
Cleaning Inconsistencies in Information Extraction
via Prioritized Repairs

Ronald Fagin
IBM Research – Almaden

San Jose, CA, USA
fagin@us.ibm.com

Benny Kimelfeld
�

LogicBlox, Inc.
Berkeley, CA, USA
bennyk@gmail.com

Frederick Reiss
IBM Research – Almaden

San Jose, CA, USA
frreiss@us.ibm.com

Stijn Vansummeren
Université Libre de

Bruxelles (ULB)
Bruxelles, Belgium

stijn.vansummeren@ulb.ac.be

ABSTRACT
The population of a predefined relational schema from textual con-
tent, commonly known as Information Extraction (IE), is a per-
vasive task in contemporary computational challenges associated
with Big Data. Since the textual content varies widely in nature
and structure (from machine logs to informal natural language), it
is notoriously difficult to write IE programs that extract the sought
information without any inconsistencies (e.g., a substring should
not be annotated as both an address and a person name). Dealing
with inconsistencies is hence of crucial importance in IE systems.
Industrial-strength IE systems like GATE and IBM SystemT there-
fore provide a built-in collection of cleaning operations to remove
inconsistencies from extracted relations. These operations, how-
ever, are collected in an ad-hoc fashion through use cases. Ideally,
we would like to allow IE developers to declare their own poli-
cies. But existing cleaning operations are defined in an algorithmic
way and, hence, it is not clear how to extend the built-in operations
without requiring low-level coding of internal or external functions.

We embark on the establishment of a framework for declarative
cleaning of inconsistencies in IE, though principles of database the-
ory. Specifically, building upon the formalism of document span-
ners for IE, we adopt the concept of prioritized repairs, which has
been recently proposed as an extension of the traditional database
repairs to incorporate priorities among conflicting facts. We show
that our framework captures the popular cleaning policies, as well
as the POSIX semantics for extraction through regular expressions.
We explore the problem of determining whether a cleaning dec-
laration is unambiguous (i.e., always results in a single repair),
and whether it increases the expressive power of the extraction lan-
guage. We give both positive and negative results, some of which
are general, and some of which apply to policies used in practice.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data models;
H.2.4 [Database Management]: Systems—Textual databases, Re-
lational databases, Rule-based databases; I.5.4 [Pattern Recogni-
�Work done while at IBM Almaden – Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

tion]: Applications—Text processing; F.4.3 [Mathematical Logic
and Formal Languages]: Formal Languages—Algebraic language
theory, Classes defined by grammars or automata, Operations on
languages; F.1.1 [Computation by Abstract Devices]: Models of
Computation—Automata, Relations between models

General Terms
Theory

Keywords
Information extraction, document spanners, regular expressions,
extraction inconsistency, database repairs, prioritized repairs

1. INTRODUCTION
Information Extraction (IE) conventionally refers to the task of

automatically extracting structured information from text. While
early work in the area focused largely on military applications [22],
this task is nowadays pervasive in a plethora of computational chal-
lenges (especially those associated with Big Data), including social
media analysis [4], machine data analysis [21], healthcare analy-
sis [40], customer relationship management [1], and indexing for
semantic search [41]. Moreover, contemporary analytics platforms
like Hadoop make the analysis of data more accessible to a broad
range of users. The techniques used for implementing IE tasks in-
clude rule engineering [20,35,37], rule learning [11,28], probabilis-
tic graph models [25, 27, 30], and other statistical models such as
Markov Logic Networks [31, 33] and probabilistic databases [12].
There are also general frameworks designated to the development
and scalable execution of IE programs, such as UIMA [18], the
General Architecture for Text Engineering (GATE) [9], Xlog [36]
and SystemT [7].

GATE and SystemT are highly relevant to this paper. GATE, an
open-source project by the University of Sheffield, is an instantia-
tion of the cascaded finite-state transducers [2]. The core IE en-
gine of GATE, called JAPE, processes a document via a sequence
of phases (cascades), each annotating spans (intervals within the
document) with types by processing previous annotations by ap-
plying grammar rules and user defined Java procedures. SystemT
exposes an SQL-like declarative language named AQL (Annota-
tion Query Language), along with a query plan optimizer [34] and
development tooling [28]. Conceptually, AQL supports a collec-
tion of “direct” extractors of relations from text (e.g., tokenizer,
dictionary lookup, regex matcher, part-of-speech tagger, and other
morphological analyzers), along with an algebra for relational ma-
nipulation.

Databases often involve inconsistency, due to human errors, inte-
gration of heterogeneous resources, imprecision in ETL flows, and

so on. The database research community has proposed principled
ways to capture, manage and resolve data inconsistency [3,5,6,15–
17,29,38]. Here, the identification and capturing of inconsistencies
is usually done through the use of specialized constraints and de-
pendencies [3,15,16,29,38]. A prominent formalism for specifying
inconsistencies in this respect are the denial constraints [3,38] that
can specify, for example that no two persons can have the same
driver’s license number, or that no single person can have multi-
ple residential addresses. To manage and resolve data inconsisten-
cies, the database research community has proposed a wide variety
of methods, ranging from consistent query answering [3], to for-
malisms for the declarative specification of conflict resolution by
means of prioritized repairs [38], to data cleaning and data fusion
tools that introduce domain-specific operators for removing data
inconsistencies [5, 6, 17].

In IE tasks, inconsistencies occur at a low level. For example,
an extractor may annotate multiple person mentions inside “Mar-
tin Luther King Jr”, namely: Martin Luther, Luther King, Martin
Luther King Jr., etc. Moreover, all of these annotated spans may
be contained in the larger span “1805 Martin Luther King Jr Way,
Berkeley, CA 94709,” which is annotated as an address, and which
should not overlap with person mentions.

To handle inconsistency, nearly all rule-based IE systems inte-
grate a cleaning mechanism as a core element the rule language.
For example, the CPSL standard, which underpins many commonly-
used systems, stipulates that “at each [token position]... one of the
matching rules is selected as a ’best match’ and is applied” [2].
JAPE, a popular implementation of CPSL, generalizes this “best
match” concept to a collection of “controls” that represent differ-
ent cleaning policies. Every JAPE rule must include a specification
of which control applies to matches of the rule. As an example, in
the Appelt control the annotation procedure (transducer) scans the
document left to right; when at a specific location, it applies only
the longest annotation, and continues scanning right after that anno-
tation. In the Brill control scanning is also left to right, and when at
a specific location, all the annotations that begin there are retained;
but after that, scanning still continues after the longest annotation.
In AQL, this cleaning mechanism comes in the form of “consoli-
dation.” Specifically, the AQL declaration of a view can include a
command to filter out tuples by applying a consolidation policy to
one of the columns. There is a built-in collection of such policies,
like LeftToRight, which is similar to Appelt, and ContainedWithin
that retains only the spans that are not strictly contained in other
spans. The Appelt control of JAPE, as well as the ContainedWithin
consolidator of AQL, can involve explicitly specified priorities that
we ignore here for simplicity; we discuss those in Section 5.2.

The goal of this work is to establish principles for declarative
cleaning of inconsistencies in IE programs. We build upon our re-
cent work [14], where we proposed the framework of document
spanners (or just spanners for short) that captures the relational
philosophy of AQL. Intuitively, a spanner extracts from a document
d (which is a string over a finite alphabet) a relation over the spans
of d. An example of a spanner representation is a regex formula: a
regular expression with embedded capture variables that are viewed
as relational attributes. A regular spanner is one that can be ex-
pressed in the closure of the regex formulas under relational alge-
bra. We extend the spanners into extraction programs, which are
non-recursive Datalog programs that can use spanners in the right
hand side of the rules. We then include denial constraints (again
phrased using spanners) to specify integrity constraints within the
program. In the presence of denial constraints, a repair of a schema
instance is a subset of facts that satisfies all the constraints, and is
not strictly contained in any other such subset [3].

Denial constraints do not provide any means to discriminate among
repairs, and are therefore insufficient to capture common cleaning
policies in IE like the ones aforementioned (Appelt and Brill, etc.);
those strategies imply not only which sets of facts are in conflict,
but also which fact is in preference to remain or be dropped. To
accommodate preferences, we adopt the prioritized repairs of Sta-
worko et al. [38], which extend the concept of repairs with prior-
ities among facts that, eventually, translate into priorities among
repairs. More precisely, Staworko et al. assume that in addition
to denial constraints, the inconsistent database is associated with a
binary relation ¡, called priority, over the facts (where f1 ¡ f2
means that f1 has priority over f2). We say that a repair J can
be improved if we can add to J a new database fact f and retain
consistency of J by removing only facts that are inferior to f (ac-
cording to the priority). The idea is to restrict the set of repairs to
those that are Pareto-optimal (or just optimal hereafter), where an
optimal repair is one that cannot be improved.1

Staworko et al. [38] made the assumption that the priority re-
lation ¡ is given in an explicit manner, and did not provide any
syntax for declaring priority at the schema level. Here, we need
such a syntax, and we propose what we call a priority generat-
ing dependency, or just pgd for short. A pgd has the logical form
ψpxq Ñ pϕ1pxq ¡ ϕ2pxqq, where x is a sequence of variables, all
universally quantified (and all assigned spans in our framework),
ψpxq represents a spanner with variables in x, and the ϕipxq are
atomic formulas over the relational schema. A cleaning update in
an extraction program is specified by a collection of denial con-
straints and pgds, and it instructs the program to branch into the
optimal repairs (which are viewed as possible worlds). In Section 5
we show that common strategies for cleaning inconsistencies in IE,
like all those used in JAPE and AQL, can be phrased in our frame-
work, where all involved spanners are regular. We further show
that the POSIX semantics for regex formulas is expressible in our
framework. The POSIX semantics can be viewed as an extreme
cleaning policy for a regex formula, dictating that the evaluation on
a string always results in a single match [24].

One difference between the ordinary concept of repairs and the
prioritized repairs is that the latter give rise to interesting cases
where a single optimal repair exists. This is a significant differ-
ence, since data management systems are usually not designed to
support multiple possible worlds. Here, we refer to this property
as unambiguity. An extraction program is unambiguous if, for all
input documents, the result consists of exactly one possible world.
This property holds in all of the IE cleaning policies mentioned thus
far. The next problem we study is that of deciding whether a given
extraction program is unambiguous. We prove that, for the class
of programs that use regular spanners, this property is undecidable.
To prove that, we give an intermediate result of independent in-
terest: it is undecidable to determine whether a two-way two-head
deterministic finite automaton [23] has any immortal finite config-
uration.

Staworko et al. [38] show that under two conditions, unambigu-
ity is guaranteed. The first condition (which they assume through-
out their paper) is that the priority relation induces an acyclic graph.
The second condition is totality: every two facts that are jointly in-
volved in a conflict are also comparable in the priority relation. In
Section 4 we improve that result by relaxing totality into what we
call the minimum property: every conflict has a least prioritized
member. In our setting, an important example where the minimum

1Staworko et al. [38] also study global optimality as an alternative
to Pareto optimality. As we discuss in Section 3, it turns out that all
the results in this paper hold true even if we adopt global optimality
instead of the Pareto one.

property (and, in fact, totality) is guaranteed is the special case of
a cleaning update consisting of binary conflicts, such that the pgds
are specified precisely for those pairs in conflict. In fact, we define
a special syntax to capture this case: a denial pgd is an expression
of the form ψpxq Ñ pϕ1pxq � ϕ2pxqq, which has the same se-
mantics as a pgd, but it also specifies that ϕ1pxq and ϕ2pxq are in
conflict (and the former is of higher priority). We then look again
at extraction programs that use regular spanners. We prove that it
is decidable to determine whether the minimum property is guaran-
teed by a given cleaning update. However, it turns out that it is un-
decidable to determine whether a pgd guarantees acyclicity of the
priority relation. The conclusion is that other (stronger) conditions
need to be imposed if we want to automatically verify unambigu-
ity of an extraction program (an example would be by some means
of a potential function, e.g., [13]). Such conditions are beyond the
scope of this paper, and are left as important directions for future
work.

An extreme example of an unambiguous extraction program is a
program that does not use cleaning updates (hence, never branches).
Given that one is interested in the content of a single relation of the
program (which we assume as part of our definition of an extraction
program), an unambiguous program can be viewed simply as a rep-
resentation of a spanner. The next question we explore is whether
cleaning updates increase the expressive power (when used in un-
ambiguous programs). We define the property of disposability of
a cleaning update that, intuitively, means that we can replace the
cleaning update with a collection of non-cleaning (ordinary) rules.
As usual, this definition is parameterized by the representation sys-
tem we use for the involved spanners. In the case of unambiguous
programs using regular spanners, if all the cleaning updates are dis-
posable, then the spanner defined by the program is also regular.
However, we show that there exists an unambiguous program that
uses regular spanners and a single cleaning update, such that the re-
sulting spanner is not regular. Moreover, in the case of core span-
ners (which extend the regular spanners with the string-equality
selection [14]), each of JAPE’s cleaners, as well as the POSIX one,
strictly increase the expressive power.

In Section 5 we explore special cases of cleaning updates in ex-
traction programs with regular spanners. The first case is that of
acyclic and transitive denial pgds. An example of such a denial
pgd is the ContainedWithin consolidation policy mentioned earlier
in this section. The second case is the denial pgds that declare the
different controls of JAPE. The third case is the POSIX policy for
regex formulas, where we show how it is simulated by a sequence
of denial pgds. It follows from our results so far that an extraction
program that uses only cleaning updates among the three cases is
unambiguous. We prove that all of these cleaning updates are dis-
posable. We find these results interesting, since we can now draw
the following conclusions. First, the extraction programs that use
regular spanners, as well as cleaning updates among the three cases,
have the same expressive power as the regular spanners. Second,
for every regex formula γ there exists a regex formula γ1, such that
when evaluated over a document, γ1 (without any cleaning applied)
gives the same result as γ under the POSIX semantics. We are not
aware of any result in the literature showing that the POSIX seman-
tics can be “compiled away” in this sense.

2. DOCUMENT SPANNERS
In this section, we give some preliminary definitions and nota-

tion, and recall the formalism of document spanners [14].

2.1 Strings and Spans
We fix a finite alphabet Σ of symbols. We denote by Σ� the set

of all finite strings over Σ, and by Σ� the set of all finite strings of
length at least one over Σ. For clarity of context, we will often refer
to a string in Σ� as a document. A language over Σ is a subset of
Σ�. Let d � σ1 � � �σn P Σ� be a document. The length n of d is
denoted by |d|. A span identifies a substring of d by specifying its
bounding indices. Formally, a span of d has the form ri, jy, where
1 ¤ i ¤ j ¤ n � 1. If ri, jy is a span of d, then dri,jy denotes
the substring σi � � �σj�1. Note that dri,iy is the empty string, and
that dr1,n�1y is d. We note that the more standard notation would
be ri, jq, but we use ri, jy to distinguish spans from intervals. For
example, r1, 1q and r2, 2q are both the empty interval, hence equal,
but in the case of spans we have ri, jy � ri1, j1y if and only if
i � i1 and j � j1 (and in particular, r1, 1y � r2, 2y). We denote
by Spanspdq the set of all the spans of d. Two spans ri, jy and
ri1, j1y of d overlap if i ¤ i1 j or i1 ¤ i j1, and are disjoint
otherwise. Finally, ri, jy contains ri1, j1y if i ¤ i1 ¤ j1 ¤ j.

EXAMPLE 2.1. In all of the examples throughout the paper,
we consider the example alphabet Σ which consists of the low-
ercase and capital letters from the English alphabet (i.e., a,. . . ,z
and A,. . . ,Z), the comma symbol (“,”), and the underscore symbol
(“_”) that stands for whitespace. (We use a restricted alphabet for
simplicity.) Figure 1 depicts an example document d in Σ�. For
ease of later reference, it also depicts the index of each character
in d. Figure 2 shows two tables containing spans of d. Observe
that the spans in the left table are those that correspond to words in
d that are names of US states (Georgia, Washington and Virginia).
For example, the span r21, 28y corresponds to Georgia. We will
further discuss the meaning of these tables later.

2.2 Document Spanners
We fix an infinite set SVars of span variables; spans may be as-

signed to these span variables. The sets Σ� and SVars are disjoint.
For a finite set V � SVars of variables and a document d P Σ�, a
pV,dq-tuple is a mapping µ : V Ñ Spanspdq that assigns a span of
d to each variable in V . A pV,dq-relation is a set of pV,dq-tuples.
A document spanner (or just spanner for short) is a function P that
is associated with a finite set V of variables, denoted SVarspP q,
and that maps every document d to a pV,dq-relation.

EXAMPLE 2.2. Throughout our running example (which started
in Example 2.1) we will define several spanners. Two of those
are denoted as JρsttK and JρlocK, where SVarspJρsttKq � txu and
SVarspJρlocKq � tx1, x2, yu. Later we will explain the meaning of
the brackets, and specify what exactly each spanner extracts from
a given document. For now, the span relations (tables) in Figure 2
show the results of applying the two spanners to the document d of
Figure 1.

Let P be a spanner with SVarspP q � V . Let d P Σ� be a
document, and let µ P P pdq be a pV,dq-tuple. We say that µ is hi-
erarchical if for all variables x, y P SVarspP q one of the following
holds: (1) the span µpxq contains µpyq, (2) the span µpyq contains
µpxq, or (3) the spans µpxq and µpyq are disjoint. As an example,
the reader can verify that all the tuples in Figure 2 are hierarchical.
We say that P is hierarchical if µ is hierarchical for all d P Σ� and
µ P P pdq. Observe that for two variables x and y of a hierarchical
spanner, it may be the case that, over the same document, one tuple
maps x to a subspan of y, another tuple maps y to a subspan of x,
and a third tuple maps x and y to disjoint spans.

2.3 Spanner Representation Systems
By a spanner representation system we refer collectively to any

manner of specifying spanners through finite objects. In previous

C a r t e r _ f r o m _ P l a i n s , _ G e o r g i a , _ W a s h i n g t o n _ f r o m _ W e s t m o r e l a n d , _ V i r g i n i a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

Figure 1: Document d in the running example

work [14] we defined several representation systems (by means of
regular expressions, special types of automata, and relational alge-
bra). Here, we recall the definition of the regex formula system, as
well as its closure under relational algebra.

A regular expression with capture variables, or just variable
regex for short, is an expression in the following syntax that ex-
tends that of regular expressions:

γ :� H | ε | σ | γ _ γ | γ � γ | γ� | xtγu (1)

The added alternative is xtγu, where x P SVars. We denote by
SVarspγq the set of variables that occur in γ. We use γ� as abbre-
viations of γ � γ�.

A variable regex can be matched against a document in multiple
ways, or more formally, there can be multiple parse trees showing
that a document matches a variable regex. Each such a parse tree
naturally associates variables with spans. It is possible, however,
that in a parse tree a variable is not associated with any span, or
is associated with multiple spans. If every variable is associated
with precisely one span, then the parse tree is said to be functional.
A variable regex is called a regex formula if it has only functional
parse trees on every input document. An example of a variable
regex that is not a regex formula is pxtauq�, because a match
against aa assigns x to two spans. We refer to Fagin et al. [14]
for the full formal definition of regex formulas. By RGX we denote
the class of regex formulas. A regex formula γ is naturally viewed
as representing a spanner, and by JγK we denote the spanner that is
represented by γ. Following are examples of spanners represented
as regex formulas.

EXAMPLE 2.3. In the regex formulas of our running examples
we will use the following conventions.

 [a-z] denotes the disjunction a_ � � � _ z;

 [A-Z] denotes the disjunction A_ � � � _ Z;

 and [a-zA-Z] denotes the disjunction [a-z]_ [A-Z].

We now define several variable regexes that we will use throughout
the paper.

The following regex formula extracts complete words (tokens)
from text. (Note that this is a simplistic extraction for the sake of
presentation.)

γtkn :�
�
ε_pΣ� � _q

�
� xtra-zA-Zs�u �

��
p,__q � Σ�

�
_ ε

	

When applied to the document d of Figure 1, the resulting spans
include r1, 7y, r8, 12y, r13, 19y and so on.

JρsttKpdq
x

µ1 r21, 28y

µ2 r30, 40y

µ3 r60, 68y

JρlocKpdq
x1 x2 y

µ5 r13, 19y r21, 28y r13, 28y

µ4 r21, 28y r30, 40y r21, 40y

µ6 r46, 58y r60, 68y r46, 68y

Figure 2: Results of spanners in the running example

The following variable regex extracts spans that begin with a
capital letter.

γ1Cap :� Σ� � xt[A-Z] � Σ�u � Σ�

When applied to the document d of Figure 1, the resulting spans
include r1, 7y, r1, 3y, r13, 19y, r13, 20y, and so on.

The following regex formula extracts all the spans that span names
of US states. For simplicity, we include just the three in Figure 1.
For readability, we omit the concatenation symbol � between two
alphabet symbols.

γstt :�Σ� �xtGeorgia_Virginia_Washingtonu�Σ�

When applied to the document d of Figure 1, the resulting spans
are r21, 28y, r30, 40y, and r60, 68y.

The following regex formula extracts all the triples px1, x2, yq of
spans such that the string “,_” separates between x1 and x2, and
y is the span that starts where x1 starts and ends where x2 ends.

γ,_ :� Σ� � y

x1tΣ

�u � ,_ � x2tΣ
�u
(
� Σ�

Let d be the document of Figure 1, and let V be the set tx1, x2, yu
of variables. The pV,dq-tuples that are obtained by applying γ,_ to
d map px1, x2, yq to triples like pr13, 19y, r21, 28y, r13, 28yq, and
in addition, triples that do not necessarily consist of full tokens,
such as the triple pr9, 19y, r21, 23y, r9, 23yq.

We denote by REG the class of expressions in the closure of RGX
under union (Y), projection (πx where x is a sequence of variables)
and natural join ('). Note that natural join is based on span equal-
ity, not on string equality, since our relations contain spans. A span-
ner is regular if it is definable in REG. Fagin et al. [14] proved that
the class of regular spanners is closed under the difference operator.
As usual, by JρK we denote the spanner that is represented by the
REG expression ρ.

Let ρ be an expression in REG and let x � x1, . . . , xn be
a sequence of n distinct variables containing all the variables in
SVarspρq (and possibly additional variables). Let y � y1, . . . , yn
be a sequence of distinct variables of the same length as x. We de-
note by ρry{xs the expression ρ1 that is obtained from ρ by replac-
ing every occurrence of xi with yi. If x is clear from the context,
then we may write just ρrys.

EXAMPLE 2.4. Using γtkn, γstt and γ,_ from Example 2.3, we
define several regular spanners.

 The spanner ρstt extracts all the tokens that are names of US
states: ρstt :� γtkn ' γstt.

 The spanner ρ1Cap extracts all the tokens beginning with a
capital letter: ρ1Cap :� γtkn ' γ1Cap.

 The spanner ρloc extracts spans of strings like “city, state”:
ρloc :� ρ1Caprx1{xs ' ρsttrx2{xs ' γ,_.

The results of applying the spanners JρsttK and JρlocK to the docu-
ment d of Figure 1 are in Figure 2.

Fagin et al. [14] proved the following.

THEOREM 2.5. [14] A spanner is definable in RGX if and only
if it is regular and hierarchical.

Both RGX and REG are spanner representation systems that we
shall study. In addition, in our proofs we shall later discuss other
spanner representation systems, including ones based on automata
and ones that extend the system of regular spanners.

3. EXTRACTION PROGRAMS
In the previous section we introduced spanners, along with the

representation systems RGX and REG. Here we will use spanners
as building blocks for specifying what we call extraction programs
that involve direct extraction of relations, specification of inconsis-
tencies, and resolution of inconsistencies. We begin with an adap-
tation of the standard notions of signature and instances to text
extraction.

3.1 Signatures and Instances
A signature is a finite sequence S � xR1, . . . , Rmy of distinct

relation symbols, where each Ri has an arity ai ¡ 0. In this work,
the data is a document d, and entries in the instances of a signa-
ture are spans of d. Formally, for a signature S � xR1, . . . , Rmy
and a document d P Σ�, a d-instance (over S) is a sequence
xr1, . . . , rmy, where each ri is a relation of arity ai over Spanspdq;
that is, ri is a subset of Spanspdqai . A d-fact (over S) is an ex-
pression of the form Rps1, . . . , saq, where R is a relation symbol
of S with arity a, and each si is a span of d. If f is a d-fact
Rps1, . . . , saq and I is a d-instance, both over the signature S,
then we say that f is a fact of I if ps1, . . . , saq is a tuple in the
relation of I that corresponds to R. For convenience of notation,
we identify a d-instance with the set of its facts.

EXAMPLE 3.1. The signature S we will use for our running ex-
ample consists of three relation symbols:

 The unary relation symbol Loc that stands for location;

 The unary relation symbol Per that stands for person;

 The binary relation symbol PerLoc that associates persons
with locations.

We continue with our running example. Figure 3 shows a d-instance
over S, where d is the document of Figure 1. This instance has 12
facts, and for later reference we denote them by f1,. . . , f12. Note
that there are quite a few mistakes in the table (e.g., the annotation
of Virginia as a person by fact f9); in the next section we will
show how these are dealt with in the framework of this paper.

3.2 Conflicts and Priorities
The database research community has established the concept of

repairs as a mechanism for handling inconsistencies in a declara-
tive fashion [3]. Conventionally, denial constraints are specified to
declare sets of facts that cannot co-exist in a consistent instance.
A minimal repair of an inconsistent instance is a consistent subin-
stance that is not properly contained in any other consistent subin-
stance. Each minimal repair is then viewed as a possible world
(and the notion of consistent query answers can then be applied).
Here, we will adapt the concept of denial constraints to our setting.
In Section 5 we will illustrate the generality of these constraints
w.r.t. conflict resolutions that take place in real life. However, in
the world of IE the minimal repairs are not necessarily all equal. In
fact, in every example we are aware of, the developer has a clear
preference as to which facts to exclude when a denial constraint
fires. Therefore, instead of the traditional repairs, we will use the
notion of prioritized repairs of Staworko et al. [38] that extends
repairing by incorporating priorities.

Loc

f1 r13, 28y

f2 r21, 40y

f3 r46, 68y

Per

f4 r1, 7y

f5 r13, 19y

f6 r21, 28y

f7 r30, 40y

f8 r46, 58y

f9 r60, 68y

PerLoc

f10 r1, 7y r13, 28y

f11 r1, 7y r46, 68y

f12 r30, 40y r46, 68y

Figure 3: A d-instance I over the signature of the running ex-
ample

Let S be a signature, let d be a document, and let I be a d-
instance over S. A conflict hypergraph for I is a hypergraph H
over the facts of I; that is, H � pV,Eq where V is the set of I’s
facts andE is a collection of hyperedges (subsets of V). Intuitively,
the hyperedges represent sets of facts that together are in conflict.
A priority relation for I is a binary relation ¡ over the facts of I .
If f and f 1 are facts of I , then f ¡ f 1 means intuitively that f
is preferred to f 1. A repair of I is a subinstance of I that does
not contain any hyperedge of H . To accommodate priorities in
cleaning, we use the notion of Pareto optimality [38]: a repair J is
an improvement of a repair J 1 if there is a fact f P JzJ 1 such that
f ¡ f 1 for all f 1 P J 1zJ ; an optimal repair is a repair that has no
improvement.

COMMENT 3.2. Another notion of optimality in [38] is global
optimality, where a repair J is an improvement of a repair J 1 if for
every fact f 1 P J 1zJ there is a fact f P JzJ 1 such that f ¡ f 1.
As before, an optimal repair is a repair that has no improvement.
When (1) all conflicts are binary and (2) the priority relation in-
cludes all the pairs in conflict, then it follows from results in [38]
that if we also make the natural assumption of acyclicity of the pri-
ority relation, we have that global optimality and Pareto optimal-
ity coincide. Assumptions (1) and (2) hold in all our results that
involve optimal repairs, except for Theorem 4.3 where the same
proof works for both notions of optimality.

EXAMPLE 3.3. Recall the instance I of our running example
(Figure 3). Figure 4 shows both a conflict hypergraph (which is a
graph in this case) and a priority relation over I . Specifically, the
figure has two types of edges. Dotted edges (with small arrows)

PerLocLoc Per

f9

f4

f1

f2

f3

f5
f10

f11

f12

f6

f7

f8

Figure 4: A conflict graph with priorities in the running exam-
ple

Loc

f1 r13, 28y

f3 r46, 68y

Per

f4 r1, 7y

f7 r30, 40y

PerLoc

f10 r1, 7y r13, 28y

f12 r30, 40y r46, 68y

Figure 5: A d-instance J3 over the signature of the running
example

define priorities, where fi Ñ fj denotes that fi ¡ fj . Later, we
shall explain the preferences (such as f1 ¡ f4). Solid edges (with
bigger arrows) define both conflicts and priorities: fi Ñ fj denotes
that tfi, fju is an edge of the conflict hypergraph, and that fi ¡ fj .

Consider the following sets of facts.

 J1 � tf2, f3, f4, f5, f11u;

 J2 � tf1, f3, f4, f7, f11u � pJ1 Y tf1, f7uqztf2, f5u;

 J3 � tf1, f3, f4, f7, f10, f12u � pJ2 Y tf10, f12uqztf11u.

Observe that each Ji is a repair of I . The repair J2 is an improve-
ment of J1, since both f1 ¡ f2 and f1 ¡ f5 hold. The repair J3
is an improvement of J2, since f10 ¡ f11 (and f12 ¡ f11). Note
that J3 is not an improvement of J1, since no fact in J3 is preferred
to both f2 and f11. Thus, “is an improvement of” is not transi-
tive. The reader can verify that J3 is an optimal repair. In fact, it
can easily be verified (and it also follows from Theorem 4.3 below)
that J3 is the unique optimal solution. The instance J3 is depicted
in Figure 5.

3.3 Denial Constraints and Priority Generat-
ing Dependencies

We now discuss the syntactic declaration of conflicts and priori-
ties.

To specify a conflict hypergraph at the signature level (i.e., to
say how to define the conflict hypergraph for every instance), we
use the formalism of denial constraints. Let S be a signature, and
let R be a spanner representation system. A denial constraint in
R (over S), or just R-dc (or simply dc) for short, has the form
@xrP Ñ Ψpxqs, where x is a sequence of variables in SVars,
P is a spanner specified in R with all variables in x, and Ψ is a
conjunction of atomic formulas ϕpxq over S. (Note that an atomic
formula ϕ is an expression of the form Rpx1, . . . , xaq, where R
is an a-ary relation symbol in S.) We usually omit the universal
quantifier, and specify a dc simply by P Ñ Ψpxq.2

EXAMPLE 3.4. We now define dcs in our running example. We
denote by precede the regex formula Σ� �xtΣ�u�Σ� �ytΣ�u�Σ�.
Hence, precede states that x terminates before y begins. We denote
by disjoint the regex formula precederx, ys _ precedery, xs. We
denote by overlap an expression in REG that represents the com-
plement of disjoint. Note that overlap exists, since regular spanners
are closed under complement [14]. Finally, we denote by overlap�
an expression in REG that restricts the pairs in overlap to those
px, yq satisfying x � y (i.e., x and y are not the same span). It is
easy to verify that overlap� indeed exists.

The following dc, denoted dloc, states that the spans of locations
are disjoint.

dloc :� overlap�rx, ys Ñ
�
Locpxq ^ Locpyq

�
2We note that instead of being written as P Ñ Ψpxq, denial
constraints are typically written (as in [38]) in the equivalent form
 pP ^Ψpxqq. In the literature, the premise P is typically taken to
be a conjunction of atomic formulas, whereas for us P represents a
spanner.

Similarly, the following dc, denoted dlp, states that spans of loca-
tions are disjoint from spans of persons.

dlp :� overlaprx, ys Ñ
�
Locpxq ^ Perpyq

�

To specify a priority relation ¡, we propose what we call here
a priority generating dependency, or just pgd for short. Let S be
a signature, and let R be a spanner representation system. A pgd
in R (for S) has the form @xrP Ñ pϕpxq ¡ ϕ1pxqqs, where x
is a sequence of variables in SVars, P is a spanner specified in
R with all variables in x, and ϕ and ϕ1 are atomic formulas over
S. Again, we usually omit the universal quantifier and write just
P Ñ pϕpxq ¡ ϕ1pxqq.

EXAMPLE 3.5. The following pgd, denoted ploc, states that for
spans in the unary relation Loc, spans that start earlier are preferred,
and moreover, when two spans begin together, the longer one is
preferred.

ploc :� ρrx, ys Ñ
�
Locpxq ¡ Locpyq

�

Here, ρrx, ys is the following expression in REG.

πx,y

��
Σ� � xtztεu � Σ�u � Σ�

�
'

�
Σ� � ztεu � Σ� � ytΣ�u � Σ�u

�	
_

�
Σ� � xtytΣ�uΣ�u � Σ�

�

Intuitively, the first disjunct says that x begins before y, because x
begins with the empty span z, and y begins strictly after z begins.
The second disjunct says that x and y begin together, but x ends
strictly after y ends.

The following pgd, denoted plp, states that all the facts of Loc are
preferred to all the facts of Per (e.g., because the extraction made
for Loc is deemed more precise). We use the Boolean spanner true
that is true on every document.

plp :� trueÑ
�
Locpxq ¡ Perpyq

�

As we will discuss in Section 5, common resolution strategies
translate into a dc and a pgd, such that the dc is binary, and the
pgd defines priorities precisely on the facts that are in conflict. To
refer to such a case conveniently, we write P Ñ pϕpxq � ϕ1pxqq
to jointly represent the dc P Ñ pϕpxq ^ ϕ1pxqq and the pgd
P Ñ pϕpxq ¡ ϕ1pxqq. We call such a constraint a denial pgd.

EXAMPLE 3.6. We denote by contains�rx, ys a regex formula
that produces all pairs px, yq of spans where x strictly contains y.
Let enclosesrz, x, ys denote a specification in REG that produces
all the triples pz, x, yq, such that z begins where x begins and ends
where y ends. For presentation sake, we avoid the precise specifi-
cation of these formulas.

The following denial pgd, denoted dpenc, states that in the rela-
tion PerLoc, two facts are in conflict if the span that covers the two
elements of the one strictly contains that span of the other; in that
case, the smaller span is prioritized (since a smaller span indicates
closer relationship between the person and the location).

enclosesrz, x, ys' enclosesrz1, x1, y1s' contains�rz
1, zs

Ñ PerLocrx, ys� PerLocrx1, y1s

EXAMPLE 3.7. Consider again the d-instance I of Figure 3.
The reader can verify that dcs dloc and dlp from Example 3.4, the
pgds ploc and plp in Example 3.5 and the denial pgd dpenc of Ex-
ample 3.6, together define the conflicts and priorities discussed in
Example 3.3 (Figure 4).

3.4 Extraction Programs
Let R be a spanner representation system. An extraction pro-

gram in R, or just R-program, for short, is a triple xS, U, ϕy, where
S is a signature, U is a finite sequence u1, . . . , um of updates, and
ϕ is an atomic formula over S (representing the result of the pro-
gram). There are two types of updates ui:

1. CQ updates. These updates are conjunctive queries of the
form Rpy1, . . . , yaq :� α1 ^ � � � ^ αk, where R is a rela-
tion symbol of S of arity a, and each αi is either an atomic
formula over S or a spanner in R. The αi are called atoms.
We make the requirement that each yi occurs in at least one
atom.

2. Cleaning updates. A cleaning update is an update of the
form CLEANpδ1, . . . , δdq, where each δi is a dc or a pgd (for
convenience, we will also allow denial pgds).

In the program of the following example, we specify an extrac-
tion program xS, U, ϕy using only U along with a special RETURN
statement that specifies ϕ. We then assume that S consists of pre-
cisely the relation symbols that occur in the program.

EXAMPLE 3.8. We now define the REG-program E of our run-
ning example. Intuitively, the goal of the program is to extract pairs
px, yq, where x is a person and y is a location associated with x.3

The signature is, as usual, that of Example 3.1. The sequence U
of updates is the following. Note that we are using the notation we
established in the previous examples.

1. Locpxq :� ρlocrxs (see example 2.4)

2. Perpyq :� ρ1Caprys (see example 2.4)

3. CLEANpdloc, dlp, ploc, plpq (see Examples 3.4 and 3.5)

4. PerLocpx, yq :� Perpxq ^ Locpyq ^ precederx, ys (see
Example 3.4)

5. CLEANpdpencq (see Example 3.6)

6. RETURN PerLocpx, yq

Note that lines 1, 2 and 4 are CQ updates, whereas lines 3 and 5 are
cleaning updates.

We now define the semantics of evaluating an extraction pro-
gram over a document. Let E � xS, U, ϕy be an R-program with
U � xu1, . . . , umy, and let d P Σ� be a document. Let I0 be
the singleton tIHu, where IH is the empty instance over S. For
i � 1, . . . ,m, we denote by Ii the result of executing the updates
u1, . . . , ui as we describe below. Since the cleaning operation can
result in multiple instances (optimal repairs), each Ii is a set of
d-instances, rather than a single one. For i ¡ 0 we define the
following.

1. If ui is the CQ updateRpx1, . . . , xaq :� α1^� � �^αk, then
Ii is obtained from Ii�1 by adding to each I P Ii�1 all the
facts (over R) that are obtained by evaluating the CQ over I .

2. If ui is the cleaning CLEANpδ1, . . . , δdq, then Ii is obtained
from Ii�1 by replacing each I P Ii�1 with all the optimal re-
pairs of I , as defined by the conflict hypergraph and priorities
implied by all the δj .

3In real life, such a program would of course be much more in-
volved; here it is extremely simplistic, for the sake of presentation.

Recall that a spanner is a function that maps a document into a
pV,dq-relation (see Section 2). An extraction program acts simi-
larly, except that a document is mapped into a set of pV,dq-relations
(since it branches into multiple repairs). Later, we are going to in-
vestigate cases where the extraction program produces precisely
one pV,dq-relation, and then we will view the extraction program
simply as a spanner. Next, we define the output of an extraction
program E � xS, U, ϕy, where U � xu1, . . . , umy and ϕ �
Rpx1, . . . , xaq. Let V � tx1, . . . , xau be the set of variables in
ϕ. From a d-instance I over S (that does not involve any vari-
ables) we naturally obtain a pV,dq-relation (that involves the vari-
ables in V): the pV,dq-relation consisting of all the assignments
µ : V Ñ Spanspdq such that Rpµpx1q, . . . , µpxaqq is a fact in I .
We denote this relation by Irϕs. The result Epdq of evaluating the
program E over the document d is the set of all the pV,dq-relations
Irϕs with I P Im, where Im is the result (as defined earlier) of the
last update um.

EXAMPLE 3.9. Consider again the REG-program E of Exam-
ple 3.8. We will now follow the steps of evaluating the program E
on the document d of our running example (Figure 1). It turns out
that, in this example, each Ii is a singleton, since every cleaning
operation results in a unique optimal repair. Hence, we will treat
the Ii as instances.

1. In I1, the relation Loc is as shown in Figure 3, and the other
two relations are empty.

2. In I2, the relations Loc and Per are as shown in Figure 3, and
PerLoc is empty.

3. In I3, the relations Loc and Per are as shown in Figure 5, and
PerLoc is empty. The cleaning process is described through-
out Sections 3.2 and 3.3.

4. In I4, the relations Loc and Per are as in I3, and PerLoc is
as shown in Figure 3.

5. I5 is the instance shown in Figure 5.

The result Epdq is the (singleton containing the) ptx, yu,dq-relation
that has two mappings: the first maps px, yq to pr1, 7y, r13, 28yq,
and the second to pr30, 40y, r46, 48yq.

4. PROPERTIES OF REGULAR
PROGRAMS

In this section, we discuss some fundamental properties of ex-
traction programs, and focus on the class of REG-programs, which
we refer to as regular programs.

4.1 Unambiguity
Recall that a spanner maps a document d into a pV,dq-relation,

for a set V of variables, while an extraction program maps d into a
set of pV,dq-relations. The first property we discuss for extraction
programs is that of unambiguity, which is the property of having a
single possible world when the program is evaluated over any given
document. Formally, we say that extraction program E is unam-
biguous if Epdq is a singleton pV,dq-relation for every document
d. We may view an unambiguous extraction program E simply as
a specification of spanner.

Let R be a spanner representation system. An R-program is said
to be non-cleaning if it does not contain cleaning updates (hence,
it consists of only CQ updates). Clearly, if an extraction program
is non-cleaning, then it is unambiguous. The following proposition

states that in the case where R is REG or RGX, the non-cleaning
R-programs do not have any expressive power beyond the regular
spanners. The proof is straightforward from the definitions.

PROPOSITION 4.1. LetP be a spanner. The following are equiv-
alent: (1) P is representable by a non-cleaning REG-program, (2)
P is representable by a non-cleaning RGX-program, and (3) P is
regular.

The following theorem states that, unfortunately, in the presence
of cleaning updates unambiguity cannot be verified for regular ex-
traction programs.

THEOREM 4.2. Whether a REG-program is unambiguous is co-
recursively enumerable but not recursively enumerable. In partic-
ular, it is undecidable.

The proof of Theorem 4.2 is an adaptation of the proof of Theo-
rem 4.6 that we later present and discuss in detail.

Let I be a d-instance over a signature S. Let H and ¡ be a
conflict hypergraph and a priority relation over I , respectively. Sta-
worko et al. [38] give the following sufficient condition for the ex-
istence of a single optimal solution (under the assumption that there
are no empty hyperedges). Suppose that (1) ¡ is acyclic, and that
(2) ¡ is total on every hyperedge of H . Then there is exactly one
optimal repair. We have obtained an improvement of this result. We
say that p¡, Hq satisfies the minimum property if every hyperedge
h ofH contains a minimum element, that is, an element a such that
b ¡ a for every member of h other than a. Intuitively, for every
conflict, the minimum element is a natural candidate to remove to
break the conflict. It is clear that, in the presence of acyclicity (and
the absence of empty hyperedges), totality on every hyperedge is
strictly more restrictive than our minimum property. We have the
following.

THEOREM 4.3. Let I be a d-instance over a schema S. Let
H and ¡ be a conflict hypergraph and a priority relation over I ,
respectively. Suppose that (1) ¡ is acyclic, and that (2) the pair
p¡, Hq satisfies the minimum property. Then there is exactly one
optimal repair.

The proof of Theorem 4.3 goes by way of contradiction; specifi-
cally, it shows how, in the presence of (1) and (2), when given two
distinct optimal repairs we can construct an improvement of one
of the two (contradicting its optimality). The theorem suggests the
following condition for when a cleaning update does not introduce
ambiguity. Let u be a cleaning update. We say that u is acyclic if,
for every document d and d-instance I over S, the priority relation
implied by the pgds of u is acyclic. We say that u is minimum gen-
erating if, for every document d and d-instance I over S, for the
priority relation ¡ implied by the pgds of u and the conflict hyper-
graph H implied by u, we have that p¡, Hq satisfies the minimum
property. As an example, if u consists of only denial pgds, then u is
minimum generating (since the hyperedges are all of size 2). From
Theorem 4.3 we conclude the following.

COROLLARY 4.4. Let E be an R-program for some spanner
representation system R. If every cleaning update of E is acyclic
and minimum generating, then E is unambiguous.

The good news is that testing whether a regular cleaning update
is minimum generating is a decidable problem.

THEOREM 4.5. Whether a cleaning update in REG is minimum
generating is decidable.

Establishing finer complexity classes for this and later decidability
results is the subject of future work. In the proof of Theorem 4.5,
we show how to construct, from a regular cleaning update u, a
regular spanner P , represented as a variable-set automaton [14],
such that u is minimum generating if and only if P is empty. We
then use results of Fagin et al. [14] that imply a procedure to test
whether a given variable-set automaton is empty.

Unfortunately, acyclicity is an undecidable property of regular
cleaning updates. Moreover, undecidability remains even if the up-
date consists of a single denial pgd.

THEOREM 4.6. Whether a denial pgd in REG is acyclic is co-
recursively enumerable but not recursively enumerable. In partic-
ular, it is undecidable.

In Section 4.1.1 we discuss our proof of Theorem 4.6.
What about the decidability of the two conditions (1) and (2) of

Theorem 4.3 together? Those two together are also undecidable,
since as we observed, denial pgds are automatically minimum gen-
erating, and so Theorem 4.6 implies that deciding whether a denial
pgd in REG satisfies conditions (1) and (2) of Theorem 4.3 together
is undecidable.

4.1.1 Proof of Undecidability
The proof of Theorem 4.2 is a variation of the proof of Theo-

rem 4.6. To prove the latter, we use results on the emptiness of
multi-head automata [23], and prove an intermediate result of inde-
pendent interest. To present this intermediate result, we need some
definitions.

Let k be a natural number. A nondeterministic two-way k-head
finite automaton (or just 2NFA(k) for short) is a tuple of the form
xΘ, Q, δ, q0, F y where Θ is a finite alphabet, Q is a finite set of
states, δ is a transition function that maps each element in Q �
pΘ Y t$,%uqk to a subset of Q � tl, r, huk, q0 P Q is the initial
state, and F � Q is a set of accepting states. The symbols $ and %
are the left and right endmarkers of input strings, respectively, and
are not in Θ. If the image of δ consists of only singletons and the
empty set, then A is deterministic and we may replace “NFA” with
“DFA.”

The semantics of a 2NFA(k) A � xΘ, Q, δ, q0, F y is as follows.
Let s P Θ� be a string, and denote it as s1, . . . , sn. The machineA
does not read s directly, but rather the augmentation $s% (i.e., end-
points are marked), which we denote by s0, s1, . . . , sn, sn�1. The
machine has a single current state and k heads, each on some sym-
bol in $s%. In the initial configuration, the state is q0 and all the
heads are on s0. The transition pq1, t1, . . . , tkq P δpq, a1, . . . , akq,
where ti P tl, r, hu and ai P ΘY t$,%u, means that if the current
state is q and the ith head is on the symbol ai, then in a possible
next configuration the state is q1 and each head i acts according to
ti: moves one left (l), moves one right (r), or holds in place (h).
If ti moves the head outside the input, it is treated as h. A halting
configuration is one without possible next configurations (because
δpq, a1, . . . , akq � H). A halting configuration is accepting if its
state q is in F ; otherwise, the halting configuration is rejecting.
We say that A accepts a sting s if there is a run (legal sequence of
configurations) on $s% that starts with the initial configuration and
ends with an accepting configuration.

Let C be a class of multi-head automata (e.g., 2DFA(2)). The
finite mortality problem for C is the following. Given an automaton
A P C, determine whetherA terminates on every input string from
every possible configuration; in that case, we say that A has no
immortal configurations. We can prove the following lemma.4

4In private communication with the authors, Martin Kutrib inde-
pendently proved this result.

LEMMA 4.7. For 2DFA(2), the finite mortality problem is co-
recursively enumerable but not recursively enumerable. In partic-
ular, it is undecidable.

The proof of Lemma 4.7 uses a result by Holzer et al. [23], stat-
ing that the emptiness problem (i.e., whether no string is accepted)
is undecidable for 1DFA(2). Specifically, the proof reduces the
emptiness problem for 1DFA(2) to the finite mortality problem for
2DFA(2), where the main idea is to “restart” the run of the given
1DFA(2) whenever it enters an accepting configuration.

Lemma 4.7 is used in the proof of Theorem 4.6 as follows. From
an input 2DFA(2)A, we construct a binary regular spanner ρrx, ys.
Given a document d, we view the spans in JρKpdq as representing
configurations of A over some input string, and pa, bq P JρKpdq
implies that b is the next configuration following a. We then define
the denial pgd ρrx, ys Ñ

�
Rpyq�Rpxq

�
, whereR is a unary rela-

tion symbol. It then follows that A has no immortal configurations
if and only if this pgd is acyclic.

4.2 Disposability
Next, we address the question of whether cleaning updates in-

crease the expressive power of extraction programs.
Let R be a spanner representation system. A cleaning update u

defined in R is said to be R-disposable if the following holds: for
every R-program E that has u as its single cleaning update, there
exists a non-cleaning R-program that is equivalent to E . Of course,
we have the following.

PROPOSITION 4.8. Let R be a spanner representation system
and let E be an R-program. If every cleaning update of E is R-
disposable, then E is equivalent to a non-cleaning R-program.

We say that a denial pgd p is R-disposable if the cleaning update
that consists of only p is R-disposable. The following theorem
implies that cleaning updates, and in fact a single acyclic denial
pgd, increase the expressive power of regular extraction programs.
Recall that a program that uses an acyclic denial pgd as its single
cleaning update is unambiguous (Theorem 4.3).

THEOREM 4.9. There exists an acyclic denial pgd in REG that
is not REG-disposable.

In the proof of Theorem 4.9, we build a REG-program E with a
single cleaning update u. We then assume, by contradiction, that E 1
is a non-cleaning REG-program that is equivalent to E , and then we
show how to construct from E 1 an NFA that accepts the language L
of all the strings s#t where s and t are in t0, 1u�, and their lengths
are equal and even. But it follows immediately from the literature
on regular languages that L is not regular (hence, no NFA accepts
it), and we therefore have a contradiction.

In Section 5, we are going to discuss specific regular cleaning
updates that are, in fact, REG-disposable. We will also discuss
some general conditions that suffice for REG-disposability.

5. SPECIAL CLEANING STRATEGIES
In this section, we discuss several classes of cleaning strategies

that are used in practice. We will show that the strategies in each
class are expressible as cleaning updates (in fact, denial pgds) in
REG. Moreover, we will prove that all of these cleaning updates
are REG-disposable.

5.1 Transitive Denial Pgds
A denial pgd is transitive if the relationship “fact f is in conflict

with and has priority over fact g” is transitive. More formally, let p

be a denial pgd P Ñ pϕpxq� ϕ1pxqq over a schema S. Let I be a
d-instance over S, and let f and f 1 be two facts in I . By p |ù f�f 1

we denote the fact that there is a span assignment for x that is true
on P , and that maps ϕpxq and ϕ1pxq to f and f 1, respectively. We
say that p is transitive if for every d-instance I over S and for every
three facts f1, f2 and f3 in I , if p |ù f1 � f2 and p |ù f2 � f3 then
p |ù f1 � f3.

An example of a transitive denial pgd is the maximal container
denial pgd, which has the form contains�rx, ys Ñ pRpxq�Rpyqq,
where R is a relation symbol, and x and y are disjoint sequences
of variables that contain x and y, respectively. This denial pgd
is among the standard collection of “consolidation” strategies pro-
vided by SystemT [7], along with the analogous minimal contained
(that favors shorter strings, and is expressed by the denial pgd dpenc
in Example 3.6), which is also transitive. Another example of a
transitive denial pgd that captures a popular strategy is that of rule
priority, and it has the form P Ñ pRpxq � Spyqq, where P is a
spanner, andR and S are distinct relation symbols. Hence, the rule
states that if the condition ρ holds (e.g., some attributes overlap),
the fact that is from R is preferred to the fact that is from S (per-
haps because the source of R is more trusted). Here, transitivity
holds in a vacuous manner. Later in this section we will encounter
additional transitive denial pgds.

Next, we give results about transitive denial pgds in REG, even
in conjunction with acyclicity. The first result states that transitivity
is a decidable property.

THEOREM 5.1. The following are decidable for a given denial
pgd p in REG. (1) Determine whether p is transitive; (2) Determine
whether p is both transitive and acyclic.

Like in the proof of Theorem 4.5, the proof here shows how to
reduce each of the two conditions to the emptiness of variable-set
automata.

Recall that every cleaning update that consists of a single acyclic
denial pgd is unambiguous. Interestingly, if that denial pgd is a
transitive denial pgd in REG, then the cleaning update is also REG-
disposable.

THEOREM 5.2. If p is a transitive denial pgd in REG, then p is
REG-disposable.

To prove Theorem 5.2 we use the observation that, under the con-
dition of the theorem, the single optimal repair is the one that con-
sists of only the maximal elements under �. Then we show how to
construct a spanner that selects those maximal elements from the
relevant relations.

5.2 JAPE Controls
JAPE [10] is an instantiation of the Common Pattern Specifi-

cation Language (CPSL) [2], a rule based framework for IE. A
JAPE program (or “phase”) can be viewed as an extraction pro-
gram where all the relation symbols are unary. This system has
several built-in cleaning strategies called “controls.” Here, we will
define these strategies in our own terminology—denial pgds.

JAPE provides four controls (in addition to the All control stating
that no cleaning is to be applied). These translate to the follow-
ing denial pgds. Here, R is assumed to be a unary relation in an
extraction program.

 Under the Appelt control, Rpxq � Rpyq holds if (1) x and y
overlap and x starts earlier than y, or (2) x and y start at the
same position but x is longer than y. The same strategy is
used is also provided by SystemT [7] (as a “consolidator”).
This control also involves rule priority, which we ignore for
now and discuss later.

 The Brill control is similar to Appelt, with the exclusion of
option (2); that is, Rpxq�Rpyq holds if x and y overlap and
x starts earlier than y.

 The First control is similar to Appelt with “longer” replaced
with “shorter.”

 The Once control states that a single fact should remain in
R (unless R is empty), which is the one that starts earliest,
where a tie is broken by taking the one that ends earliest.
Hence, Rpxq � Rpyq if and only if x is that remaining fact
and x � y.

EXAMPLE 5.3. Suppose that Σ � t0, 1u, and that R is defined
by the following regex formula:

Σ� � xt1�0�1�u � Σ�

Now, consider the following two documents:

d1 � 100110100101 d2 � 000110100101

Note that the two documents differ only in their first symbol. The
spans in R for d1 are r1, 5y, r1, 6y, r4, 8y, r5, 8y, r7, 11y, and
r10, 13y. The spans in R for d2 are r4, 8y, r5, 8y, r7, 11y, and
r10, 13y.

 By applying the Appelt control, the spans that remain in R
for d1 are r1, 6y and r7, 11y, and the spans that remains in R
for d2 are r4, 8y and r10, 13y.

 By applying the Brill control, the spans that remain in R for
d1 are r1, 5y, r1, 6y and r7, 11y, and the spans that remains
in R for d2 are r4, 8y and r10, 13y.

 By applying the First control, the spans that remain in R for
d1 are r1, 5y, r5, 8y and r10, 13y, and the spans that remains
in R for d2 are r4, 8y and r10, 13y.

 By applying the Once control, the span that remains in R for
d1 is r1, 5y, and the span that remains in R for d2 is r4, 8y.

As can be seen in the example, the change in the first symbol of the
document affects the extracted spans all over the document.

It is easy to show that each of the above denial pgds is acyclic,
and that it can be expressed in REG. For example, the Applet con-
trol is presented in Example 3.5 with R being the relation symbol
Loc. We can also show the following.

THEOREM 5.4. Each of the denial pgds that correspond to the
four JAPE controls is REG-disposable.

In the case of Once, the proof of Theorem 5.4 is by by using
Theorem 5.2 (since the corresponding denial pgd is transitive in a
vacuous sense). The challenging part of the theorem is for Appelt,
Brill and First. To handle the three cases, we prove Lemma 5.5
below that is of independent interest. We first need a definition.

Let P be a unary spanner. Define P� to be the spanner Q with
SVarspP q � SVarspQq, where for each document d, we have that
Qpdq consists of those spans ra, a1y such that the following holds:
there are indices a1 ¤ � � � ¤ an where n ¥ 1, a1 � a, an � a1,
and rai, ai�1y is in P pdq for all i � 1, . . . , n�1. Observe that for
all documents d, every empty span ra, ay is in P�; this is obtained
by letting a1 � a and n � 1.

LEMMA 5.5. Let P be a unary spanner. If P is regular, then
P� is regular.

The proof of Lemma 5.5 is by constructing a variable-set au-
tomaton that simulates an unbounded number runs of the variable-
set automaton that specifies P .

We now sketch a proof that the denial pgd for the Appelt control
is REG-disposable. The proofs for the Brill and First denial pgds
are similar. Given the unary spanner P , let Q be a regular spanner
that gives the strict prefixes of spans from P . By closure of regular
spanners under complement [14], the complement Q1 of Q is a
regular spanner. Now define M to be a regular spanner that gives
spans in P X Q1. So M gives the right-maximal spans from P
(which means the spans that are maximal when we ignore possible
extensions to the left). Next, let T be the regular spanner that gives
spans that contain a starting point for spans of P . Let us denote
the complement of T by N . By closure under complement, N is
also a regular spanner. Intuitively, N gives the spans that do not
contain any starting point for spans of P . Next, define K to be the
spanner pM Y Nq�. Intuitively, K gives us a sequence of right-
maximal spans, possibly preceded by or followed by spans that do
that do not contain any starting point for a span of P . By closure
of regular spanners under union and the Kleene star (Lemma 5.5),
we know that K is a regular spanner. Finally, define S to be the
spanner that gives those spans from M that are preceded by a span
from K. Then S is a regular spanner that gives those spans in the
result of Appelt cleaning.

5.2.1 Rule Priority
In its general form, Appelt involves rule priority. In JAPE, the

priority of a rule is determined by an explicit numerical priority
(e.g., Priority:20) and, in the case of ties, the position of the
rule in the program definition. In our terminology, we have n unary
views R1, . . . , Rn (ordered by decreasing priority), and we apply
the cleaning of Appelt simultaneously to all the views, while in the
end remove from each Ri all the spans that occur in R1 Y � � � Y
Ri�1. We can extend Theorem 5.4 to include priorities, as follows.
We first define R as the union of the Ri (which we can do in an
extraction program). Next, we apply Appelt, as previously defined,
toR, and then join eachRi withR usingRipxq :� Ripxq^Rpxq.
Finally, we apply the (transitive) cleaners CLEAN

�
trueÑ Ripxq�

Rjpxq
�

for 1 ¤ i j ¤ n, one by one, in order of increasing i.

5.3 POSIX Disambiguation
Recall from Section 2.3 that a regex formula γ defines a span-

ner by considering all possible ways that the input document d
can be matched by γ; that is, it considers all possible parse trees
of γ on d. Each such parse tree generates a new pV,dq-tuple,
where V � SVarspγq, in the resulting span relation. In contrast,
regular-expression pattern-matching facilities of common UNIX
tools, such as sed and awk, or programming languages such as
Perl, Python, and Java, do not construct all possible parse trees.
Instead, they employ a disambiguation policy to construct only a
single parse tree among the possible ones. As a result, a regex for-
mula in these tools always yields a single pV,dq-tuple per matched
input document d instead of multiple such tuples.5

In this section, we take a look at the POSIX disambiguation pol-
icy [19, 24], which is followed by all POSIX compliant tools such
as sed and awk. Formalizations of this policy have been proposed
by Vansummeren [39] and Okui and Suzuki [32], and multiple effi-
cient algorithms for implementing the policy are known [8,26,32].
We show in particular that the POSIX disambiguation policy can
be expressed in our framework as a REG-program that uses only
5While our syntax xtγu for variable binding is not directly sup-
ported in these tools, it can be mimicked through the use of so-
called parenthesized expressions and submatch addressing.

cleaning updates with transitive denial pgds. Other disambiguation
policies, such as the first and greedy match policy followed by Perl,
Python, and Java (see, e.g. [39] for a description of this policy) are
left for future work.

POSIX essentially disambiguates as follows when matching a
document d against regex formula γ.6 A formal definition may be
found in [32, 39]. If γ is one of H, ε, or σ P Σ then at most one
parse tree exists; disambiguation is hence not necessary. If γ is a
disjunction γ1 _ γ2, then POSIX first tries to match d against γ1
(recursively, using the POSIX disambiguation policy to construct a
unique parse tree for this match). Only if this fails it tries to match
against γ2 (again, recursively). If, on the other hand, γ is a con-
catenation γ1 � γ2 then POSIX first determines the longest prefix
d1 of d that can be matched by γ1 such that the corresponding suf-
fix d2 of d can be matched by γ2. Then, d1 and d2 are recursively
matched under the POSIX disambiguation policy by γ1 and γ2, re-
spectively, to construct a unique parse tree for γ. If γ is a Kleene
closure δ� and d is nonempty, then POSIX views γ equivalent to
its expansion δ �δ�. In line with the rule for concatenation, it hence
first determines the longest prefix d1 of d that can be matched by
δ such that the corresponding suffix d2 of d can be matched by δ�.
Then, a unique parse tree for d against γ is constructed by match-
ing d1 recursively against δ and d2 against δ�. If, on the other
hand, d is empty, then a special parse tree is constructed for this
case. The following example illustrates the policy.

EXAMPLE 5.6. Consider γ � xtp0_01qu�ytp1_εqu and d �
01. Under the POSIX disambiguation policy, subexpression xtp0_
01qu will match as much of d as possible while still allowing the
rest of the expression, namely ytp1 _ εqu, to match the remainder
of d. As such, xtp0 _ 01qu will match d entirely, and ytp1 _ εqu
will match the empty string. We hence bind x to the span r1, 3y and
y to r3, 3y.

In contrast, when γ � pxt0u � ytp1_ εquq_ pxt01u � ytp1_ εuq
and d � 01, under the POSIX disambiguation policy we bind x to
the span r1, 2y and y to the span r2, 3y.

By posixrγs we denote the spanner represented by the regex for-
mula γ under the POSIX disambiguation policy; this is the span-
ner such that posixrγspdq is empty if d cannot be matched by γ,
and consists of the unique pV,dq-tuple resulting from matching d
against γ under the POSIX disambiguation policy otherwise. We
can prove the following.

LEMMA 5.7. For every regex formula γ there exists a REG-
program E such that Epdq � tposixrγspdqu, for every document
d. Furthermore, all cleaning updates in E are of the form CLEANppq
where p is a transitive denial pgd.

The proof proceeds by induction on γ, showing how to encode
the POSIX policy by means of transitive denial pgds.

Since every transitive denial pgd is REG-disposable by Theo-
rem 5.2, we immediately obtain from Lemma 5.7 that the spanner
posixrγs is regular, for every regex formula γ. Moreover, since it
is easily verified that posixrγs is hierarchical, it follows by Theo-
rem 2.5 that posixrγs is itself definable in RGX by a regex formula
δ. While JγK may produce many tuples for a given input document,
JδK is always guaranteed to produce only one—corresponding to
the tuple defined by the γ-parse constructed by the POSIX disam-
biguation policy.

THEOREM 5.8. For every regex formula γ, the spanner posixrγs
is definable in RGX.
6For simplicity, we restrict ourselves here to the setting where the
entire input is required to match γ. Our results naturally extend to
the setting where partial matches of d against γ are sought.

5.4 Core Spanners
Recall that REG is the closure of RGX under union, projection,

and natural join. The class Core of core spanners [14] is obtained
by adding to the list of operators the string-equality selection, de-
noted ς�. Formally, given an expression ρ in REG and two vari-
ables x, y P SVarspρq, the spanner defined by ς�x,ypρq selects all
those tuples from ρ in which x and y span equal strings (though
x and y can be different spans). The following theorem implies
that the results given earlier in this section to not extend to the core
spanners.

THEOREM 5.9. If p is the maximal-container denial pgd or one
of the JAPE denial pgds, then p is not Core-disposable.

To prove Theorem 5.9, we use the following definition. Let p be
a denial pgd of the form ρrx, ys Ñ Rpxq � Spyq, where R and
S are not-necessarily distinct unary relation symbols. We say that
p favors strict containers if for all spans a and b, if b is contained
in a, and b is neither a prefix or a suffix of a, then Rpaq � Spbq is
implied by p. Note that all the denial pgds in Theorem 5.9 favor
strict containers. It also applies to POSIX, which we did not define
formally as a denial pgd. Our proof is by showing that if p favors
strict containers, then p is not Core-disposable. In particular, if
a denial pgd that favors strict containers is Core-disposable, then
there is a Boolean core spanner that recognizes the language of all
the strings s#t where s, t P t0, 1u� and s is not a substring of t.
Then, we use the result of Fagin et al. [14] stating that no such core
spanner exists. Note that Theorem 5.9 does not mention any rule
priority denial pgd (Section 5.1), since this rule is underspecified.
Nevertheless, we can show that the cleaning update consisting of
the denial pgd trueÑ pRpxq� Spxqq, where R and S are distinct
unary relation symbols, is not Core-disposable.

6. CONCLUSIONS
By incorporating the concept of prioritized repairs, we have gen-

eralized the framework of spanners into extraction programs that
involve cleaning updates. We showed that existing cleaning poli-
cies can be represented, in a unified formalism, as denial pgds in
REG. We discussed the problem of unambiguity, and showed that
it is undecidable for REG-programs, as is the related problem of
testing if a given pgd in is acyclic. We also investigated dispos-
ability (i.e., whether a cleaning update can be simulated by CQ up-
dates alone). We showed that cleaning updates in REG (and denial
pgds as special cases) are not always REG-disposable, even if the
program is unambiguous. Hence, cleaning updates increase the ex-
pressive power of unambiguous REG-programs as a representation
system for spanners. Finally, we looked at special cases of cleaning
updates in REG, namely transitive denial pgds, JAPE controls and
POSIX, and showed that they all are REG-disposable. Of course,
this does not mean that the programs that simulate these cleaners
are of manageable sizes; the complexity of simulating disposable
cleaners is a direction left here for future investigation. Another
direction derived directly from this work is the challenge of de-
vising a sufficient condition for unambiguity of cleaners, featuring
low complexity, and robustness to realistic needs. Finally, we be-
lieve that it is of importance to explore the impact of recursion on
our extraction programs (and in particular, associating an ordinary,
order-independent Datalog semantics to our programs), either with
or without cleaning updates.

Acknowledgments
We are extremely grateful to Phokion G. Kolaitis for suggestions
that had significant impact on the paper. We also thank Martin

Kutrib and Frank Neven for insightful discussions on multi-head
automata.

7. REFERENCES
[1] J. Ajmera, H.-I. Ahn, M. Nagarajan, A. Verma, D. Contractor,

S. Dill, and M. Denesuk. A CRM system for social media:
challenges and experiences. In WWW, pages 49–58, 2013.

[2] D. E. Appelt and B. Onyshkevych. The common pattern specification
language. In Proceedings of the TIPSTER Text Program: Phase III,
pages 23–30, Baltimore, Maryland, USA, 1998.

[3] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query
answers in inconsistent databases. In PODS, pages 68–79, 1999.

[4] E. Benson, A. Haghighi, and R. Barzilay. Event discovery in social
media feeds. In ACL, pages 389–398, 2011.

[5] L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data cleaning
and query answering with matching dependencies and matching
functions. Theory Comput. Syst., 52(3):441–482, 2013.

[6] J. Bleiholder and F. Naumann. Data fusion. ACM Comput. Surv.,
41(1), 2008.

[7] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, and
S. Vaithyanathan. SystemT: An algebraic approach to declarative
information extraction. In ACL, pages 128–137, 2010.

[8] R. Cox. Regular expression matching: the virtual machine approach.
digression: Posix submatching, December 2009.
http://swtch.com/ rsc/regexp/regexp2.html.

[9] H. Cunningham. Gate, a general architecture for text engineering.
Computers and the Humanities, 36(2):223–254, 2002.

[10] H. Cunningham, D. Maynard, and V. Tablan. JAPE: a Java
Annotation Patterns Engine (Second Edition). Research
Memorandum CS–00–10, Department of Computer Science,
University of Sheffield, November 2000.

[11] G. DeJong. An overview of the frump system. In W. G. Lehnert and
M. H. Ringle, editors, Strategies for natural language processing,
pages 149–176. Lawrence Erlbaum Associates, 1982.

[12] M. Dylla, I. Miliaraki, and M. Theobald. A temporal-probabilistic
database model for information extraction. PVLDB,
6(14):1810–1821, 2013.

[13] R. Fagin, B. Kimelfeld, Y. Li, S. Raghavan, and S. Vaithyanathan.
Rewrite rules for search database systems. In PODS, pages 271–282,
2011.

[14] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. Spanners: a
formal framework for information extraction. In PODS, pages 37–48,
2013.

[15] W. Fan. Dependencies revisited for improving data quality. In PODS,
pages 159–170, 2008.

[16] W. Fan, H. Gao, X. Jia, J. Li, and S. Ma. Dynamic constraints for
record matching. VLDB J., 20(4):495–520, 2011.

[17] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between record
matching and data repairing. In SIGMOD Conference, pages
469–480, 2011.

[18] D. A. Ferrucci and A. Lally. Uima: an architectural approach to
unstructured information processing in the corporate research
environment. Natural Language Engineering, 10(3-4):327–348,
2004.

[19] G. Fowler. An interpreation of the posix regex standard (2003), 2003.
http://gsf.cococlyde.org/download/re-interpretation.tgz.

[20] D. Freitag. Toward general-purpose learning for information

extraction. In COLING-ACL, pages 404–408, 1998.
[21] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly detection in

distributed systems through unstructured log analysis. In ICDM,
pages 149–158, 2009.

[22] R. Grishman and B. Sundheim. Message understanding conference-
6: A brief history. In COLING, pages 466–471, 1996.

[23] M. Holzer, M. Kutrib, and A. Malcher. Multi-head finite automata:
Characterizations, concepts and open problems. In CSP, volume 1 of
EPTCS, pages 93–107, 2008.

[24] Institute of Electrical and Electronic Engineers and the Open group.
The open group base specifications issue 7, 2013. IEEE Std 1003.1,
2013 Edition.

[25] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling
sequence data. In ICML, pages 282–289, 2001.

[26] V. Laurikari. Efficient submatch addressing for regular expressions.
Master’s thesis, Helsinki University of Technology, 2001.

[27] T. R. Leek. Information extraction using hidden markov models.
Master’s thesis, UC San Diego, 1997.

[28] B. Liu, L. Chiticariu, V. Chu, H. V. Jagadish, and F. Reiss. Automatic
rule refinement for information extraction. PVLDB, 3(1):588–597,
2010.

[29] S. Ma, W. Fan, and L. Bravo. Extending inclusion dependencies with
conditions. Theor. Comput. Sci., 515:64–95, 2014.

[30] A. McCallum, D. Freitag, and F. C. N. Pereira. Maximum entropy
markov models for information extraction and segmentation. In
ICML, pages 591–598, 2000.

[31] F. Niu, C. Ré, A. Doan, and J. W. Shavlik. Tuffy: Scaling up
statistical inference in Markov Logic Networks using an RDBMS.
PVLDB, 4(6):373–384, 2011.

[32] S. Okui and T. Suzuki. Disambiguation in regular expression
matching via position automata with augmented transitions. In
M. Domaratzki and K. Salomaa, editors, CIAA, volume 6482 of
Lecture Notes in Computer Science, pages 231–240, 2010.

[33] H. Poon and P. Domingos. Joint inference in information extraction.
In AAAI, pages 913–918. AAAI Press, 2007.

[34] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and
S. Vaithyanathan. An algebraic approach to rule-based information
extraction. In ICDE, pages 933–942, 2008.

[35] E. Riloff. Automatically constructing a dictionary for information
extraction tasks. In AAAI, pages 811–816, 1993.

[36] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative
information extraction using datalog with embedded extraction
predicates. In VLDB, pages 1033–1044, 2007.

[37] S. Soderland, D. Fisher, J. Aseltine, and W. G. Lehnert. CRYSTAL:
Inducing a conceptual dictionary. In IJCAI, pages 1314–1321, 1995.

[38] S. Staworko, J. Chomicki, and J. Marcinkowski. Prioritized repairing
and consistent query answering in relational databases. Ann. Math.
Artif. Intell., 64(2-3):209–246, 2012.

[39] S. Vansummeren. Type inference for unique pattern matching. ACM
Trans. Program. Lang. Syst., 28(3):389–428, 2006.

[40] H. Xu, S. P. Stenner, S. Doan, K. B. Johnson, L. R. Waitman, and
J. C. Denny. Application of information technology: Medex: a
medication information extraction system for clinical narratives.
JAMIA, 17(1):19–24, 2010.

[41] H. Zhu, S. Raghavan, S. Vaithyanathan, and A. Löser. Navigating the
intranet with high precision. In WWW, pages 491–500, 2007.

