
Compact Image Support in Fast Virtual Disk (FVD)

Chunqiang Tang
IBM T.J. Watson Research Center

ctang@us.ibm.com
http://www.research.ibm.com/people/c/ctang/

Abstract
Fast Virtual Disk (FVD) is a flexible, high-

performance image format designed for QEMU. It sup-
ports compact image, copy-on-write, copy-on-read, and
adaptive prefetching. This paper focuses on the compact
image feature of FVD. The other features of FVD are
described in a separate paper [6]. Source code and docu-
mentation of FVD are available at the FVD Web site [2].

1 Introduction
Many popular image formats support compact images,

including QEMU QCOW2 [3], QEMU QED [5], Vir-
tualBox VDI [7], VMWare VMDK [8], and Microsoft
VHD [4]. FVD is designed to address some fundamen-
tal limitations of these image formats. Below, we sum-
marize several distinguishing features of FVD that help
FVD achieve far superior performance.

Eliminate the need for a host file system. FVD can
store a compact image directly on a logical volume with-
out using a host file system. FVD automatically extends
the size of the logical volume on demand as more storage
spaces are needed. This feature solves multiple prob-
lems introduced by using a host file system to store an
image, including runtime overhead, data fragmentation,
and compromising data integrity.1 This capability is not
available in any other image formats, as they all need a
host file system in order to support storage over-commit.
Using a host file system incurs significant overheads. Ex-
periments in [6] show that a RAW image on ext3 is 50-
63% slower than a RAW image on a raw partition.

Optimize on-disk data layout. FVD optimizes the
data layout of a compact image to mimic that of a
RAW image, which helps alleviate the data fragmenta-
tion problem and achieve better performance. This ca-
pability is not available in other compact image formats,
as they all use a data naive layout strategy, i.e., allocat-
ing storage space for a data block at the end of the image
file when the block is written for the first time, regard-
less of the block’s virtual address. This naive strategy

1One example of the host file system’s data integrity problem is
discussed at http://lwn.net/Articles/348739/.

may cause severe fragmentation and increase disk seek
distances. Specifically, when a guest OS creates or re-
sizes a guest file system, it writes out the guest file sys-
tem metadata, which are all grouped together and put at
the beginning of the image by existing compact image
formats, despite the fact that the guest file system meta-
data’s virtual block addresses are deliberately scattered
across the virtual disk for better reliability and locality,
e.g., co-locating inodes and file content blocks in block
groups. As a result, it causes a long disk seek distance
between accessing the metadata of a file in the guest file
system and accessing the file’s content blocks. Experi-
mental results in Figure 7 of [6] show that the disk seek
distance with a QCOW2 image is 5.6 times longer than
that with an FVD image.

Disable compact image when desired. FVD’s com-
pact image data layout is optional rather than mandatory.
FVD allows a copy-on-write image to be stored on a raw
partition with data layout identical to that of a RAW im-
age, i.e., not using the compact image data layout when
high-performance is preferred. This capability (i.e., a
copy-on-write image with a RAW-image-like data lay-
out) is not available in any other image formats, as they
mandate the use of a compact image for all features, in-
cluding copy-on-write.

The rest of the paper is organized as follows. Section 2
presents the design of FVD. Section 2 reports the current
implementation status. Section 4 concludes the paper.

2 Design of Compact Image Support in
FVD

FVD is designed to address the issues discussed in the
previous section. It use two on-disk metadata structures:

• A one-level lookup table to implement compact
image. One entry in the table maps the virtual disk
address of a chunk to an offset in the FVD image
where the chunk is stored. The default size of a
chunk is 1MB, as that in VirtualBox VDI (VMware
VMDK and Microsoft VHD use a chunk size of
2MB). For a 1TB virtual disk, the size of the lookup
table is only 4MB, which can be easily cached in
memory.

1



• A bitmap to implement copy-on-write. A bit in
the bitmap tracks the state of a block. The bit is 0
if the block is in the backing file, and the bit is 1 if
the block is in the FVD image. The default size of
a block is 64KB, as that in QCOW2. To represent
the state of a 1TB backing file, it only needs a 2MB
bitmap, which can be easily cached in memory.

By design, the chunk size is larger than the block
size in order to reduce the size of the lookup table. A
smaller lookup table can be easily cached in memory.
The bitmap is small because of its efficient represen-
tation. Using a smaller block size improves runtime
disk I/O performance because, during copy-on-write and
copy-on-read, a complete block need be read from the
backing file and saved to the FVD image even if the VM
only accesses part of that block.

2.1 Eliminate the Need for a Host File System

FVD supports storing a compact image on a host file
system, a logical volume, or a raw partition, among
which a logical volume is the preferred choice. Stor-
ing a compact image on a raw partition does not support
storage over-commit, because the full storage space need
be allocated ahead of time. Storage over-commit means
that, e.g., a 100GB physical disk can be used to host 10
VMs, each with a 20GB virtual disk. This is possible be-
cause not every VM completely fills up its 20GB virtual
disk.

Storing a compact image on a host file system intro-
duces multiple problems, including runtime overhead,
data fragmentation, and compromising data integrity.
Traditionally, a host file is optimized for storing small
files (KBs) rather than large images (GBs), and is not de-
signed with the support for virtualization in mind. Unfor-
tunately, all existing compact image formats (including
QCOW2, QED, VMDK, VDI, and VHD) store a com-
pact image on a host file system. Even more ironically,
when a host file system is used to store the image, the
compact image capability of those image formats are no
longer needed, because almost every modern file system
already support compact files, including GFS, NTFS,
FFS, LFS, ext2/ext3/ext4, reiserFS, Reiser4, XFS, JFS,
VMFS, and ZFS. Storing a RAW image on those file sys-
tems will automatically get a compact image and support
storage over-commit.

By contrast, FVD can store a compact image directly
on a logical volume without using a host file system. Ini-
tially, the size of the logical volume is small, e.g., only
10% of the full size of the virtual disk. FVD automati-
cally extends the size of the logical volume on demand
as more storage spaces are needed. Even if all physical
volumes on the local disks run out of storage space, FVD
can add physical volumes from NAS or SAN and guaran-

tees an uninterrupted execution of the VM. This behav-
ior is fully customizable for different storage systems, as
FVD can be configured to invoke a user-supplied script
to add storage spaces. Extending the size of a logical
volume incurs a minimal overhead. Our measurement
shows that it takes only 0.15 seconds for thelvextend
tool to grow a logical volume, and this operation is per-
formed infrequently, e.g., by adding 1GB storage space
each time.

2.2 Optimize On-Disk Data Layout

All existing compact image formats use a naive data
layout strategy, i.e., allocating storage space for a data
block at the end of the image file when the block is writ-
ten for the first time, regardless of the block’s virtual ad-
dress. This naive strategy may cause severe fragmenta-
tion and increase disk seek distance, as discussed in Sec-
tion 1.

When storing a compact image on a logical volume,
FVD strives to optimizes the data layout to mimic that
of a RAW image, which helps alleviate the data frag-
mentation problem and achieve better performance. We
explain this using one concrete example.

Amazon EC2 [1] provides two virtual disks to a VM:
a 10GB root disk and a 160GB data disk. The data disk
is initially empty. Doing storage over-commit for the
160GB data disk may result in significant cost savings
for a Cloud service provider. Suppose the target is do
storage over-commit by a factor of two, i.e., on average
a 160GB data disk consumes no more than 80GB ac-
tual storage space because not every VM completely fills
up its 160GB data disk. Actually, many VMs may even
never use their data disks.

Suppose FVD stores the 160GB data disk on a logical
volume and the initial size of the logical volume is 20GB.
When it runs out of space on the logical volume, FVD
adds 10GB storage space to the logical volume each time
until it reaches the full size of 160GB. The hope is that
on average VMs use far less than 160GB. However, in
the worst case it is possible that every VM on a host uses
more than 80GB and the host runs out of storage space
on its local disks. In this case, FVD can add physical vol-
umes from NAS or SAN to guarantee that the VMs get
the storage space they need and perceive no disruption.

Although the initial logical volume size (20GB) is
much smaller than the full data disk size (160GB), it al-
ready allows FVD to produce a data layout that mimics
the data layout of a RAW image. This is depicted in Fig-
ure 1, whereM1 M2 andM3 are the guest file system’s
metadata, andD1, D2, andD3 are contents of files in
the guest file system. Note that the mapping from the
RAW image layout to the FVD image layout is done in
a way that attempts to maintain the relative order of data
chunks.

2



M1 M2 M3

D1 D3

M1 M2 M3D1 D3
Data layout on a

raw image

Data Layout on the initial
logical volume of an FVD image

D2

D2

Figure 1: Optimized data layout of a compact FVD im-
age.

Specifically, letv=160GB andu=20GB denote the full
size of the virtual disk and the initial size of the logical
volume, respectively. A virtual data chunk with virtual
disk addressx in the RAW image is mapped to a physi-
cal chunk at offsety = x ·

u

v
of the initial logical volume

of the FVD image. If that physical chunk is already oc-
cupied, it is mapped to the next available physical chunk
(this is the case with data chunkD2 in the figure). If no
physical chunk aftery is available, it wraps around and
searches for an available physical chunk starting from the
beginning of the logical volume.

If the initial 20GB segment of the logical volume is
completely used up, FVD extends the logical volume by
adding a new 10GB segment. Within this new 10GB seg-
ment, FVD attempts to maintain the relative order of new
data chunks written, using a method similar to that de-
picted in Figure 1. In other words, FVD strives to main-
tain the order of data chunks within each segment but
does not maintain the order of data chunks across seg-
ments, because doing so would require FVD to perform
expensive online defragmentation. Regardless, this strat-
egy helps improve performance because the data layout
within a segment is close to sequential. Moreover, with a
carefully chosen initial logical volume size, the majority
of VMs may never need to grow the logical volume be-
yond its initial size and hence their data layouts are close
to sequential.

Another optimization is to continuously measure the
degree of fragmentation for the current segmentX under
use, and add a new segment earlier ifX is fragmented
and close to full, e.g., 80% full instead of 100% full.
When a segment is close to full, it is harder to find an
unused physical chunk at the ideal location and using a
random physical chunk tends to increase fragmentation.
If the logical volume eventually reaches its 160GB limit,
FVD will come back to use those fragmented free phys-
ical chunks.

2.3 Using Journal to Reduce Metadata Update
Overhead

The lookup table and the bitmap can be enabled sepa-
rately to provide the function of compact image or copy-

on-write. When both are enabled, they work together
to provide a compact copy-on-write image. FVD uses a
on-disk journal to store updates to the lookup table and
the bitmap. The journal allows FVD to update a block’s
metadata (i.e., both the lookup table and the bitmap) in
a single disk write, which not only is more efficient but
also ensures their consistency.

3 Implementation Status
All features described in this paper have been imple-

mented except the optimization depicted in Figure 1. Ac-
tually, we are also exploring several alternatives other
than the one in Figure 1. That piece of code will be re-
leased publicly once we are done with more benchmark-
ing and tuning.

4 Conclusion
FVD’s compact image capability has significant ad-

vantages over all other compact image formats. First,
FVD can store a compact image directly on a logical vol-
ume without using a host file system, which solves mul-
tiple problems introduced by a host file system, includ-
ing runtime overhead, data fragmentation, and compro-
mising data integrity. Second, FVD optimizes the data
layout of a compact image to mimic that of a RAW im-
age. Finally, FVD’s compact image data layout is op-
tional rather than mandatory. If desired, FVD allows a
copy-on-write image to be stored on a raw partition with
data layout identical to that of a RAW image.

Overall, FVD is the most flexible and best performing
image format, not only for QEMU but also among all
image formats supported by any hypervisor. In addition
to its advanced compact image capability, FVD’s copy-
on-write, copy-on-read, and adaptive prefetching capa-
bilities also significantly outperform the alternatives [6].
We strongly recommend the adoption of FVD into the
QEMU mainline. More information about FVD can be
found at the FVD Web site [2].

References
[1] Amazon Elastic Compute Cloud (Amazon EC2).

http://aws.amazon.com/ec2/.

[2] FVD Website. https://researcher.ibm.
com/researcher/view project.php?id=
1852.

[3] M. McLoughlin. The QCOW2 Image Format.
http://people.gnome.org/∼markmc/
qcow-image-format.html.

[4] Microsoft VHD Image Format. http:
//technet.microsoft.com/en-us/
virtualserver/bb676673.aspx.

3



[5] QEMU QED. http://wiki.qemu.org/
Features/QED.

[6] C. Tang. FVD: a High-Performance Vir-
tual Machine Image Format for Cloud with
Copy-on-Write, Copy-on-Read, and Adap-
tive Prefetching Capabilities. https:
//researcher.ibm.com/researcher/
view project.php?id=1852, October 2010.

[7] VirtualBox VDI. http://forums.
virtualbox.org/viewtopic.php?t=
8046.

[8] VMware Virtual Disk Format 1.1.http://www.
vmware.com/technical-resources/
interfaces/vmdk.html.

4


