap repre-
sents the state of a full block. If the I/O request is not
aligned on the block boundary, in Step 1, the driver reads
a full block from the backing image, merges it with the
data being written, and writes the full block to the FVD
data file.

When handling a disk read request from the VM, the
FVD driver checks the bitmap to determine if the re-
quested data are in the FVD data file. If so, the data are
read from the FVD data file. Otherwise, the data are read
from the backing image and returned to the VM. While
the VM continues to process the returned data, in the
background, a copy of the returned data is saved in the
FVD data file and the bitmap is updated accordingly. Fu-

5

ture reads for the same data will get them from the FVD
data file on DAS rather than from the backing image on
NAS. This copy-on-read behavior helps avoid generating
excessive network traffic and I/O load on NAS.

3.3 Optimizations

Compared with the RAW image format, a copy-on-
write image format always incurs additional overheads
in reading and updating its on-disk metadata. In FVD, a
sequence of sequential write requests from the VM may
generate the following write sequence on the physical
disk: write d1, write bit(d1), write d2, write bit(d2),
write d3, write bit(d3), · · ·, and so forth. Hered1, d2,
andd3 are blocks with consecutive VBAs, andbit(di) is
the state bit in the bitmap for blockdi. In this example,
the disk head moves back and forth between the FVD
metadata file and the FVD data file, which is obviously
inefficient.

Below, we first summarize and then explain in detail
several optimizations that eliminate disk I/Os for reading
or updating the on-disk bitmap in common cases. The
word “free” below means no need to update the on-disk
bitmap.

• In-memory bitmap : eliminate the need to repeat-
edly read the bitmap from disk by always keeping a
complete copy of the bitmap in memory.

• Free writes to no-backing blocks: eliminate the
need to update the on-disk bitmap when the VM
writes to a block residing in the “space for expanded
disk data” in Figure 4. This is a common case if the
backing image is reduced to its minimum size by
resize2fs.

• Free writes to zero-filled blocks: eliminate the
need to update the on-disk bitmap when the VM
writes to a block whose original content in the back-
ing image is completely filled with zeros. This is a
common case if the backing image is not reduced to
its minimum size and has many empty spaces.

• Free copy-on-read: eliminate the need to update
the on-disk bitmap when the FVD driver saves a
block in the FVD data file due to copy-on-read.

• Free prefetching: eliminate the need to update
the on-disk bitmap when the FVD driver saves a
prefetched block in the FVD data file.

• Zero overhead once prefetching finishes: entirely
eliminate the need to read or update the bitmap,
once all blocks in the backing image are prefetched.

3.3.1 In-memory Bitmap

Because of its small size, it is trivial to keep the en-
tire bitmap in main memory. In Figure 4, the size of
the bitmap is proportional to the size of the (smaller)
backing image rather than the size of the (larger) FVD
data file. No state bits are needed for blocks residing in
the “space for expanded disk data”, because those “no-
backing” blocks simply cannot be in the backing im-
age. The FVD driver always reads and writes no-backing
blocks directly without checking the bitmap.

QCOW2’s unit of storage space allocation is 64KB. If
one bit in FVD’s bitmap represents the state of a 64KB
block, the size of the bitmap is only 20KB for a 1TB
FVD image based on a 10GB backing image. As a ref-
erence point, 10GB is the maximum backing image size
allowed for an Amazon EC2 VM running on DAS (al-
though the IBM Cloud allows backing images larger than
10GB). Even if the backing image is unreasonably as
large as 1TB, the size of the bitmap is still only 2MB.

3.3.2 Free Writes to No-backing Blocks

As described in Section 2.2, it is a best practice to re-
duce an image template to its minimum size. Note that
1) a minimum-sized image template has no unused free
space, and 2) most data in an image template are read-
only and rarely overwritten by a running VM due to the
template nature of those data, e.g., program executable.
As a result, disk writes issued by a running VM mostly
target blocks residing in the “space for expanded disk
data” in Figure 4. Since those “no-backing” blocks have
no state bits in the bitmap, there is simply no need to
update the bitmap when writing to those blocks.

3.3.3 Free Writes to Zero-Filled Blocks

It is a best practice but not mandatory to reduce an
image template to its minimum size usingresize2fs. If
an image template is not reduced to its minimum size, it
can be a sparse file with many “empty” data blocks never
written before. Reading an empty block returns an ar-
ray of zeros. Below, we describe a VM creation process
that help eliminate the need to update the on-disk bitmap
when the VM writes to a block whose original content in
the backing image is completely filled with zeros. These
zero-filled blocks can be either empty blocks in a sparse
file or non-empty blocks whose contents happen to be
zeros.

For an image templateimage.rawstored in the RAW
format, we use theqemu-imgtool to create an FVD meta-
data file image.fvdwith image.rawas its backing im-
age. LetSin fvd=1 andSin backing=0 denote the two
states of a bit in the bitmap. When creatingimage.fvd,
qemu-imgsearches for zero-filled blocks and set their
states in the bitmap toSin fvd. The states for non-zero
blocks are set toSin backing. The creation ofimage.fvd

6

is an offline process and is only done once for an image
template.image.fvdis stored on NAS together withim-
age.raw. When creating a new VM on a host, it copies
image.fvdfrom NAS to DAS, and optionally expand the
size of the virtual disk by changing thedisk-sizefield in
image.fvd. Copyingimage.fvdis fast because it is a small
FVD metadata file consisting of mostly the bitmap.

When the VM boots, the FVD driver automatically
creates an empty, sparse FVD data file according to the
virtual disk size specified inimage.fvd. Suppose the VM
issues a read request for a block whose original content
in the backing image is filled with zeros, and the VM did
not write to the block before. Because the block’s state is
initialized toSin fvd when creatingimage.fvd, the FVD
driver reads the block from the FVD data file. Because
the VM did not write to the block before, the block is an
empty block in the FVD data file, and the read returns an
array of zeros. This outcome is correct and is identical to
reading from the backing image. This optimization elim-
inates the need to read the block from the backing image
stored on NAS. When the VM writes to this block, the
FVD driver stores the data in the FVD data file without
updating the on-disk bitmap, because the block’s initial
state inimage.fvdis alreadySin fvd.

3.3.4 Free Copy-on-Read and Free Prefetching

When the FVD driver copies a block from the back-
ing image into the FVD data file due to either copy-on-
read or prefetching, it does not immediately update the
block’s state in the on-disk bitmap fromSin backing to
Sin fvd, which reduces disk I/O overhead. This does not
compromise data integrity in the event of a host crash,
because the block’s content in the FVD data file is iden-
tical to that in the backing image and reading from either
place gets the correct data.

This optimization needs to handle the subtle case that
a block brought in through copy-on-read or prefetch-
ing is later overwritten by the VM. For this purpose,
the FVD driver maintains three copies of the bitmap,
calledon-disk bitmap, in-memoryaccurate-state, and in-
memorystale-state, respectively. When a VM boots, the
on-disk bitmap is loaded into memory to initialize both
the accurate-state and the stale-state. At runtime, the
FVD driver always keeps the accurate-state up-to-date,
but lazily updates the on-disk bitmap in order to reduce
disk I/O overhead. The stale-state is an in-memory mir-
ror of the on-disk bitmap for efficient access.

When handling the VM’s read request for a block
whose accurate-state isSin fvd, the FVD drivers reads
the block from the FVD data file. When handling
the VM’s read request for a block whose accurate-state
is Sin backing, the FVD driver reads the block from
the backing image and returns it to the VM. In the
background, the FVD driver writes the block into the

FVD data file and updates the block’s accurate-state
from Sin backing to Sin fvd. However, the block’s on-
disk bitmap and stale-state are not updated and remain
Sin backing, which reduces disk I/O overhead. The
accurate-state is flushed to update the on-disk bitmap
lazily, either periodically (e.g., once every hour) or only
when the VM is shut down or suspended.

When the VM issues a write request for a block, the
FVD drivers checks the stale-state (as opposed to the
accurate-state) to determine the appropriate action. If
the block’s stale-state is alreadySin fvd, the FVD driver
simply writes the block to the FVD data file. If the
block’s stale-state isSin backing, the FVD driver writes
the block to the FVD data file, updates the block’s on-
disk bitmap state, stale-state, and accurate-state all to
Sin fvd, and finally acknowledges to the VM the com-
pletion of the write operation.

3.3.5 Zero Overhead once Prefetching Finishes

A block’s state may be initialized toSin fvd if its orig-
inal content in the backing image is completely filled
with zeros. As the VM runs, a block’s state may also be
changed fromSin backing to Sin fvd due to a write is-
sued by the VM, a copy-on-read operation, or a prefetch-
ing operation. Once prefetching finishes, every block’s
state isSin fvd. The FVD metadata file can be discarded
and the FVD data file can be used as a pure RAW image.
Even it is still opened as an FVD image, a field in the
FVD metadata file indicates that prefetching has finished
and the FVD driver simply passes through all disk I/O
requests issued by the VM to the RAW driver without
adding any overhead in reading or updating the bitmap.

3.3.6 Discussion of Alternative Optimizations

FVD stores the bitmap and the data blocks separately.
One optimization is to partition data blocks into block
groups, like that in file systems. Each block group has its
own bitmap and data blocks. This optimization reduces
disk seek time between writing a block and updating its
state bit. However, we decide not adopt this optimiza-
tion because 1) with the other optimizations, it is a rare
operation to update the on-disk bitmap, and 2) this opti-
mization makes the layout of the FVD data file different
from that of a RAW image. Once prefetching finishes,
an FVD data file is identical to a RAW image, which has
the best performance and can be easily manipulated by
many existing tools.

When the FVD driver performs a copy-on-read opera-
tion, one potential optimization is to delay the action of
saving the data block into the FVD data file. This of-
fers two benefits. First, it may avoid interference with
other disk reads or writes that are on the critical path of
the VM’s execution. Second, after a short delay, the save
operation may no longer be needed, if the VM’s oper-

7

ation on the block follows a read-modify-write pattern,
i.e., the VM reads the block, modifies it, and then writes
it back. Since the block is modified, it is unnecessary and
actually incorrect to save the old content to the disk.

All the optimizations discussed so far focus on im-
proving runtime performance. Other optimizations may
help offline manipulation of an FVD image, e.g., image
backup and format conversion. A main challenge is to ef-
ficiently identify parts of an FVD image that are sparse.
Due to the lack of support in Linux system calls, a user-
level program cannot tell whether a block is empty until
it reads the block and checks if the block is filled with
zeros. Our measurement shows that a singled-threaded
program can perform the reading and checking opera-
tion on a sparse file at the throughput of about 822MB/s.
At this rate, it takes 22 minutes to scan through a 1TB
completely empty file.

To facilitate offline image manipulation, FVD can
be configured to track the sparseness of “no-backing”
blocks residing in the “space for expanded disk data” in
Figure 4, by adding state bits for those blocks. When
handling the VM’s write request for a no-backing block,
the FVD driver writes the block to the FVD data file,
updates the in-memory bitmap, but does not update the
on-disk bitmap immediately. The in-memory bitmap is
flushed to update the on-disk bitmap lazily, either peri-
odically or when the VM is shut down, which reduces
disk I/O overhead. The FVD metadata file has a field
that indicates whether the VM went through a clean shut-
down last time and hence the on-disk bitmap is up-to-
date. In the rare event of a host crash, an offline tool
can scan through the image and fix incorrect states in the
bitmap. The does not compromise data integrity or a run-
ning VM’s correctness.

To facilitate offline image manipulation, FVD can also
be configured to more precisely track the state of a block
residing in the “space for disk data” in Figure 4. Instead
of using one bit, it can use two bits to represent four
states:Sin backing zero, Sin backing, Sin fvd clean, and
Sin fvd dirty. Sin backing zero means the block’s cur-
rent content is in the backing image, and that content is
filled with zeros.Sin backing means the block’s current
content is in the backing image, and that content is not
filled with zeros. Sin fvd clean means the block’s con-
tent is in the FVD data file, and this content is identical
to that in the backing image.Sin fvd dirty means the
block’s current content is in the FVD data file, and this
content differs from that in the backing image. The FVD
driver updates the on-disk bitmap lazily. Only a state
change toSin fvd dirty need be written to the disk im-
mediately.

3.4 Adaptive Prefetching

FVD uses copy-on-read to bring data blocks from
NAS to DAS on demand as they are accessed by the VM.
Optionally, prefetching uses idle time to copy not-yet-
touched blocks from NAS to DAS. Below, we describe
the details of FVD’s adaptive prefetching algorithm.

3.4.1 What to Prefetch

There are multiple ways of choosing the data to
prefetch: locality-based prefetching, profile-directed
prefetching, and whole-image prefetching. With
locality-based prefetching, when the VM reads a data
blockd that is currently stored on NAS, the driver copies
from NAS to DAS not only blockd but also other blocks
whose VBAs are close to the VBA ofd. FVD does not do
this type of prefetching, because it is already performed
by other components, e.g., guest OS, NFS server, and
disk controller.

FVD supports profile-directed prfetching. It uses of-
fline profiling to identify data blocks that are read dur-
ing typical uses of a VM image template, e.g., booting
the VM, starting a Web server, and serving some Web
requests. The VBAs of those blocks are sorted based
on priority and locality (e.g., blocks needed earlier have
a higher priority and blocks with close-by VBAs are
grouped together) and stored in the header of the FVD
metadata file. At runtime, the FVD driver prefetches
those blocks from NAS to DAS accordingly.

After profile-directed prfetching finishes, the FVD
driver may optionally perform whole-image prefetching.
It finds idle time to sequentially copy the entire im-
age from NAS to DAS. A data block is skipped during
prefetching if it is already stored on DAS. Once whole-
image prefetching finishes, a flag is set in the FVD meta-
data file, and all subsequent reads or writes to the image
incur no overhead in checking or updating the bitmap, as
described in Section 3.3.5.

3.4.2 When to Prefetch

Prefetching is a resource intensive operation, as it may
transfer gigabytes of data across a heavily shared net-
work. To avoid causing a contention on any resource
(including network, NAS, and DAS), FVD can be con-
figured to 1) delay prefetching, 2) limit prefetching rate,
and/or 3) automatically pause prefetching when a re-
source contention is detected.

A policy controls when prefetching starts. For in-
stance, for the use case of instant VM creation, prefetch-
ing may start after a VM runs for 12 hours so that
prefetching is not performed for short-lived VMs. For
the use case of VM migration, prefetching may start im-
mediately after the VM runs at the new location.

Once prefetching starts, its operation follows a
producer-consumer pattern. A producer reads data from

8

the backing image, and puts the data in a constant-size
in-memory buffer pool. A consumer writes data in the
buffer pool to the FVD data file. At any moment in
time, the producer has at most one outstanding read to
the backing image, and the consumer has at most one
outstanding write to the FVD data file. If the buffer pool
is full, the producer stalls. If the buffer pool is empty, the
consumer stalls.

Two throughput limits (KB/s) for the producer are
specified in the FVD metadata file, i.e., the lower limit
and the upper limit. The producer periodically measures
and adapts the throughput of reading the backing image.
The throughput is capped at the upper limit using a leaky
bucket algorithm. If the throughput drops below the
lower limit, the producer concludes that somebody else
is using the network or NAS, and a resource contention
has occurred. The producer then makes a randomized
decision. With a 50% probability, it temporarily pauses
prefetching for a randomized period of time. If the
throughput is still below the lower limit after prefetch-
ing resumes, with a 50% probability it pauses prefetch-
ing again, and so forth. If multiple VMs run on different
hosts and their FVD drivers attempt to do prefetching
from the same NAS server at the same time, they will de-
tect the contention and 50% of them will pause prefetch-
ing in each round, until either all of them pause prefetch-
ing or the bottleneck resource is relieved of congestion,
whichever comes first. If an FVD driver contends with a
non-FVD component (e.g., another VM accessing persis-
tent storage stored on NAS), on average, the FVD driver
pauses prefetching after two rounds of making a random-
ized decision (note that 1+0.5+0.25+0.125+· · ·=2).

Similarly, the consumer is controlled by two through-
put limits. The consumer’s throughput drops below the
lower limit if there is a contention on DAS. To filter out
noises, the FVD driver measures prefetching throughput
as a moving average.

Unlike PARDA [9] and TCP congestion control,
FVD’s prefetching is more conservative in using re-
sources. In the face of a contention, it pauses prefetching
rather than trying to get a fair share of the bottleneck re-
source, because prefetching is not an urgent operation.

4 Experimental Results
We implemented FVD in QEMU. Currently, the alter-

native optimizations described in Section 3.3.6 are not
supported. The features of FVD include copy-on-write
(CoW), copy-on-read (CoR), and adaptive prefetching.
We evaluate these features both separately and in a com-
bination.

The experiments are conducted on IBM HS21
blades connected by 1Gb Ethernet. Each blade has
two 2.33GHz Intel Xeon 5148 CPUs and a 2.5-inch
hard drive (model MAY2073RC). The blades run

QEMU 0.12.30 and Linux 2.6.32-24 with the KVM
kernel modules. QEMU is configured to use di-
rect I/O. The benchmarks include PostMark [12],
Iperf [11], IBM WebSphere Application Server
(http://www.ibm.com/software/websphere), Linux boot-
ing, Linux kernel compilation, and a micro benchmark
similar to iozone [10]. A QCOW2 or FVD image
V is stored on the local disk of a bladeX, whereas
the backing image ofV is stored on another bladeY
accessible through NFS. A RAW image is always stored
on the local disk of a blade.

4.1 Copy-on-Write

To evaluate the CoW feature, we compare QCOW2
with a version of FVD that disables copy-on-read and
prefetching. QCOW2 is a good baseline for compari-
son, because both QCOW2 and FVD are implemented in
QEMU, and QCOW2 is the well-maintained “native” im-
age format of QEMU. Out of the 15 image formats sup-
ported by QEMU, only QCOW2 and RAW are “primary
features” (see http://wiki.qemu.org/Features). QCOW2
has also been ported to Xen, since Xen does not have its
own CoW image format,

4.1.1 Microbenchmark Results

Figure 5 presents the results of running theRandIO
micro benchmark we developed. RandIO is similar to
the random I/O mode of iozone [10] but with a key dif-
ference. iozone does not differentiate the first write and
the second write to a block, while RandIO does. This dif-
ference is important in evaluating a CoW image format,
because the first write incurs metadata update overhead
and hence is slower than the second write.

In Figure 5, “H: Hypervisor” means running Ran-
dIO directly in a native Linux without virtualization, and
RandIO performs random I/Os on a 50GB raw disk par-
tition not formatted with any file system. “R: RAW”
means running RandIO in a VM whose virtual disk uses
the RAW image format. The host stores the RAW im-
age on a raw partition. Inside the VM, the virtual disk
is divided into two partitions. The first partition of 1GB
stores the root ext3 file system, while the second parti-
tion of 50GB is unformatted. RandIO runs in the VM
and performs random I/Os on the second raw partition.
Using raw partitions both in the host and in the VM, it
avoids the overhead of a file system and precisely mea-
sures the performance of a QEMU block device driver.

In Figure 5, the configuration of “F: FVD” is similar to
that of “R: RAW” except that the image format is FVD.
The backing image of the FVD image uses the RAW
format, contains a basic installation of Ubuntu server
9.04, and is reduced to its minimum size (501MB) byre-
size2fs. The backing image’s root file system is expanded
to occupy the first 1GB partition of the FVD image. The

9

0

1

2

3

4

5

6

7

8

First Write Second Write ReadR
an

do
m

 IO
 T

hr
ou

gh
pu

t (
M

B
 /

se
c)

H: Hypervisor R: RAW F: FVD Q: QCOW2

H R F

Q

H
H

R F

Q

R F

Q

Figure 5: Comparing different image formats by per-
forming random I/Os on a 50GB raw disk partition.

image creation procedure is trivial. It is automated by
a shell script with only five commands: 1) “qemu-img
create” to create the FVD image; 2) “qemu-nbd -c” to
mount the image; 3) “fdisk” to change the partition ta-
ble; 4) “resize2fs” to expand the root file system; and 5)
“qemu-nbd -d” to unmount the image. The execution of
the script takes only 0.4 seconds. The configuration of
“Q: QCOW2” is similar to that of “F: FVD” except that
it uses the QCOW format.

Figure 5 shows that FVD significantly outperforms
QCOW2. For the different I/O operations (first write,
second write, and read), the throughput of FVD is 211%,
116%, and 126% higher than that of QCOW2, respec-
tively. The overhead in QCOW2 is mainly due to two
factors: 1) on the first write, QCOW2 needs to allocate
storage space and update is on-disk metadata; and 2) on
read or the second write, QCOW2 needs to load parts
of its on-disk metadata into memory in order to locate
the read or write target. QCOW2’s in-memory meta-
data cache is not large enough to hold all metadata and
the cache hit rate is low for random I/Os. By contrast,
FVD incurs almost no overhead in reading or updating its
on-disk metadata, due to the optimization of “free write
to no-backing blocks” described in Section 3.3.2. The
throughput of “F: FVD” and “R: RAW” is only about
2.4% lower than that of “H: Hypervisor”, indicating that
the overhead of storage virtualization is low. This opti-
mistic result is due to the experiment setup—the I/O size
is relatively large (64KB), it uses paravirtualization (virt-
io), and it incurs no overhead of a host file system. In
other configurations, the overhead can be much higher.

4.1.2 PostMark Results

Figure 6 shows the performance of PostMark [12] un-
der different configurations. PostMark is a popular file
system benchmark created by NetApp. The execution
of PostMark consists of two phases. In the first “file-
creation” phase, it generates an initial pool of files. In
the second “transaction” phase, it executes a set of trans-

actions, where each transaction consists of some file op-
erations (creation, deletion, read, and append). In this
experiment, the total size of files created in the first phase
is about 50GB, and the size of an individual file ranges
from 10KB to 50KB. The setup of this experiment is sim-
ilar to that in Figure 5, but the second 50GB partition in
the virtual disk is formatted into an ext3 file system, on
which PostMark runs.

In Figure 6, the “Hypervisor” bar means running Post-
Mark in a native Linux without virtualization. The
“RAW”, “FVD”, and “QCOW2” bars mean running
PostMark in a VM whose image uses the different for-
mats, respectively. For the “virtio-ext3” group, the VM’s
block device uses the paravirtualizedvirtio interface and
the VM image is stored on a host ext3 file system. For
the “IDE-partition” group, the VM’s block device uses
the IDE interface and the VM image is stored on a raw
partition in the host.

The paravirtualizedvirtio interface shows significant
performance advantages over the IDE interface. In Fig-
ure 6(a), the throughput of virtio is 35% higher than that
of IDE (by comparing the “RAW” bar in the “virtio-
partition” group with the “RAW” bar in the “IDE-
partition” group). However, even with virtio, storage
virtualization still incurs significant overhead. The “Hy-
pervisor” bar is 22% higher than the “RAW” bar in the
“virtio-partition” group.

Storing the VM image on a raw partition provides
much better performance than storing the image on a host
ext3 file system. In Figure 6(a), the throughput of raw
partition is 63% higher than that of ext3 (by comparing
the “RAW” bar in the “virtio-partition” group with the
“RAW” bar in the “virtio-ext3” group).

Figure 6 again shows the significant advantages of
FVD over QCOW2. In the file creation phase, the
throughput of FVD is 249% higher than that of QCOW2
(by comparing the “FVD” bar and the “QCOW2 bar
in the “virtio-partition” group of Figure 6(a)). In the
transaction phase, the throughput of FVD is 77% higher
than that of QCOW2 (by comparing the “FVD” bar and
the “QCOW2 bar in the “virtio-partition” group of Fig-
ure 6(b)).

To understand the root cause of the performance dif-
ference, we perform a deep analysis for the results in
the “virtio-partition” group of Figure 6(a). We run the
blktrace tool in the host to monitor disk I/O activities.
QCOW2 causes 45% more disk I/Os than FVD does, due
to QCOW2’s reads and writes to its metadata. However,
this still does not fully explain the 249% difference in
throughput between FVD and QCOW2. The other factor
is increased disk seek distance, as explained below.

Figure 7(a) and (b) shows the histogram of of disk I/Os
issued by QCOW2 and FVD, respectively. A point on the
x-axis is a normalized location of the raw partition that

10

0

200

400

600

800

1000

H
yp

er
vi

so
r

R
A

W

F
V

D

Q
C

O
W

2

R
A

W

F
V

D

Q
C

O
W

2

R
A

W

F
V

D

Q
C

O
W

2

F
ile

s
cr

ea
te

d
pe

r
se

co
nd

virtio-partition virtio-ext3 IDE-partition

0

10

20

30

40

50

H
yp

er
vi

so
r

R
A

W

F
V

D

Q
C

O
W

2

R
A

W

F
V

D

Q
C

O
W

2

R
A

W

F
V

D

Q
C

O
W

2

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

virtio-partition virtio-ext3 IDE-partition

(a) File creation throughput (b) Transaction throughput

Figure 6: Performance of PostMark under different image formats.

 0

 20000

 40000

 60000

 80000

 100000

 0 0.2 0.4 0.6 0.8 1

H
is

to
gr

am
 o

f D
is

k
IO

Normalized Physical Block Address

 0

 20000

 40000

 60000

 80000

 100000

 0 0.2 0.4 0.6 0.8 1

H
is

to
gr

am
 o

f D
is

k
IO

Normalized Physical Block Address

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 o

f D
is

k
IO

Normalized Disk Seek Distance

QCOW2

FVD

(a) Histogram of disk I/Os (b) Histogram of disk I/Os (c) Comparing CDF of disk seek
issued by FVD. issued by QCOW2. distances in FVD and QCOW2.

Figure 7: QCOW2 increases disk seek distance because it stores all metadata of the guest file system at the beginning
of the image, despite the fact that the metadata’s VBAs are deliberately scattered for better reliability and locality.

stores the VM image. Here0 means the beginning of
the partition,0.5 means the middle of the partition, and1
means the end of the partition. They-axis is the number
of I/O requests that fall on a location of the raw partition.

Figure 7(b) has a spike in the middle of the raw par-
tition, which is due to frequent accesses to the guest file
system’s journal file. Figure 7(a) has a different shape.
QCOW2 causes two large spikes at the beginning of the
raw partition, which are due to frequent accesses to the
guest file system’s metadata and journal file. As de-
scribed in Section 2.3, QCOW2 puts all those metadata
at the beginning of the raw partition, despite of their scat-
tered VBAs. As a result, in QCOW2, the disk head trav-
els through a long distance between accessing the meta-
data of a file in the guest file system and accessing the
file’s content blocks. This effect is clearly shown in Fig-
ure 7(c). Thex-axis is the normalized disk seek dis-
tance between two back-to-back I/O operations, where
1 means the disk head moves all the way from one end
of the raw partition to the other end. The average of the
normalized seek distance is 0.146 for QCOW2, whereas
it is only 0.026 for FVD, i.e., 5.6 times lower. The long

0

200

400

600

800

1000

Hypervisor VM-disk-
idle

RAW FVD QCOW2

N
et

w
or

k
 T

hr
ou

gh
pu

t
(M

bi
ts

 /
se

c)

Figure 8: QCOW2’s disk activities can severely impact
network performance.

disk seek distance is the reason why QCOW2 issues only
45% more disk I/Os than FVD does, but the difference in
file creation throughput is as high as 249%.

4.1.3 Disk I/O’s Impact on Network I/O

Unlike the FVD driver’s fully asynchronous imple-
mentation, the QCOW2 driver synchronously reads and

11

0

200

400

600

800

1000

F
V

D
-c

o
ld

Q
C

O
W

2
-w

ar
m

Q
C

O
W

2
-c

o
ld

F
ile

s
C

re
at

ed
 P

er
 S

ec
on

d

60

70

80

90

F
V

D
-c

o
ld

Q
C

O
W

2
-w

ar
m

Q
C

O
W

2
-c

o
ld

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

Figure 9: FVD still outperforms QCOW2 even if the ex-
periment is designed to favor QCOW2.

writes its on-disk metadata in a critical region that blocks
all other (disk or non-disk) I/O activities. Because disk
I/Os are slow, the blocking time can severely affect other
I/O activities. To measure disk I/O’s impact on network
I/O, the experiments in Figure 8 run two benchmarks
concurrently: PostMark to drive disk I/O and Iperf [11]
to drive network I/O. The VM’s configuration is the same
as that for the “virtio-partition” group in Figure 6(a),
except that it is configured with two virtual CPUs to
ensure that CPU is not the bottleneck. The VM uses
the paravirtualizedvirtio interface for both network and
disk. Figure 8 reports the network throughput achieved
by Iperf during the file creation phase of PostMark. The
“Hypervisor” bar means running Iperf directly in native
Linux, without virtualization and without running Post-
Mark. The “VM-disk-idle” bar means running Iperf in a
VM alone, without running PostMark. In this case, the
choice of image format does not matter. The “RAW”,
“FVD”, and “QCOW2” bars means running Iperf and
PostMark in a VM concurrently, while using different
image formats. The network throughput achieved with
FVD is 253% higher than that with QCOW2. QCOW2’s
synchronous access to its on-disk metadata is a known
issue, but it is difficult to fix due to the complexity of
QCOW2.

4.1.4 An Experiment that Favors QCOW2

To understand the “potential” of QCOW2, we delib-
erately design one experiment that allows QCOW2 to
work most efficiently. This experiment’s setup is simi-
lar to that for the “virtio-partition” group in Figure 6(a),
but PostMark is configured to work on about 900MB data
stored on a 1.2GB partition of the virtual disk. QCOW2’s
metadata for these 900MB data can completely fit in
QCOW2’s in-memory metadata cache. Moreover, due
to the small size of this 1.2GB partition (1.2GB is only
1.7% of the 73GB physical disk), the disk seek dis-
tance on this 1.2GB partition is short, which makes

0

200

400

600

800

1000

1200

1400

1 11 21 31 41 51 61 71
Linux Kernel Compilation Round

A
ct

ua
l

D
is

k
 S

pa
ce

 U
se

d
 (

M
B

)

QCOW2

FVD

Figure 10: Both QCOW2 and FVD work well with
sparse images. The disk space usage grows as needed.

QCOW2’s VBA-IBA mismatch problem much less se-
vere than that shown in Figure 7. This condition favors
QCOW2. In Figure 9, the difference between “QCOW2-
cold” and “QCOW2-warm” is that, before running Post-
Mark, “QCOW2-warm” warms up QCOW2 by writing
once to all unused free spaces in the guest ext3 file sys-
tem. As a result, all the storage spaces that will be
used by PostMark have already been allocated in the
QCOW2 image, and all QCOW2’s metadata are cached
in memory. Both conditions favor QCOW2. Even in
this case, FVD still outperforms QCOW2. The file cre-
ation throughput of “FVD-cold” is 252% and 16% higher
than that of “QCOW2-cold” and “QCOW2-warm”, re-
spectively. The transaction throughput of “FVD-cold” is
19% and 1.6% higher than that of “QCOW2-cold” and
“QCOW2-warm”, respectively.

4.1.5 Sparse Image Support

The experiment in Figure 10 demonstrates that both
QCOW2 and FVD support sparse images. In this exper-
iment, the VM image is stored in a host ext3 file system,
whose sparse file capability is leveraged by FVD to sup-
port sparse images. In the VM, a script repeatedly com-
piles the Linux kernel by executing“make” and“make
clean”. Figure 10 records the the actual disk spaces
used by QCOW2 and FVD after each round of compila-
tion. Both QCOW2 and FVD work well sparse images.
The actual disk spaces consumed grow as needed, and
are much smaller than the full size of the virtual disk.
QCOW2 uses about 23% more disk spaces than FVD,
because QCOW2 allocates disk spaces at a granularity
larger than ext3 does, i.e., 64KB vs. 4KB.

4.1.6 Different Ways of Using FVD

Figure 11 compares the different ways of using FVD.
The experiment setup is similar to that for the “virtio-
partition” group in Figure 6(a). “Min-size FVD” enables
the optimization described in 3.3.2, which reduces the
backing image to its minimum size. “Zero-aware FVD”
enables the optimization described in 3.3.3, which ini-

12

0

200

400

600

800

M
in

-s
iz

e
F

V
D

Z
er

o
-a

w
ar

e
F

V
D

N
aï

ve
 F

V
D

Q
C

O
W

2

F
ile

s
C

re
at

ed
 P

er
 S

ec
on

d

0

10

20

30

40

M
in

-s
iz

e
F

V
D

Z
er

o
-a

w
ar

e
F

V
D

N
aï

ve
 F

V
D

Q
C

O
W

2

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

Figure 11: Comparison of different ways of using FVD.

0

5

10

15

20

25

30

R
A

W
 (

pa
rt

iti
on

)

Q
C

O
W

2
(p

ar
tit

io
n)

F
V

D
 (

pa
rt

iti
on

)

R
A

W

F
V

D
-C

oW

Q
C

O
W

2

F
V

D

F
V

D
 (

re
bo

ot
)

Q
C

O
W

2
(r

eb
oo

t)V
M

 B
oo

t T
im

e
(s

ec
on

ds
)

Figure 12: Time to boot a VM under different configura-
tions.

tializes a block’s state toSin FV D if the block’s original
content in the backing image is filled with zeros. “Naive-
FVD” enables neither optimization. The results show
that “min-size FVD” has significant advantages. The file
creation throughput of “min-size FVD” is 65% and 146%
higher than that of “zero-aware FVD” and “naive-FVD”,
respectively. The transaction throughput of “min-size
FVD” is 8.6% higher than that of “zero-aware FVD” and
”naive-FVD”. “Zero-aware FVD” is less efficient than
“min-size FVD” because the guest file system’s meta-
data blocks are non-zeros and writing to those blocks in
“zero-aware FVD” still requires updating FVD’s on-disk
bitmap. On the other hand, even the less efficient “naive-
FVD” outperforms QCOW2 by 42% and 59% in file cre-
ation and transaction, respectively.

4.2 Copy on Read

Figure 12 compare the time it takes to boot a VM
under different configurations. “RAW (partition)”,
“QCOW2 (partition)”, and “FVD (partition)” store the
VM image on a raw partition in the host. All the other
configurations store the VM image on a host ext3 file sys-
tem. The “FVD-CoW” configuration only enables copy-
on-write, whereas the other “FVD” configurations enable
both copy-on-write (CoW) and copy-on-read (CoR). As
the VM boots, CoR-enabled FVD stores about 30MB
data into the FVD data file due to the copy-on-read be-

0

2

4

6

8

10

0 50 100 150 200 250
Time (seconds)N

et
w

or
k

T
ra

ffi
c

(M
B

/s
ec

)

Boot
Linux Start

WAS

Reboot
Linux Restart

WAS

(a) QCOW2

0

2

4

6

8

10

0 50 100 150 200 250
Time (seconds)N

et
w

or
k

T
ra

ffi
c

(M
B

/s
ec

)

Boot
Linux Start

WAS
Reboot
Linux

Restart
WAS

(b) FVD

Figure 13: FVD’s copy-on-read feature helps reduce net-
work traffic and I/O load on the NAS server.

havior. The boot time of the “FVD” bar is 3.5 seconds
higher than that of the “QCOW2” bar. This is mainly due
to the overhead of the host ext3 file system rather than the
overhead of FVD itself. Without using the host ext3 file
system, the VM boot time of “FVD (partition)” is only
0.4 seconds longer than that of “QCOW2 (partition)”.
Copying data into a sparse image file stored on ext3 in-
curs a high overhead, because it requires storage space
allocation. However, the overhead of CoR is a one-time
effect. Rebooting an FVD image (the “FVD (reboot)”
bar) is actually faster than rebooting an QCOW2 image
(the “QCOW2 (reboot)” bar).

CoR avoids repeatedly reading a data block from NAS,
by saving a copy of the returned data on DAS for later
reuse, which helps avoid generating excessive network
traffic and I/O load on NAS. This effect is shown in Fig-
ure 13. This experiment boots a Linux VM and then
starts IBM WebSphere Application Server (WAS) in the
VM, during which we measure the network traffic for
reading data from the backing image. The VM and WAS
are rebooted once to test the effect of CoR. With FVD,
the first boot of WAS takes 51.0 seconds, and the sec-
ond boot of WAS takes 42.1 seconds. The second boot
is faster and introduces no network traffic because CoR
during the first boot already saved the needed data on
DAS. With QCOW2, the first boot and the reboot both
take about 55.1 seconds, and generate roughly the same
amount of network traffic.

4.3 Adaptive Prefetching
Figure 14 evaluates FVD’s adaptive prefetching capa-

bility. The x-axis shows the time since a VMS1 boots.
They-axis shows the network traffic generated by read-

13

0

5

10

15

20

25

30

35

40

0 30 60 90 120 150 180 210

Time (seconds)

N
et

w
or

k
T

ra
ffi

c
(M

B
/s

ec
)

boot
VM

start
prefetching

pause
prefetching

resume
prefetching

Figure 14: FVD automatically finds resource idle time to
perform prefetching.

ing data from the backing image stored on NAS. Con-
trolled by a policy, prefetching automatically starts at
time 80 seconds. At time 120 seconds, another VMS2

on another host starts to run PostMark on a EBS-like per-
sistent virtual disk whose image is stored on NAS. The
disk I/Os generated by the two VMs cause a contention
on NAS, and the FVD driver of VMS1 quickly detects
that the prefetching throughput drops below the specified
lower limit (20MB/s) and pause prefetching. From time
to time, it temporarily resumes prefetching to check if
the contention disappears. Finally, as PostMark running
in VM S2 finishes at time 178 seconds, the FVD driver
of VM S1 resumes prefetching permanently.

5 Related Work
FVD supports copy-on-write (CoW), copy-on-read

(CoR), and adaptive prefetching. These features are mo-
tivated by the use cases in a Cloud, especially, instant
VM creation and instant VM migration. An image tem-
plate in a Cloud is used to create many VMs repeatedly.
Therefore, it is worthwhile to perform one-time offline
optimizations on the image template in exchange for su-
perior VM runtime performance. Many optimizations in
FVD follow this philosophy (see Section 3.3). These op-
timizations are novel and critical for performance. Pre-
vious works use the CoW and CoR techniques in various
settings [5, 6, 15, 21], but do not study how to optimize
the CoW and CoR techniques themselves.

Despite the widespread use of VMs and the availabil-
ity of VM image format specifications to the public, there
is no published research on how image formats impact
disk I/O performance. Our study reveals that all popu-
lar CoW image formats (including QCOW2 [16], Virtu-
alBox VDI [25], VMware VMDK [26], and Microsoft
VHD [17]) use an index structure to translate between
VBAs and IBAs, and allocate storage space for a data
block at the end of the image file when the block is writ-
ten for the first time, regardless of its VBA. This mis-
match between VBAs and IBAs invalidates many opti-

mizations implemented in guest file systems (see the dis-
cussion in Section 2.3).

Existing virtual disks support neither CoR nor adap-
tive prefetching. Some virtualization solutions do sup-
port CoR or prefetching, but they are implemented for
certain specific use cases, e.g., virtual appliance [6], mo-
bile computing [15], or VM migration [21]. By contrast,
FVD provides CoR and prefetching as standard features
of a virtual disk, which can be easily deployed in many
different use cases.

Collective [6] provides virtual appliances, i.e., desktop
as a service, across the Internet. It uses CoW and CoR
to hide network latency. Its local disk cache makes no
effort to preserve a linear mapping between VBAs and
IBAs. As a result, it may cause a long disk seek dis-
tance as that in popular CoW image formats. Collective
also performs adaptive prefetching. It halves the prefetch
rate if a certain “percentage” of recent requests experi-
encing a high latency. Our experiments show that it is
hard to set a proper “percentage” to reliably detect con-
tentions. Because storage servers and disk controllers
perform read-ahead in large chunks for sequential reads,
a very large percentage (e.g., 90%) of a VM’s prefetch-
ing reads hit in read-ahead caches and experience a low
latency. When a storage server becomes busy, the “per-
centage” of requests that hit in read-ahead caches may
change little, but the response time of those cache-miss
requests may increase dramatically. In other words, this
“percentage” does not correlate well with the achieved
disk I/O throughput.

Both Xen [7] and VMware [18] support live VM mi-
gration if the VM image is stored on NAS or SAN.
QEMU can migrate a VM image stored on DAS, but it
takes a pre-copy approach, i.e., first copying the virtual
disk and then making the VM fully functional at the new
location. We argue that FVD’s copy-on-read approach is
more suitable for storage migration, because 1) storage
has much more data than memory and hence pre-copy
takes a long time, and 2) unlike memory accesses, disk
I/Os are less sensitive to the network latency experienced
during copy-on-read.

In terms of the CoW and CoR techniques, the VM mi-
gration work by Sapuntzakis et al. [21] is the closest to
FVD. It also uses a bitmap to track the states of data
blocks, but performs no optimizations to reduce the over-
head in updating the on-disk bitmap, which is critical to
disk I/O performance, as shown in Figure 11. It suffers
from the residual dependency problem, as pointed out by
Bradford et al. [5], i.e., after migration, a VM at the new
location still depends on data at the old location. FVD
solves this problem using prefetching.

CoW has also been implemented in logical volume
managers and file systems [4, 19], where data locality is-
sues exist, similar to the VBA-IBA mismatching problem

14

in CoW virtual disks. Peterson [20] and Shah [22] pro-
pose techniques to put the CoW data close to the original
data, assuming they are stored on the same disk. This is
not an issue in a Cloud because the CoW data are stored
on DAS while the original data are stored on NAS.

Several existing works are related to FVD’s adap-
tive prefetching algorithm. MS Manners [8] measures
the progress of a low-importance process and suspend
it when its progress is low so that it does not degrade
the performance of high-importance processes. TCP
Nice [24] and TCP-LP [14] use network resources con-
servatively to transfer low-priority traffic.

6 Conclusion
This paper presents the FVD image format and its de-

vice driver for QEMU. FVD distinguishes itself in both
performance and features. It supports copy-on-write,
copy-on-read, and adaptive prefetching. These features
enable instant VM creation and instant VM migration,
even if the VM image is stored on direct-attached stor-
age. To achieve high performance, the design of FVD
debunks the common practice of mixing the function
of storage space allocation with the function dirty-block
tracking. Experiments show that FVD significantly out-
performs QCOW2, owing to the aggressive optimiza-
tions.

Although FVD is motivated by our unsatisfied needs
in the IBM Cloud, it is equally applicable in both
Cloud and non-Cloud environments. At the very least,
FVD’s copy-on-write feature can be a high-performance
alternative to QCOW2. FVD is mature and we ac-
tively seek for adoption in the QEMU mainline (see
http://sites.google.com/site/tangchq/qemu-fvd).

References
[1] Amazon Elastic Compute Cloud (Amazon EC2).

http://aws.amazon.com/ec2/.

[2] Amazon Web Services.http://aws.amazon.
com/.

[3] F. Bellard. QEMU, a Fast and Portable Dynamic
Translator. InUSENIX FREENIX Track, 2005.

[4] J. Bonwick, M. Ahrens, V. Henson, M. Maybee,
and M. Shellenbaum. The Zettabyte File System.
In FAST, 2003.

[5] R. Bradford, E. Kotsovinos, A. Feldmann, and
H. Schioberg. LiveWide-Area Migration of Virtual
Machines Including Local Persistent State. InVEE,
2007.

[6] R. Chandra, N. Zeldovich, C. Sapuntzakis, and
M. S. Lam. The Collective: A Cache-Based Sys-
tem Management Architecture. InNSDI, 2005.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migra-
tion of Virtual Machines. InNSDI, 2005.

[8] J. R. Douceur and W. J. Bolosky. Progress-based
regulation of low-importance processes. InSOSP,
1999.

[9] A. Gulati, I. Ahmad, and C. A. Waldspurger.
PARDA: Proportional Allocation of Resources for
Distributed Storage Access. InFAST, 2009.

[10] IOzone Filesystem Benchmark.http://www.
iozone.org/.

[11] Iperf Network Measurement Tool.http://en.
wikipedia.org/wiki/Iperf.

[12] J. Katcher. PostMark: A New File System Bench-
mark. Technical Report TR-3022, Network Appli-
ance Inc., October 1997.

[13] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. KVM: the Linux Virtual Machine Mon-
itor. In Proceedings of the Linux Symposium, pages
225–230, 2007.

[14] A. Kuzmanovic and E. W. Knightly. TCP-LP: A
Distributed Algorithm for Low Priority Data Trans-
fer. In INFOCOM, 2003.

[15] M. Satyanarayanan et al. Pervasive Personal Com-
puting in an Internet Suspend/Resume System.
IEEE Internet Computing, 2007.

[16] M. McLoughlin. The QCOW2 Image Format.
http://people.gnome.org/∼markmc/
qcow-image-format.html.

[17] Microsoft VHD Image Format. http:
//technet.microsoft.com/en-us/
virtualserver/bb676673.aspx.

[18] M. Nelson, B.-H. Lim, and G. Hutchins. Fast
Transparent Migration for Virtual Machines. In
USENIX Annual Technical Conference, 2005.

[19] Z. Peterson and R. Burns. Ext3cow: A Time-
Shifting File System for Regulatory Compliance.
ACM Transactions on Storage, 1(2):190—212,
May 2005.

[20] Z. N. J. Peterson.Data Placement for Copy-on-
Write Using VirtuaL Contiguity. PhD thesis, Uni-
versity of California at Santa Cruz, 2002.

[21] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow,
M. S. Lam, and M. Rosenblum. Optimizing the
Migration of Virtual Computers. InOSDI, 2002.

15

[22] B. Shah.Disk performance of copy-on-write snap-
shot logical volumes. PhD thesis, University Of
British Columbia, 2006.

[23] The IBM Cloud. http://www.
ibm.com/services/us/igs/
cloud-development/.

[24] A. Venkataramani, R. Kokku, and M. Dahlin. TCP
Nice: A Mechanism for Background Transfers. In
OSDI, 2002.

[25] VirtualBox VDI. http://forums.
virtualbox.org/viewtopic.php?t=
8046.

[26] VMware Virtual Disk Format 1.1.http://www.
vmware.com/technical-resources/
interfaces/vmdk.html.

Appendix 1: FVD Guarantees Data In-
tegrity in the Event of a Host Crash

Suppose the following events happen in a sequence:
(1) the VM submits a disk write request; (2) the FVD
driver (after some processing) acknowledges the success-
ful completion of the write operation; and (3) the host im-
mediately loses power. After power recovers and the VM
reboots, the VM’s next read to the same block should get
the content written before the failure. Otherwise, data
integrity is compromised, which may fail applications
(e.g., databases) that rely on strong data integrity.

When a user boots a VM, QEMU allows the user
to specify different caching policies for a virtual disk:
cache=none, cache=writethrough, or cache=writeback.
In Linux, cache=nonetranslates to theO DIRECT flag
for disk I/Os, andcache=writethroughtranslates to the
O DSYNCflag for disk I/Os. Both of them guarantees
that the data are safely stored on the physical disk be-
fore the write operation finishes. By design, QEMU does
not guarantee data integrity for thecache=writeback
configuration (in exchange for better disk I/O perfor-
mance), because some dirty data may be cached in mem-
ory and not yet flushed to the physical disk when the
host crashes. The discussion below assumes that the
virtual disk is configured with eithercache=noneor
cache=writethrough.

Figure 4 on page 5 shows a simplified view of the FVD
image format. When performing copy-on-write, copy-
on-read, or prefetching, the FVD driver needs to sepa-
rately update the FVD data file and the FVD metadata
file. Therefore, a host crash between the two updates
might compromise data integrity. Below, we prove that
this is not the case and FVD preserves data integrity re-
gardless of when the host crashes.

We first prove that the basic version of FVD described
in Section 3.2 preserves data integrity in the event of a

host crash. We then extend the proof to cover the opti-
mized version of FVD described in Section 3.3.

Data Integrity in the Basic Version of FVD

A bit in the bitmap can be in one of two states,
Sin backing=0 or Sin fvd=1, which means the corre-
sponding block’s content is in the backing image or
the FVD data file, respectively. A block’s state can
only change fromSin backing to Sin fvd, and can never
change fromSin fvd to Sin backing. Three operations
can change a block’s state fromSin backing to Sin fvd:
copy-on-write, copy-on-read, and prefetching. We first
discuss copy-on-write.

Copy-on-write happens when the FVD driver han-
dles a disk write request from the VM. For brevity, the
discussion below assumes that the write request spans
over two disk blocks(d1, d2). Let bit(d1) and bit(d2)
denote the states ofd1 and d2 in the bitmap, respec-
tively. We further assume that, before the write opera-
tion, bit(d1) = Sin backing andbit(d2) = Sin backing.
Other cases with more data blocks involved and differ-
ent initial states can be analyzed in a way similar to the
example below.

It involves the following sequence of operations when
the basic version of FVD (described in Section 3.2) han-
dles a write request:

• FVD:W1: the VM issues a write request for two
blocks(d1, d2).

• FVD:W2: the FVD driver storesd1 in the FVD data
file.

• FVD:W3: the FVD driver storesd2 in the FVD data
file.

• FVD:W4: the FVD driver updates the on-disk
bitmap statebit(d1) from Sin backing to Sin fvd.

• FVD:W5: the FVD driver updates the on-disk
bitmap statebit(d2) from Sin backing to Sin fvd.

• FVD:W6: the FVD driver acknowledges to the VM
the completion of the write operation.

Note thatFVD:W2andFVD:W3may be performed in
a single write. We separate them for a worst-case anal-
ysis. Similarly,bit(d1) and bit(d2) may belong to the
same block, and henceFVD:W4 and FVD:W5 may be
performed in a single update. We separateFVD:W4and
FVD:W5for a worst-case analysis.

The host may crash after any step above. We will
prove that FVD preserves data integrity regardless of
when the crash happens. Specifically, FVD introduces no
more complication than what may happen to the RAW
image format. In other words, we prove that the data

16

integrity of FVD is as good as the data integrity of the
RAW image format.

If the VM uses the RAW image format, handling this
disk write involves the following sequence of operations:

• RAW:W1: the VM issues a write request for two
blocks(d1, d2).

• RAW:W2:the RAW driver storesd1 on disk.

• RAW:W3:the RAW driver storesd2 on disk.

• RAW:W4:the FVD driver acknowledges to the VM
the completion of the write operation.

Note thatRAW:W2andRAW:W3may be performed in a
single write. We separate them for a worst-case analysis.

Now we consider all possible failure cases with FVD.
Note that before the VM’s write operation, the “old” con-
tents ofd1 andd2 are stored in the backing image. After
the VM’s write operation finishes successfully, the “new”
contents are stored in the FVD data file.

• Fail after FVD:W1. In this case, FVD’s behavior
is equivalent to having a host crash with the RAW
image format afterRAW:W1. The effect is that the
write operation is simply lost, which is an allowed,
correct behavior, since the driver did not yet ac-
knowledge to the VM the completion of the write.

• Fail after FVD:W2. In this case,d1 is written to
the FVD data file, butbit(d1) is not updated and
remainsSin backing. After reboot, the VM’s next
read tod1 gets its old content from the backing im-
age, as ifd1’s new content in the FVD data file does
not exist. This behavior is correct and is equivalent
to having a host crash with the RAW image format
afterRAW:W1. The effect is that the write operation
is simply lost, which is an allowed, correct behav-
ior, since the driver did not yet acknowledge to the
VM the completion of the write.

• Fail after FVD:W3. Similar to the one above, af-
ter reboot, the VM’s next read tod1 or d2 gets the
old content from the backing image, as if the new
content in the FVD data file does not exist. This be-
havior is correct and is equivalent to having a host
crash with the RAW image format afterRAW:W1.

• Fail after FVD:W4. After reboot, the VM’s next
read tod1 gets its new content from the FVD data
file, whereas the VM’s next read tod2 gets its old
content from the backing image (becausebit(d1) =
Sin fvd andbit(d2) = Sin backing). This behavior
is correct and is equivalent to having a host crash
with the RAW image format afterRAW:W2.

• Fail after FVD:W5. After reboot, the VM’s next
read tod1 or d2 gets the new content from the FVD
data file (becausebit(d1) = Sin fvd andbit(d2) =
Sin fvd). This behavior is correct and is equivalent
to having a host crash with the RAW image format
afterRAW:W3, i.e., the write operation is completed
but not yet acknowledged.

• Fail after FVD:W6. After reboot, the VM’s next
read tod1 or d2 gets the new content from the FVD
data file (becausebit(d1) = Sin fvd andbit(d2) =
Sin fvd). This behavior is correct and is equivalent
to having a host crash with the RAW image format
afterRAW:W4.

The analysis above shows that FVD’s copy-on-write
operation preserves data integrity. Following a similar
process, it can be proven that FVD also preserves data in-
tegrity during copy-on-read and prefetching, by follow-
ing the correct update sequence—first updating the FVD
data file and then updating the on-disk bitmap.

Data Integrity in the Optimized Version of FVD

Next, we show that the optimizations described in Sec-
tion 3.3 do not compromise data integrity in the event of
a host crash.

• In-memory bitmap : This is merely a performance
optimization. The FVD driver immediately update
the on-disk bitmap whenever such an update is re-
quired to preserve data integrity. For bitmap up-
dates that do not compromise data integrity, the
FVD driver may update the physical disk lazily.

• Free writes to no-backing blocks: Since the
bitmap has no state bits for the no-backing blocks,
writing to those blocks need not update the bitmap.
Therefore, this optimization introduces no compli-
cation for data integrity.

• Free writes to zero-filled blocks: Since those
blocks’ states are initialized toSin fvd and never
change afterwards, this optimization introduces no
complication for data integrity.

a host crash does not affect those blocks.

• Free copy-on-read: 3.3.4 When the FVD driver
copies a block from the backing image into the FVD
data file due to copy-on-read, it does not immedi-
ately update the block’s state in the on-disk bitmap
from Sin backing to Sin fvd, which reduces disk
I/O overhead. This does not compromise data in-
tegrity in the event of a host crash, because the
block’s content in the FVD data file is identical
to that in the backing image and reading from ei-
ther place gets the correct data. When the VM

17

overwrites a block that was previously saved in the
FVD data file due a copy-on-read operation, the
block’s state in the on-disk bitmap is immediately
updated fromSin backing to Sin fvd, by follow-
ing the operation sequenceFVD:W1—FVD:W6de-
scribed above, which guarantees data integrity.

• Free prefetching: In terms of the impact on data
integrity, this case is the same as the case above.

• Zero overhead once prefetching finishes: Once
prefetching finishes, the FVD driver no longer reads
or writes the bitmap. It simply passes through all
disk I/O requests issued by the VM to the RAW
driver. Therefore the data integrity of an FVD im-
age is identical to that of a RAW image.

In summary, the analysis shows that both the basic ver-
sion and the optimized version of FVD preserve data in-
tegrity in the even of a host crash.

18

