The SystemT IDE: An Integrated Development Environment
for Information Extraction Rules

Laura Chiticariu Vivian Chu Sajib Dasgupta Thilo W. Goetz!
Rajasekar Krishnamurthy Alexander Lang' Yunyao Li

Frederick R. Reiss Shivakumar Vaithyanathan Huaiyu Zhu

Sriram Raghavan;r

Howard Ho
Bin Liu2

IBM Research — Almaden !IBM Software — Germany 2University of Michigan °IBM Research — India

ABSTRACT
Information Extraction (IE) — the problem of extracting
structured information from unstructured text — has be-

come the key enabler for many enterprise applications such
as semantic search, business analytics and regulatory com-
pliance. While rule-based IE systems are widely used in
practice due to their well-known “explainability,” developing
high-quality information extraction rules is known to be a
labor-intensive and time-consuming iterative process.

Our demonstration showcases SystemT IDE, the integrated
development environment for SystemT, a state-of-the-art rule-
based IE system from IBM Research that has been success-
fully embedded in multiple IBM enterprise products. Sys-
temT IDE facilitates the development, test and analysis of
high-quality IE rules by means of sophisticated techniques,
ranging from data management to machine learning. We
show how to build high-quality IE annotators using a suite
of tools provided by SystemT IDE, including computing data
provenance, learning basic features such as regular expres-
sions and dictionaries, and automatically refining rules based
on labeled examples.

Categories and Subject Descriptors

H.2.4 [Systems]: Textual Databases; 1.2.7 [Natural Lan-
guage Processing |: Text Analysis

General Terms

Algorithms, Design, Human Factors

Keywords

Information Extraction, AQL, SystemT, Provenance, Pat-
tern Discovery, Rule Learning

1. INTRODUCTION
Information Extraction (IE) — the problem of extract-
ing structured information from unstructured text — has

emerged as a critical building block to many enterprise appli-
cations. The value of information extraction in an enterprise

>|<Work partially done while at IBM Research — Almaden.
JrWork done while at IBM Research — Almaden.

Copyright is held by the author/owner(s).
SIGMOD’11, June 12-16, 2011, Athens, Greece.
ACM 978-1-4503-0661-4/11/06.

1291

application lies in its ability to generate extremely accurate
results and scale to large volumes of data. In addition, the
use of IE in these applications drives the need for usabil-
ity [4] in terms of ease of development and maintenance is
an important requirement, as developing high-quality infor-
mation extraction rules (or annotators) is notoriously labor-
intensive and time-consuming.

Challenges in developing IE rules. The development of
high-quality IE rules typically consists of multiple iterations
of three phases: development, testing, and analysis [3]. Each
of these phases can be an expensive manual process.

Consider, for example, the task of extracting relationships
between persons and their phone numbers. While this may
sound simple, developing an accurate PersonPhone annotator
is challenging in practice. (The PersonPhone annotator from
SystemT’s Annotator Library consists of over 300 rules.)

The development phase involves writing complex regular
expressions to identify syntactic features (e.g., phone num-
bers and capitalized words), collecting dictionaries (e.g., lists
of common first and last names), as well as writing rules to
combine these basic features into larger concepts (e.g., full
names). For instance, a rule for identifying candidate per-
son names may look for “a match of a dictionary of first
names followed immediately by a match of a regular expres-
sion identifying capitalized words”. The development of each
rule may involve the following two phrases.

In the testing phase, the annotators are executed on a col-
lection of documents and the developer manually examines
the extraction results (i.e., annotations) — potentially thou-
sands of them — to determine their correctness and identify
expected annotations that are missing.

In the analysis phase, the developer seeks to understand
the causes of the mistakes, i.e., the incorrect and missing an-
notations. For example, suppose the text “Morgan Stanley,
fax: 205-4493” is identified as an instance of PersonPhone
relationship. The developer will need to identify the rule
that incorrectly identifies Morgan Stanley as a person, and
find out why the rules for identifying fax numbers in order
to subtract them from the set of phone candidates do not
capture 205-4493. With annotators comprising of hundreds
of rules with complex interactions, answering such questions
is far from trivial. Furthermore, once the causes are identi-
fied, the developer must determine concrete refinements to
the existing rules to correct the mistakes in the next itera-
tion of the process. Typically, a large number of candidate
refinements may exist. For instance, to avoid identifying
Morgan Stanley as a person, one may remove Morgan from

AQL Compiled
Operator SystemT
rules Graph Runtime

Figure 1: The architecture of SystemT.

the dictionary of first names, or remove Stanley from the
dictionary of last names, or even add a dictionary of organi-
zation names and use it to filter candidate persons. This is
typically a manual “trial and error” process, where multiple
candidate refinements are implemented and evaluated.
Demonstration Focus. In this demonstration, we show-
case SystemT IDE, the integrated development environment
for TE rules. SystemT" [2, 5] is a state-of-the-art rule-based
IE system developed in IBM Research and successfully em-
bedded in multiple IBM enterprise offerings, for a variety
of extraction tasks: identifying named entities (e.g., per-
son, organization, location), relationships between these en-
tities (e.g., a person’s phone or address), financial events
(e.g., company mergers and acquisitions), opinions and sen-
timents, and many more. Figure 1 illustrates the architec-
ture of SystemT, which consists of AQL [8], a declarative
language for expressing IE rules, a cost-based optimizer for
compiling AQL rules into an operator graph (i.e., execution
plan), and a runtime engine for efficiently executing the op-
erator graph on an input document collection and generate
output annotated documents. Rule development in SystemT
is an iterative process as described earlier. The SystemT IDE
makes use of sophisticated techniques to assist rule develop-
ers throughout all stages of the development cycle.

2. OVERVIEW OF THE SystemT IDE

The architecture of SystemT IDE is depicted in Figure 2. It
consists of the following six main components. (1) The AQL
Editor provides essential editing capabilities such as syntax
highlighting for AQL rules. (2) The Annotation Viewer al-
lows one to examine output annotations, as well as compare
them with a gold standard, or with the results of a previ-
ous version of the annotator, to avoid regressions. (3) The
Annotation Provenance Viewer generates and displays the
provenance of annotations, which allows the developer to
quickly discover the annotator’s components responsible for
a mistake, and focus the debugging process accordingly. (4)
The Contextual Clue Discoverer speeds up the process of
collecting and discovering important contextual clues from
the input document collection. (5) The Regular Ezpression
Learner takes as input a user-specified (simple) regular ex-
pression and produces a more precise (and more complex)
regular expression, thus relieving the developer from the bur-
den of manually writing complex regular expressions from
scratch. (6) Finally, the AQL Rule Refiner automatically
generates a set of concrete refinements ranked according to
how much each improves the overall accuracy of the anno-
tator, given a set of labeled output annotations.

To the best of our knowledge, the SystemT IDE is the
first integrated development environment for IE rules that
significantly simplifies and automates the rule writing pro-
cess by providing ready-made explanations for annotations,
discovering useful contextual clues, allowing a developer to
write simpler regular expressions, and replacing the primar-

! Available for download at http://alphaworks.ibm.com/tech/systemt

1292

AQL ﬂ m Regular ...
Editor 'n.""’ o= | pod |y Expression
Learner
Annotation :'_'_'_'_'_'_'_': Rule [¢7
Viewer - 5 H Refiner ¢
Annotation | = Contextual
Provenance X Clue
Viewer Discoverer

Figure 2: The architecture of SystemT IDE.

ily manual rule refinement process with that of selecting
from a ranked list of concrete refinements.

3. DEMONSTRATION OVERVIEW

Demonstration Scenario. We assume an email semantic
search application, and use a sample of the Enron dataset as
underlying collection of emails. In this context, we wish to
specify semantic queries such as “Tom phone” in order to find
Tom’s actual phone number, as opposed to emails containing
the words Tom and phone. A crucial step in enabling such
queries is the ability to extract from emails entities of type
Person and Phone and the relationship between them.

We start our demonstration with a naive set of rules for
identifying PersonPhone relationships, as an example of a first
version of annotator that a rule developer would devise dur-
ing initial iterations of developing the annotator. Figure 3-A
includes a screenshot of the AQL Editor showing a subset of
this annotator. We use this naive annotator to illustrate the
main constructs of SystemT’s AQL rule language, as well
as basic functionalities of the AQL FEditor such as syntax
highlighting and hyperlink navigation.

Next, we execute the annotator on our collection of En-
ron emails, and examine its output in the Annotation Viewer
(Figure 3-B) We show that the naive annotator suffers from
both low precision and low recall: it generates incorrect an-
notations (e.g., Morgan Stanley, fax: 205-4493), while
missing correct ones (e.g., as in Call Emma, x33650).

The rest of our demonstration focuses on several features
of the SystemT IDE that reduce the manual effort involved in
all stages of the development by (semi-)automating some of
the labor-intensive tasks. We now describe how each of these
features facilitates the refinement of the naive PersonPhone
annotator in one iteration of the development process.
Annotation Provenance Viewer. For each annotation
in a document, SystemT IDE displays a visual diagram il-
lustrating its provenance [1]: how it has been generated by
the annotator when applied to that document. Figure 3-
C shows the provenance of Morgan Stanley, fax: 205-
4493 which enables the developer to understand that it is
the rule FullName, which uses a dictionary of complete names
to identify candidate persons, that is responsible for gener-
ating the incorrect annotation. Therefore, to eliminate the
incorrect annotation, the developer may remove the entry
Morgan Stanley from this dictionary. The method used in
generating provenance diagrams is based on techniques from
the field of data provenance and is explained in [7].
Contextual Clues Discoverer. This component of Sys-
temT IDE clusters the context surrounding annotations in
order to detect frequently occurring patterns, and presents
them in a meaningful way. For instance, Figure 3-D shows
the result of clustering the region of text between incorrect

/00144

Provenance for All Output in D

person: Span over Doc.text phone: Span over Doc.text personphone: Span over Doc.text |
Doc.text[429-437]: 'Lorraine' Doc.text[445-457]: '607)205-4493' Doc.text[429-457]: 'Lorraine Smith (607)205-4493"

Document Text

Show Full Text

have project questions, please call Lorraine Smith (607)205-4493.
When done, send to , then call

Emma, x33650.

AQL ~ | Dictosary + || UDF v | Colection v | Help v | A Enr C
L e &
-- Find phone numbers, using a simple regular expressions N
create view PhoneNumber as f/:rsﬁName
extract organ
regex /(\d-+H\W)+\d+/
ongD te(m as nl)lm PersonPhone Person FullName
from Document D; Morgan Stanley, fax: 205-4493 Morgan Stanley Morgan Stanley
- Find instances of first name followed within 40 chars by phone number ;(‘]';":&93
create view PersonPhoneAll as -
select name.name as person, phone.num as phone, || « Type: FullName « AQL rule:
‘ CombineSpans(name.name, phone.num) as personphone « Operation: EXTRACT DICTIONARY _ create view FullName as
from Person name, PhoneNumber phone B, extract
where Follows(name.name, phone.num, 0, 40); - [name: Span over Doc.text | dictionary *fullNames.dict
Collection FironEmailSample Exccute on D.text as name
| Doc.text[478-492]: Morgan Stanley | from Doc D;
[} 144 Data set:
B EnronEm: D
=3 p—
: %
View: PersonPhone .‘
o

% :0‘-?'.

Figure 3: (A) AQL Editor; (B-C) Annotation and

PersonPhone pairs, which reveals frequent occurrences (note
the large bubbles) of clues such as fax and telefax. This
enables the developer to improve the precision of the an-
notator by adding a rule that filters out PersonPhone pairs if
the Phone component is preceded by a fax number clue. Fur-
thermore, the system may discover that call at frequently
occurs with correct PersonPhone annotations, and at the de-
veloper’s request, it can explore other contexts in which the
same clue occurs. This reveals that call at also co-occurs
with extension numbers that are not currently captured by
the Phone annotator, and accordingly, the developer can add
the appropriate rule(s) to improve recall.

Regular Expression Learner. We demonstrate the abil-
ity of SystemT IDE to learn a complex regular expression,
starting from a much simpler regular expression Ry that
captures with high recall but low precision the target entity,
and a set of positive and negative matches for Ry. For exam-
ple, this feature allows the developer to start by specifying
a simple regular expression such as (\d+\ W)+\d+ (blocks
of digits separated by a non-word character) that identifies
correct phone numbers, but also incorrect ones such as social
security numbers, and IP addresses. The system will then
automatically generate a refined (more complex) regular ex-
pression that captures most of the positive examples given
as input, and as few negative examples as possible. That is,
the resulting regular expression has much higher precision
with a similar recall. The hill climbing algorithm behind the
Learner is described in [6].

AQL Rule Refiner. Finally, we demonstrate SystemT
IDE’s ability to automatically suggest concrete refinements
at the level of an entire annotator. For example, given a set
of positive and negative examples in the output of the Person-
Phone annotator, the system suggests multiple refinements
that improve the precision of the annotator, such as: R1)
Filter PersonPhone if region between the Person and Phone pair
contains another person’s name; R2) Filter Phone if the im-
mediate left context contains tokens such as fax or f#:; R3)
Remove Morgan Stanley from the dictionary of full names.
The refinements are ranked according to how much each

Provenance Viewers; (D) Contextual Clue Discoverer.

1293

improves the precision with the same recall. The developer
may choose one or more refinements to be automatically ap-
plied, or even enhance a refinement before applying it, based
on domain knowledge, e.g., enrich the filtering dictionary au-
tomatically suggested in refinement R2 with additional en-
tries such as efax. The methods underlying the Refiner are
detailed in [7]. While the Provenance Viewer, the Contex-
tual Clues Discoverer, and the Regex Learner are individual
components useful by themselves, several of their internal
techniques are integrated in the Rule Refiner in order to de-
termine annotator components responsible for a large num-
ber of mistakes, and generate specific types of refinements.

4. REFERENCES

[1] J. Cheney, L. Chiticariu, and W. Tan. Provenance in
Databases: Why, How, and Where. Foundations and Trends
in Databases, 1(4):379-474, 2009.

L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan,

F. Reiss, and S. Vaithyanathan. SystemT: An Algebraic
Approach to Declarative Information Extraction. In ACL,
2010.

L. Chiticariu, R. Krishnamurthy, Y. Li, F. Reiss, and

S. Vaithyanathan. Domain Adaptation of Rule-based
Annotators for Named-Entity Recognition Tasks. In
EMNLP, 2010.

L. Chiticariu, Y. Li, S. Raghavan, and F. R. Reiss.
Enterprise Information Extraction: Recent Developments
and Open Challenges. In SIGMOD (Tutorial), 2010.

R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss,

S. Vaithyanathan, and H. Zhu. SystemT: a System for
Declarative Information Extraction. SIGMOD Record,
37(4):7-13, 2008.

[6] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan,
and H. V. Jagadish. Regular expression learning for
information extraction. In EMNLP, 2008.

B. Liu, L. Chiticariu, V. Chu, H. V. Jagadish, and F. Reiss.
Automatic Rule Refinement for Information Extraction.
PVLDB, 3(1):588-597, 2010.

F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and

S. Vaithyanathan. An Algebraic Approach to Rule-Based
Information Extraction. In ICDE, 2008.

2]

(3]

(4]

(5]

(7]

(8]

