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Abstract—Geospatial data volume exceeds hundreds of 
Petabytes and is increasing exponentially mainly driven 
by images/videos/data generated by mobile devices and 
high resolution imaging systems. Fast data discovery on 
historical archives and/or real time datasets is currently 
limited by various data formats that have different 
projections and spatial resolution, requiring extensive 
data processing before analytics can be carried out. A new 
platform called Physical Analytics Integrated Repository 
and Services (PAIRS) is presented that enables rapid data 
discovery by automatically updating, joining, and 
homogenizing data layers in space and time. Built on top 
of open source big data software, PAIRS manages 
automatic data download, data curation, and scalable 
storage while being simultaneously a computational 
platform for running physical and statistical models on 
the curated datasets. By addressing data curation before 
data being uploaded to the platform, multi-layer queries 
and filtering can be performed in real time. In addition, 
PAIRS offers a foundation for developing custom 
analytics. Towards that end we present two examples 
with models which are running operationally: (1) high 
resolution evapo-transpiration and vegetation 
monitoring for agriculture and (2) hyperlocal weather 
forecasting driven by machine learning for renewable 
energy forecasting. 

Keywords: big data analytics; GIS; Hadoop & HBase for geo-
spatial data; MapReduce; data management systems; machine 
learning 

 

I. INTRODUCTION  
 

Digitization of the “world” is changing many industries 
including the way in which geospatial data is analyzed. With 
daily imaging of earth surface by multiple satellites, spatial 
and temporal correlations can be established between 
locations and events in real time. In addition to satellite 
images, weather or climate models are updated multiple time 
per days generating insight into the atmosphere–earth 
interaction and its impact on environment, business activity, 
and human life. While static or reanalysis studies were 
carried out, in the past, for example to understand 

deforestation [1], land use [2], or urban area expansion [3], it 
is expected that, in the future, these models will run in real 
time.  

The exploding volume of geospatial data requires the 
development of a scalable platform that can fuse multiple 
data layers and combine them with local measurements from 
mobile devices or sensor networks. Such a platform should 
not be only a data repository but should also serve as 
modeling and analytics platform [4]. Combination of data and 
analytics can be used for running global models like crop 
production, water availability, soil moisture or urban 
expansion. These models can be updated in real time using 
the latest available datasets and provide insight into dynamic 
changes like flooding, wildfires, or landslides as they 
develop. 

The daily generation rate for selected satellite and 
weather/climate data sets is summarized in Fig. 1. More than 
700 Landsat 8 [5] tiles are acquired daily in addition to 400 
Landsat 7 tiles; this generates in excess of 1 Terabyte of 
geospatial data per day. Similarly, Moderate Resolution 
Imaging Spectroradiometer (MODIS) [6] instrument data 
generation rate approaches 1 Terabyte/day, acquiring data in 
250 spectral bands. Based on this data, new data products are 
being derived to analyze earth’s land, ocean, and atmosphere 
generating even more data. By far the largest geospatial data 
volume is generated by numerical weather and climate 
forecasting such as Global Forecast System (GFS), Global 
Ensemble Forecast System (GEFS), Climate Forecast System 
(CFS) in the US [7], and the European Centre for Medium-
Range Weather Forecasts (ECMWF) model. Weather and 
climate models generated by ECMWF are in excess of 12 
Terabyte/day [8]. 

If weather and satellite data are to be analyzed and 
integrated into models before the forecasted data becomes 
obsolete, then data processing should be accelerated through 
parallelization. One way to achieve this would be to have all 
data layers curated and homogenized before being uploaded 
to the platform, eliminating the time required for data 
preprocessing. The data curation require data validation, 
verification, and alignments spatially and temporarily, such 
that these layers are ready to be integrated into physical and 
statistical models without the need for data download, 
validation, and preprocessing. 
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Satellite and weather have well-defined data format and 
associated metadata, requiring less custom effort for 
processing. A more challenging task is unstructured data 
processing. In the unstructured data category falls data 
coming from mobile devices, social networks, edge devices, 
or sensor networks that are less likely to have similar format 
or accuracy than the structured data. 

 There are more than 300,000 Tweets every minutes with 
an average Tweet carrying information of the order of 200 
bytes. These datasets have an associated time stamp and can 
be (loosely) located geographically; however alignment with 
existing data layer require customization on top of 
automating data ingestion to correctly localize the 
information. These unstructured datasets can enhance 
existing structured data layers (satellite, weather, etc) by 
offering contextual information regarding extreme events 
like flooding, wildfire, or other calamities much faster than 
any traditional data sources. Seamless integration of such 
information with established geospatial data layers 
(topography, road network, population density, etc.) requires 
the development of tools that can integrate data on the fly, 
index it [9,10], store it [4], and retrieve it on demand [12-13]. 

Using traditional database technologies to store geospatial 
data, have limited utility once the data volume exceeds a few 
Terabytes. Such data bases are also not well suited to handle 
geo-spatial data layers, as efficient indexing and joining, data 
layers have limited support.  

Here we present a new geospatial big data platform, 
Physical Analytics Integrated Repository and Services 
(PAIRS), to process Petabytes of data and address the spatial 
and temporal complexity associated with heterogeneous data 
integration (Fig. 2). Historical and real time geospatial data 
sets are automatically downloaded, curated and stored in 
HBase table, which are then available for real time modeling 

 
 
Figure 1. Geo-spatial data generation rate for weather and satellite 
data. Except for the European Centre for Medium-Range Weather 
Forecasts (ECMWF), data are published at rates of ~1 Terabyte per 
day - independent of the spatial resolution of the raster data. 

 
 
Figure 2. PAIRS architecture as a cloud service where a query retrieves (1) metadata from a traditional relational database (PostgreSQL) and (2) pulls 
geospatial data from HBase. 
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and analytics. Data curation encompasses; conversion to a 
common datum, and aligned on a well-defined spatial grid. 
The platform can be queried to retrieve data in multiple ways, 
like: (1) single point across large interval to create time series, 
(2) spatial query across an arbitrary sized area, and (3) filtered 
spatial and temporal query using a system of filters to retrieve 
subset of data from each layer.  

PAIRS offers access to a repository of consistent historical 
and real time datasets that are aligned and indexed. It is 
developed on top of the open source big data technologies 
Hadoop and HBase [14]. It leverages MapReduce [15] to 
accelerate data queries by parallelizing search and data 
retrieval. One key differentiator of PAIRS is the multi-layer 
query capability, ability to search multiple data layers and 
filter then based on multiple search criteria where filters 
allows discovering locations or time periods that share the 
same characteristics in space and time. This capability 
provides a quick way to visualize in real time changes for a 
certain location and detect similarities or differences. In 
addition to existing data layers, any custom modeling or 
analytics layer can be uploaded into PAIRS. 

 

II. GEOSPATIAL DATA MANAGEMENT 
Due to the complexity to describe earth surface and 

preserve accuracy on local scale, almost all geospatial data 

layer are provided in different projections, which makes data 
joining and alignment the most time consuming task of any 
geospatial effort. PAIRS integrates open source tools 
(GDAL, PROJ.4, etc.) to convert data layer projection to 
WGS84 coordinate system and facilitate map re-projections 
and data managements on the fly. These tools can operate on 
large datasets and they scale with data volume if they are 
parallelized. The WGS 84 (EPSG:4326) coordinate system is 
used for all data layers. Independent of the original formats, 
the platform converts all data layers to WGS 84, that is, it 
interpolates and re-grids the data before it is integrated into 
HBase storage (Fig. 3).  

The main building block of PAIRS is the Data Integration 
Engine that handle data download, re-projection, and data 
indexing (Fig. 3). Any geospatial data format (raster, vector 
or geo-located images and text) can be integrated into the 
platform. If a data format is not raster, then it will be 
rasterized and handled as a large matrix. All data layers in 
PAIRS are aligned and snapped on a common grid, generated 
by continuously subdividing the global coordinate space [-
180°, 180°] x [-90°, 90°] in terms of longitude and latitude 
(Fig. 4). The spatial resolution of PAIRS ranges from cm to 
hundreds of kilometers, with the smallest grid spacing of 
0.000008˚ that corresponds to 0.8 m on the longitude. There 
are 26 grid layers with increasing lateral resolution (see Table 
1). 

 
 
Figure 3. A detailed view of PAIRS’s Data Integration Engine from Fig. 2: Geospatial data are automatically downloaded and processed. A multi-threaded 
process writes the data to HBase on top of Hadoop’s HDFS. Data validation and verification for accuracy is automated to ensure that the best possible 
data layers are uploaded into PAIRS. 
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In order to adapt each datasets to PAIRS’s 
resolution, the original data layers are interpolated, followed 
by rasterizing the data layer to the closest PAIRS grid cell 
size. The interpolation is chosen to preserve, as best as 
possible, data accuracy and distinctive features like 
shorelines, water bodies, road alignments, etc.  

 

III. DATA INDEXING AND REPRESENTATION IN HBASE 
 

Each data point for any data layer is indexed before is 
uploaded to the HBase table. The index includes a spatial 
location (longitude θ and latitude φ) and a timestamp t. Fig. 
4 provides details about the indexing scheme implemented in 
PAIRS. The generation of the grid follows the well-known 
recursive procedure of a quad-tree, where the global map gets 
subdivided into 4 equally-sized cells labeled by the bits 00, 
01, 10, 11. This process is repeated and the corresponding 
bits are appended to the right of their “mother” cell. The 
resulting bit sequence is interpreted as the binary 
representation of the z-index. Linking these indices with 
respect to increasing value on the two-dimensional map 
generates the Morton curve [9]. It targets at approximately 
preserving the “locality” property, i.e. nearby two-
dimensional raster pixels stay close to each other when 
arranged on a line [10]. This property becomes important 
when designing HBase’s row key which is stored in 
alphabetical order. 

Using m as the number of recursions, the map can be 
divided into 4m  grid cells which implicitly sets the spatial 
resolution in degrees to Δφ=90°/2m. In order to avoid 
rounding errors due to limited numerical precision, the 
resolution layer index n is introduced such that the resolution 
becomes Δφ=2n+2·10-6 (see Table 1). Note that the resolution 
in km is consistent along the longitude, but does change along 
the latitude, with larger values expected near the equator and 
smaller values near the poles. 

The transformation from the pair (longitude, latitude) = 
(x,y) that matches the lower left corner of the grid cell to its 
z-index provides the first part of the row key k for the HBase 
table that stores all geo-spatial information. Since PAIRS 
stores datasets that have an associated time stamp, each index 
will have a temporal component defined as t in seconds, i.e. 
k = (z,t).  

This scheme is similar to the approach of MD-HBase [16] 
which demonstrates a use case of geographically tracking 
moving objects in real time. In particular the focus is on 
efficiently scanning sparse data. However, the PAIRS system 
independently treats the time direction from the z-ordering - 
geographic raster layer pixels are static. Fox [17] presents 
another index structure to encode (geo-)spatial-temporal 
information into the key of the key-value store Accumulo 
[18], an Apache project. 

Due to HBase’s row key ordering [14] all timestamps t0, 
t1, t2, ...  of any geo-information data in PAIRS at fixed spatial 
position z0 gets grouped together. HBase SCANs therefore 
quickly deliver time series of geo-information [14]. PAIRS 

 

 
 
Figure 4. Global indexing of data in PAIRS: Recursive quad-tree scheme to partition two-dimensional data. 
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performance is tuned to retrieve local information across 
large time interval. We note that in the conventional 
framework, time series retrieval from large geospatial data is 
constrained as large number of files need to be opened, 
scanned, localizing data points of interest for each data point.  

Each data pixel referenced by k is stored in the 
corresponding HBase cell that is uniquely identified by (k,c), 
where c represents the information based on HBase’s column 
family and column qualifier [5,6]. Aggregating geospatial 
pixels into a larger block to store them into a single HBase 
cell has two advantages: (1) balancing the query speed of 
fixed geo-spatial information for multiple timestamps and (2) 
balancing a geo-spatial region at a given time. In current 
implementation, 32 x 32 pixels are stored per HBase cell. To 
each block of geo-spatial pixels, a key is assigned, which is 
the same key of the contained pixels with the 10 least 
significant bits dropped. To each pixel, a unique key is 
assigned inside the 1024 array, calculated using only the 10 
least significant bits, and stored into the HBase table as binary 
data. Each HBase table has multiple columns where each 
individual column stores a specific data parameter. For 
example, weather data like North American Mesoscale 
models (NAM), multiple columns are defined, where each 
column is assigned to a physical quantities like temperature, 
precipitation, ground pressure, etc. 

Since MapReduce can execute jobs directly on 
HBase tables, analytics run on PAIRS can be parallelized. In 
addition, the simple fact that any HBase cell is stored if and 
only if the corresponding row key is written (HBase 
command PUT), PAIRS handles very efficiently sparse geo-
spatial information. 

 

IV. DATA PROCESSING 
The current datasets available in PAIRS are listed in 

Table 2 and could be grouped in four large categories: 
satellite, weather, survey, and analytics. Each category 
contains several datasets: 

1. satellite images: Landsat [5], MODIS [6] 

2. weather products: Parameter-elevation 
Relationships on Independent Slopes Model 
(PRISM) [19], North American Mesoscale (NAM), 
California Irrigation Management Information 
System (CIMIS), Global Forecasting System (GFS) 

3. survey data: elevation (NEM) [20], land use 
(CROPSCAPE) [21], Soil (gSSurgo) 

4. layers that are part of the analytics services: blended 
weather forecast and evapo-transpiration / irrigation 
forecasting 

    Data curation encompasses calculation of value, adding 
data layers such as elevation derived product, like slope and 
aspect ratio, as well as correcting Normalized Difference 
Vegetation Index (NDVI) for atmospheric effects. In 
addition, each data layer is periodically verified for accuracy 
and consistency. 

Due to the difference in data acquisition rate (cf. Fig. 3) as 
well as different repositories used for storing original data 
layers, PAIRS data agents are querying each repository to 
retrieve the specific data layers. Besides data download, 
PAIRS scans its HBase key-value store to identify missing 
timestamps. An automatic request is submitted to retrieve 
missing data layers. 

A special case are data layers that have partial spatial 
coverage and are acquired at different moment in time, e.g. 
Landsat with a 16 days visitation time where images are 
acquired as 185 km by 180 km tiles along a swath of the 
Earth’s surface. Data validation requires to verify if all the 
tiles at a given timestamp are present in the HBase table. The 
HBase table is scanned for a representative data point that 
defines the longitude and latitude of the center of that tile. In 
case a tile is missing, a data request is submitted to obtain the 
data. If the data is available on the host server, the data 
integration engine seamlessly connects the tile into the 
existing data fabric. 

 
 
Table 1. Global grid spatial resolution in degree for longitude (θ) and 
latitude (φ) and the corresponding resolution in km at the equator and at 
40 degrees latitude, respectively. 

Resolution Layer 
(n)

Δθ, Δφ
[degree]

Δy [km], 
Δx[km](φ=0O)

Δx [km](φ=40O)

1 0.000008 0.00089 0.00067

2 0.000016 0.00178 0.00134

3 0.000032 0.00356 0.00268

4 0.000064 0.00712 0.00536

5 0.000128 0.01424 0.01072

6 0.000256 0.02848 0.02144

…

9 0.002048 0.22786 0.17152

…

26 268.43546 29863.444 22481.469

 
 
Table 2. Current data layers in PAIRS that are updated continuously and 
two real time analytics, weather forecasting based on machine learning 
and irrigation forecasting for crops. 

Datasets Origin Frequency PAIRS grid 
resolution 
(degree)

Satellite Landsat 7 USGS 16 days 0.000256

Landsat 8 USGS 16 days 0.000256

Modis /Vegetation Product NASA 16 days 0.002048

Modis Surface Reflectance NASA 2 days 0.002048

Weather Global Forecasting System(GFS) NOAA Daily+60h forecast 0.524288

North American Mesoscale Forecast 
System (NAM)

NOAA Daily +10 day 
forecast

0.032768

European Centre for Medium Range 
Weather Forecast (ECMWF)

EU Daily +10 day 
forecast

0.0655

PRISM data U of Oregon Daily 0.032768

CIMIS data State of California Daily 0.016384

Survey National Elevation Data USGS Static 0.000008

Soil data (SSURGO) USDA Static 0.000008

Cland use (Cropscape) USDA 1 year 0.000256

Analytics IBM Blended Forecast IBM Daily 0.032768

IBM Evapo-transpiration/ Irrigation IBM Daily 0.032768
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V. SPATIAL-TEMPORAL & MULTI-LAYERS QUERIES 
The simplest query that can be submitted to PAIRS is a 

time series query for a single data point defined by longitude 
and latitude where all existing data points acquired can be 
retrieved. A query for a single point, from a data layer, 
acquired daily for a 10 year period, can be retrieved in less 
than 1 second.  

PAIRS supports range queries based on polygons for a 
given time interval. The PAIRS query API, implemented as 
a RESTful web service, automatically grabs the data acquired 
within the specified time interval and returns multiple 
georeferenced images tagged with the data acquisition 
timestamp.  

A third type of query implemented in PAIRS is multi- 
layer queries where multiple layers can be queried and 
filtered based on specific parameters from one or multiple 
data layers. For example, one such complex query can be 
used to retrieve all farms that plant corn, whose mean 
precipitation across a week was larger than 10 mm, and where 
corn has NDVI values above 0.5. This query requires the 
platform to identify the geo-spatial locations where corn is 
planted, query the weather data layer and aggregate it for a 
week, filter all data layers based on the three conditions and 
return a data layer that fulfills all the above conditions. Fig. 5 
illustrates an example of such a query. Note the visibility of 
the different resolutions of the Cropscape and NDVI layer 
that get joined for the result: While there exist isolated tiny 
spots of farms (cf. high resolution Cropscape layer), the 
interior of larger patches reveals the more coarse grained 
resolution of the NDVI layer. 

For this query, the recursive procedure that generates the 
z-ordered index from the HBase row key k=(z,t) comes in 
handy. Scanning the 30 m resolution dataset for a specific 
value (e.g. Cropscape data layer for corn) one can directly 
employ the matching keys to investigate a layer with less 
resolution, e.g. precipitation data from PRISM. The reason 
being that if za=<z1z2...zp> is the p bits of the index labeling 

a given grid cell, cells of a finer resolution within this cell get 
assigned a corresponding z-ordered index according to 
zb=<z1z2...zpzp+1zp+2...zp+q.> with p+q bits. So, knowing zb 
from corn data directly provides za for precipitation. PAIRS’s 
indexing and aligned data layers accelerate multi-layer 
queries. 

As pointed out in section III, PAIRS's indexing scheme 
builds on geo-spatial coordinates of the raster as well as 
temporal information. Therefore PAIRS exploits the HBase 
key design to perform range-queries over multiple 
timestamps. In a conventional scenario the user needs to deal 
with a collection of individual files representing a certain 
geospatial area over a certain time period. Fig. 6 shows (solid 
dots) the corresponding processing speed on a set of files 
using conventional tools on a single machine. The query time 
scales proportionally to the amount of processed data, i.e. the 
data retrieval speed is constant. In detail, the data is loaded 
from hard disk into memory. Then each pixel gets filtered by 
the condition: “value of the pixel is equal to a constant”. For 
this task, the data need to be unzipped, re-projected and 
filtered – common steps that a geospatial data user will 
undertake if he processes the data.  

PAIRS's querying speed (open & solid boxes) is faster in 
absolute value than conventional method, the benchmarking 
demonstrates increasing speed with increasing size of 
retrieved data - the hallmark of increased parallel processing 
due to the distribution of the data in the PAIRS cluster. Note, 
the major fraction of time in the conventional case is spent to 
unzip and re-project the data. PAIRS incorporates data 
compression and layer alignment by default.  

Besides MD-HBase and an Accumulo based system there 
are multiple approaches to use open source software 
technologies in order to handle scalable solutions for big 
(geo)-spatial raster and/or vector data. To name a few, e.g. 
Hadoop-GIS [22] implements operations such as SQL-type 
JOINs on vector data (OpenStreetMap [23]) employing 
Apache Hadoop. Building on Hadoop as well, SpatialHadoop 

 
 
Figure 6. Performance metrics for conventional data filtering on a single 
machine using GDAL and Python vs. querying data from PAIRS: a) data 
retrieval and b) data retrieval including filtering. 

 
 
Figure 5. PAIRS multi-layer query that extracts farms in Mississippi 
growing corn and having NDVI larger than 0.5, where average weekly 
rain in September 2015 was larger than 10 mm.  
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[12] and its related implementations, SHAHED [24], 
TAREEG [25] & TAGHREED [25], query and visualize 
raster, vector and text data, respectively. An alternative geo-
spatial big data platforms, ADAM [4] employs Apache Spark 
[32] to compete with traditional parallel image processing 
systems (cf. analytics on geo-spatial raster data) for 
astronomy. Yet another recent project, SpatialSpark [33] uses 
the Apache Spark technology to implement join operation on 
geo-spatial vector data. PAIRS particularly focuses on 
providing a whole, business-focused database and insight 
service to help to manage real-world geospatial data from 
multiple sources in a scalable manner on distributed compute 
resources.  

 

VI. ANALYTICS 

A. Weather modeling/machine learning 
PAIRS curates historical weather forecasts and thus 

provides new opportunities to enhance forecasting accuracy 
through advanced statistical learning techniques. Current 
weather forecasting models that either use statistical 
correction or combine forecasts from different numerical 
weather models (Dynamic Integrated Forecast systems [29] 
or the Model Output Statistics systems [30]) have the 
limitation that only a restricted amount of forecast data is 
preserved and those will have either a short span of few days 
or are not updated with new forecasts. In general the forecast 
data are not saved for further analysis or model refinement. 

In contrast, PAIRS enables on-demand rapid retrieval of 
historical forecasts and associated measurements (from 
weather stations that provide real time data) going back 
historically for a few years. Such capability enables 
systematic characterization of forecast error of weather 
models and the dependence of the error on other forecasted 
weather parameters. This analysis can be carried out across 

global sites to understand the performance of various weather 
models used for forecasting. As an illustrative example, Fig. 
6 demonstrates one case of how global horizontal solar 
irradiance (GHI) forecast error is dependent upon its forecast 
of ground level pressure and solar zenith angle. 

The GHI forecast is part of the of the widely-used 
North America Mesoscale (NAM) weather model that is 
frequently used in USA for business support including 
aviation safety etc. The result is obtained using Functional 
Analysis of Variance (FANOVA) for a Surface Radiation 
(Surfrad) Measurement station (BND station at Champaign, 
IL) averaged for period 2014-1-1 to 2014-12-28 as are 
discussed in [31]. 

Such analysis identifies the different “weather 
situations” (unique to specific locations) in which the forecast 
error of the NAM model is dependent on different physical 
parameters that are specific to geographical locations. For 
instance, the two parameters (ground pressure and zenith 
angle) apparently create four different weather situations 
pertaining to the GHI forecast error as indicated by the 
dashed lines in Fig. 7. In each of the dominant “weather 
situation,” the forecast can be corrected based on individual 
weather model or combining different weather models using 
statistical learning methods to improve overall forecasting 
accuracy [13]. 

As an example, Fig. 8 shows a 48 hour ahead forecast of 
global horizontal solar irradiance (GHI) of contiguous US 
(CONUS) obtained via situation-dependent blending of 
forecasts from two weather models—the NAM model and the 
short range ensemble forecast (SREF) model. This forecast is 
issued at 2015-06-11 00:00 UTC for 2015-06-13 00:00 UTC. 
The model blending is trained by historical forecasts and 
measurements at ~1640 remote automatic weather stations 
(RAWs) of the MesoWest network (yellow circles).The 
historical forecasts and measurements of GHI and other 
meteorological parameter such as ground pressure and solar 
zenith angle for 60 days immediately before the forecast 
issuance time at ~1640 remote automatic weather stations 
(RAWs) (yellow circle in Fig. 8) are used as training data. 
For an arbitrary location in CONUS, its situation-dependent 

 
 
Figure 7. Global horizontal solar irradiance (GHI) forecast error 
dependence on forecasted ground level pressure and solar zenith 
angle. 

 
 
Figure 8. Global Horizontal Irradiance (color scale) forecast for 48 h in 
advance obtained via machine-learning based situation-dependent 
blending of the North American Mesoscale model and the Short Range 
Ensemble Forecast Model. 
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model blending is determined using training data from ~10 to 
15 neighboring RAWs sites. The method enables 30% 
improvement of GHI forecast accuracy, measured in terms of 
mean absolute error, compared to the two individual input 
weather models (NAM and SREF).  
 

B. Evapo-transpiration/Irrigation Forecasting 
Energy balance models can quantify the amount of water 

required by plants [32]. The evapo-transpiration is calculated 
as the difference between the input radiation from the sun and 
heat absorbed by soil and heat transfer from plant to air. 
These energy balance models can accurately calculate the 
right amount of irrigation that needs to be delivered to a plant 
in order to maintain the optimum amount of water in the crop 
[33]. The energy balance method developed at the spatial 
resolution of Landsat [34] combines (1) crop vegetation 
information from Landsat data and (2) satellite based soil 
temperature information, and (3) weather data integrated into 
reference evapo-transpiration using Penman-Monteith 
equation.  

The energy balance method was demonstrated to give a 
very accurate assessment of water amount required for 
irrigation based only on Landsat data and weather data 
modeling [34]. One application of high resolution irrigation 
scheduling is in variable rate irrigation that can be 
implemented with central pivots or drip irrigation system. It 
was demonstrated that variable rate irrigation can save water 
while at the same time increase yield while maintain crop 
quality [35]. The advantage of satellite based evapo-
transpiration calculation is that it can be scaled and translated 
to other geographies to provide consistent irrigation 
recommendations for all crop. 

The irrigation forecasting is based on weather forecast for 
10 days in advance. For evapo-transpiration, temperature, 
wind speed, solar radiation and relative humidity from NAM 
and GFS models are integrated with the Penman–Monteith 
[35] equation. In Fig. 9 the current and day ahead evapo-
transpiration based on the NAM models is shown for the state 
of Mississippi calculated at a spatial resolution of 4 km. 

The irrigation schedule can leverage additional data layers 
like precipitation that would enable to correct irrigation 
schedules by subtracting the from the irrigation 
recommendation. These corrections in irrigation schedule are 
very beneficial during extreme weather events or rainy 
seasons for better water management and optimum water 
allocations. 

 

VII. CONCLUSIONS 
 

Real time geospatial analytics requires large volume of 
geospatial data to be analyzed and processed. This requires a 
scalable platforms where data layers can be seamlessly 
incorporated into models. In this paper we presented the 
PAIRS platform, which is designed to accelerate analytics 
and provide access to curated datasets. PAIRS minimizes the 
“time to value” by providing curated data sets and  
eliminating data processing steps that normally should be run 
on data layers. Two analytics models are running on top of 
curated data sets: (1) improved and hyper localized weather 
forecast model based on machine learning, and (2) evapo-
transpiration/irrigation forecasting. As more data layers are 
integrated in PAIRS, they will enrich existing data layers, and 
will enable more complex analytics to be run on top of the 
data.  
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