Selectivity Estimation
for Extraction Operators over Text Data

Daisy Zhe Wang*, Long Wei*, Yunyao Li', Frederick Reiss’, and Shivakumar Vaithyanathan'

*University of California, Berkeley

Abstract— Recently, there has been increasing interest in
extending relational query processing to efficiently support ex-
traction operators, such as dictionaries and regular expressions,
over text data. Many text processing queries are sophisticated
in that they involve multiple extraction and join operators,
resulting in many possible query plans. However, there has been
little research on building the selectivity or cost estimation for
these extraction operators, which is crucial for an optimizer
to pick a good query plan. In this paper, we define the
problem of selectivity estimation for dictionaries and regular
expressions, and propose to develop document synopses over
a text corpus, from which the selectivity can be estimated.
We first adapt the language models in the Natural Language
Processing literature to form the top-k n-gram synopsis as the
baseline document synopsis. Then we develop two classes of novel
document synopses: stratified bloom filter synopsis and roll-up
synopsis. We also develop techniques to decompose a complicated
regular expression into subparts to achieve more effective and
accurate estimation. We conduct experiments over the Enron
email corpus using both real-world and synthetic workloads to
compare the accuracy of the selectivity estimation over different
classes and variations of synopses. The results show that, the
top-k stratified bloom filter synopsis and the roll-up synopsis is
the most accurate in dictionary and regular expression selectivity
estimation respectively.

I. INTRODUCTION

The field of database management has traditionally focused
on structured data, providing little or no help for the signifi-
cantly larger amounts of the world’s data that is unstructured.
With the rise of text-based applications on the web and
elsewhere, information extraction (IE) techniques and DBMS
with SQL extensions are used over text to find patterns and
extract objects as part of the query or process.

Most of these SQL queries and IE processes over text
involve extraction operators, including dictionaries and
regular expressions. Dictionaries of words and phrases are
used to look for specific entity memberships (e.g., countries,
first names), and regular expressions (regex) are used to find
specific text patterns (e.g., emails, URLs). Such SQL queries
and IE processes typically involve multiple dictionaries
and regexes, whose selectivity estimation is crucial for an
optimizer. This can be illustrated by the following scenario:

Example 1: Suppose we have a Blogs table, containing
the id, text and author of all the blog posts. We
also have an Author rable, containing name, address
information for each author of the blog posts. Query
1 is an SQL query extended with dictionary extraction
operator contains (text,dictionary) and regular

and

fIBM Almaden Research Center

expression operator text like ’'pattern’. Query 2 is
an algebraic expression of an IE process with & ji.; and & e
denote dictionary and regex extraction operator respectively.
In addition, X pojiowstok(0,0) denotes that the left extraction
should be immediately followed by the right extraction in
text.

Query 1. Find all blog posts mentioning “Euphonia”, a folk
ensemble, which also contain sentiment words (as defined by
a list of sentiment words) and are written by people living in
Seattle.

SELECT «

FROM Blogs B, Author A

WHERE B.author=A.name
and B.text like ’S%Euphonia%’
and contains (B.text, sentiment.dict)
and A.address like ’%Seattle%’

Query 2. Find all instances of a common first name (as defined
by an exhaustive list of first names) followed immediately by
a capitalized word.

& dier (first.dict) X FollowsTok(0,0) Cg)i’e([A - Z]\W+)

To execute the first SQL query, the optimizer needs to decide
in which order to apply the three selection conditions involving
extraction operators. In addition, since dictionary and regex
are expensive operators and in most cases do not have more
efficient access method than sequential scan, it is not always
more efficient to push down the selection conditions involving
dictionary and regex operators to the base tables, especially
when indexes are available for the joining attributes. An
optimizer thus needs to decide whether to push the selection
conditions below the join operator to reduce the extraction.

Suppose name is the primary key of the Author table, and
the Blogs contains 1 billion tuples and Author contains 1
million tuples. If, based on selectivity estimation of the regex

"%Euphonia%’ and the sentiment dictionary, the selection
conditions over Blogs table generate 10 thousand tuples,
then the time to evaluate the pattern *%Seattle%’ over the
Jjoin results only takes 1/100 of the time to evaluate it over
the Author base table. On the other hand, if the selectivity
estimates 10 million tuples after selection over Blogs, then it
is 10 times more efficient to push the pattern ’%Seattle%’ to
the base table. Thus, the choice of a efficient execution plan
heavily depends on the accurate selectivity estimation of the
dictionary and regex operators.

Similarly, to execute the IE process in Query 2, the
optimizer needs selectivity estimation of the dictionary and
regex operators to form a query plan, which executes the more
selective extraction operator first, and, for each resulting
extraction, executes the other over the text that immediately
Jfollows. Such a plan maximally reduces the computation. [

The goal of this paper is to study the selectivity estimation
algorithms and techniques for dictionaries and regex operators
over text. As illustrated by the previous examples, the selectiv-
ity estimation for extraction operators is crucial in optimizing
(1) SQL queries over text data in a DBMS, and (2) information
extraction processes in declarative-IE systems such as System
T [1].

Little previous literature studies the selectivity estimation of
dictionary and regex operators, as oppose to the vast number
covering the selectivity estimation of SPJ queries ([2], [3], [4]).
Studies over selectivity estimation for string predicates ([5],
[6], [7], [8], [9]) focus on database entries with string values
of limited length and thus are not directly applicable for
dictionary selectivity estimation, where the underlying text can
be of arbitrary length. The same body of literature and those
for XML path expressions [10], [11] consider only simple
patterns in the form of “wild cards” or path expressions and
therefore are not applicable for regex selectivity estimation,
which needs to support arbitrarily complex regexes.

Our main approach is to develop synopsis over a text
corpus, from which the selectivity of dictionary and regex
operators can be estimated. This approach is analogous to
develop histograms over a column, from which the selectivity
of selection conditions can be estimated.

Firstly, we take the obvious approach, by adapting the n-
gram language models [12], [13] in the Natural Language
Processing (NLP) literature, to form the baseline, the top-k
n-gram synopsis, which is a subset of {n-gram, count} pairs
computed from the text corpus. One key difference between
language model and document synopsis, is that the former
expects an “open world”, where there exist unseen n-grams,
whereas the latter assumes a “closed world” where all the n-
grams are in the corpus. The selectivity of both dictionary
and regex operators can be estimated from the top-k n-gram
Synopsis.

Secondly, to improve the estimation accuracy given a space
budget for the synopsis, we develop the stratified Bloom filter
synopsis, which is a novel adaptation of the traditional Bloom
filter to store and {n-gram, count} pairs and retrieve count
given n-gram. The stratified Bloom filter synopsis can only
support dictionary selectivity estimation. Experiment results
show that, given the same space budget, the best Bloom filter
synopsis, top-k stratified Bloom filter synopsis, halves the error
rate of the top-k n-gram synopsis.

Thirdly, we develop a novel technique to summarize a set
of n-grams by rolling-up characters into character classes,
resulting in roll-up synopsis, which can only be used for regex
selectivity estimation. Because it summarizes rather than drops
n-grams to reduce the size of the synopsis, it achieves better

accuracy than the top-k n-gram synopsis of the same size. We

also describe the procedure to decompose a complex regex into

a set of simpler sub-regexes, whose selectivities can used to

more accurately estimate the selectivity of the original regex.
Our key contributions can be summarized as follows:

o We formalize the problem of selectivity estimation for
dictionary and regex extraction operators over text data
in database using document synopsis;

« We develop and optimize the stratified bloom filter syn-
opsis and roll-up synopsis to improve the dictionary and
regex selectivity estimation accuracy respectively given
fixed space budget;

« We develop effective and accurate techniques to estimate
the selectivity of a complex regular expression by decom-
posing it into sub-regexes and combining the estimates
from them;

« We conduct experiments over the Enron email corpus [14]
using both real-world and synthetic workloads, comparing
the accuracy of dictionary and regex selectivity estimation
over different classes and variations of synopsis. The
results show that, the stratified bloom filter synopsis and
the roll-up synopsis is the most accurate in dictionary
and regular expression selectivity estimation respectively.

II. RELATED WORK

Selectivity estimation is a well-known technique for cost-
based query optimization. The selectivity estimation tech-
niques have been well developed for queries involving nu-
merical attributes [2], [3], [4]. There are more recent studies
over selectivity estimation for string predicates [5], [6], [7],
[8], [9] with a focus on substring or fuzzy string matching.
On the surface, selectivity estimation for dictionary evaluation
may be thought of as disjunction of multiple string predicates.
However, unlike matching for string predicates, matching for
a dictionary entry often requires ignoring the differences in
white space or cases, which cannot be easily handled by non-
fuzzy matching-based methods. In addition, the underlying
data for dictionary matching can be text documents with
arbitrary length, while previous techniques focus on database
entries with string value of limited length. Therefore, previous
selectivity estimation techniques for string predicates are not
directly applicable for selectivity estimation for dictionaries.
Shen et al describe an inverted-index based approach for selec-
tivity estimation for dictionaries [15] as part of its optimization
solution for information extraction. However, no experimental
study is presented on the accuracy of this technique and it
cannot easily accommodate the requirement of ignoring the
difference in white space or cases.

These studies on selectivity estimation techniques for string
predicates often support simple patterns in the form of “Wild-
card” (e.g. Movie.name like %p%) as well. However, the reg-
ular expressions supported by our work are typically in much
more complex form. Similarly, patterns considered by selec-

tivity estimation techniques for XML path expressions [10],
[11] are much simpler than those considered in our work.

Spectral Bloom filter [16] is a variant of the Bloom Filter
data structure to store a multiset. The main difference is that
our stratified Bloom filter synopses are designed to optimize
dictionary selectivity estimation, while the insertion policies
used in spectral Bloom filter seek to optimize for ad-hoc
queries. The basic idea of Count-Min sketch [17] is to build
data stream summarization to enable approximate answer of
various types of queries. While the main focus of the technique
is to reduce response time, the main focus of our work is
to reduce estimation error given space constraints on the
document synopses.

Language models [12], [13] are widely used in natural
language processing and information retrieval. Language mod-
els try to capture the properties of a typical document in
a collection, which compensate for the unseen words and
phrases. In contrast, document synopsis we developed only try
to summarize the document corpus as succinctly as possible
for accurate selectivity estimation. Different purposes lead to
different techniques, but we based our n-gram synopsis on the
n-gram language model. Recent work [18] demonstrates how
to use bloom filter [19] to replace the n-gram language models.
Based on this, we developed the stratified bloom filter synopsis
that drastically outperforms the data structure proposed in [18].

III. SETUP

In this section, we will first introduce dictionary and regular
expression (regex) operator as the most common extraction
operators over text. Then we will setup the problem statement
of this paper. Finally, we will briefly go over some basic
concepts and techniques used by later sections.

A. Span Extraction Operators

A span extraction operator identifies segments of text
that match a particular input pattern and produces spans
corresponding to each such text segment. There are two
types of span extraction operators: Dictionary and Regular
Expression.

Definition 1 (Dictionary Operator): A dictionary operator
& gicr evaluates a dictionary of words and phrases. For each
document, & ;;, returns spans that correspond to matches of
the dictionary words or phrases in the document.]

Definition 2 (Regular Expression Operator): A regular
expression operator &, evaluates a character-based regular
expression I For each document, &,, returns spans that
correspond to matches of the regular expression in the
document. O

In this work, we support regexes supported by Java regex engine without backrefer-
ence, forwardreference, lookahead, lookbehind or lookaround.

B. Problem Definition

We focus on the following two problems in this paper: (1)
building an effective document synopsis, and (2) estimating
selectivity of &4; and &), over the document synopsis. We
now describe each problem in detail.

Document Synopsis: The first problem is how to construct
a document synopsis for selectivity estimations of extraction
operators.

Definition 3 (Document Synopsis): A document synopsis
¢ is a summary of a document corpus D, where the size of
the synopsis is usually much smaller than the size of the
document corpus. (|

A document synopsis ¢ is built for selectivity estimation
of dictionary &yj; and regular expression &,. It best
summarizes the document corpus within the space constraint
to be able to estimate the number of matches for such
extraction operators.

Selectivity Estimation: The second problem is that given a
particular type of synopsis ¢, how to accurately estimate the
selectivity of extraction operators & ;;; and & .. The selectivity
of an extraction operator is the expected number of matches
of the operator over the document corpus. For Query 2 in
Example 1, the selectivity corresponds to the expected number
of times the second extractor would be evaluated. For Query
1, the selectivity is an approximation of the expected number
of matching documents.

Definition 4 (Selectivity): Let & be an extraction operator.
The selectivity of & is denoted as sel(&), where

sel (&) = E[match (&,d € D)]

with match (&,d) being the expected number of matches of
& over a document d. O

C. Bloom Filter

The Bloom filter is a space-efficient probabilistic data
structure used to test whether an element is a member of a set.
Its results might contain false positives, but not false negatives.

Each Bloom filter contains a bit array of m bits, and k
different hash functions, each of which maps or hashes an
element to one of the m array positions with a uniform random
distribution. To add an element, feed it to each of the k£ hash
functions to get k array positions. Set the bits at all these
positions to 1.

To query for an element (test whether it is in the set),
we feed it to each of the k hash functions to get k array
positions. If any of the bits at these positions is 0, the element
is not in the set, because if it were, then all the bits would
have been set to 1 when it was inserted. If all are 1, then
either the element is in the set, or the bits have been set to 1
during the insertion of other elements. The false positive rate

Level 3 \p{Alpha}

Level 2 \p{Upper} \p{Lower} \p{Digit}

Level1 A,B,C,....Z a,b,c ...,z 0,1,..9
Fig. 1. Sample Lattice for characters and character classes.

of a Bloom filter is (1 —e*"/™)k_ where n is the number of

elements inserted. Solving for the value of k that minimizes
this false positive rate yields an overall false positive rate of
approximately (0.6185)% [20]. For compactness, we use this
approximate value in our equations throughout the paper.

D. Character Class Lattice

We introduce the term regex-ngram, which will be used in
Section VI. As opposed to n-gram and regular expressions,
regex-ngram is a special subset of regexes that serves as a
summary of a set of n-grams. The regex-ngrams are what the
roll-up synopsis (Section VI-C) consists of. The regex-ngrams
are generated by rolling-up characters based on the lattice of
character classes.

Figure 1 shows a sample lattice of character classes. The lat-
tice contains three levels. The first level contains the uppercase
characters, lowercase characters and digits. The second level
contains character classes \p{Upper}, \p{Lower}, and
\p{Digit}, and the containment relationship between the
characters in level one and the character classes in level two
is shown in the figure. Level three contains one character class
\p{Alpha}, which contains \p{Upper} and \p{Lower}.

A roll-up operation replaces a lower level character or char-
acter class with a higher level character class. For example,
replacing an a” with a \p{Lower} is a roll-up operation.

E. Document Synopsis API

Assume that a document corpus D has M documents,
and each document d consists of a sequence of |d| tokens:
{81,---,8)q/}- In order to keep a synopsis ¢ compact to fit
in memory, we look at the problem of building document
synopsis ¢, which do not contain more than k bytes.

For each synopsis ¢ we support the following functions,
and in Section IV, V, VI, we will be describing the algorithms
in those functions in detail:

1) ¢.BUILD(D, Kk): the algorithm to construct the synopsis
from a document corpus D, where k is the maximum
size of the ¢ in bytes;

2) ¢.ESTCOUNT(ngram) / ¢.ESTCOUNT(re): the
algorithm to estimate the selectivity of an n-gram
ngram or regular expression re over the corpus D from
the synopsis ¢.

The selectivity of a dictionary over D can be estimated
by iteratively calling ¢.ESTCOUNT(ngram) over every entry
ngram in the dictionary, and adding up all the counts.

IV. BASELINE TOP-K N-GRAM SYNOPSIS

The problem of selectivity estimation for dictionary opera-
tors highly resembles the well-studied problem of estimating
the likelihood for a given word in a corpus in the natural lan-
guage processing literature. Thus in this section, we describe
the top-k n-gram synopsis, which is a direct adaptation from
the n-gram language model from the NLP literature [12], [13],
and use it as the baseline synopsis to compare with the two
novel document synopsis we are going to introduce in the
next two sections: stratified bloom filter synopsis, and roll-up
SYROpSis 2,

A. Top-k N-gram Synopsis

The top-k n-gram synopsis of a document corpus D is an
n-gram-to-count map, which consists of the set of n-grams in
D with highest counts. The construction algorithm for top-
k n-gram synopsis ¢opk.BUILD(D, K) is very straight-forward:

« Find all unique n-grams and their counts in corpus D;

¢ Sort n-grams by counts;

o Iteratively pick the n-gram with the highest count, and
insert the {n-gram,count} pair into @yopk, until the total
size of the synopsis @opk €xceeds k bytes.

For n-grams in the synopsis, @iopk-ESTCOUNT(ngram)
returns the count correspond to ngram in the synopsis @gopk.
For n-grams that are not included in the synopsis @¢opk, there
are different ways to estimate the count of ngram by adapting
the techniques from the language models. The following
are four different estimators @ipk.ESTCOUNT(ngram) of the
count of a ngram not included in Qropk:

o MaxLikelihood: returns a count of zero;

o AddOne: returns a count of one, also adds 1 to the counts
of every n-gram in the synopsis;

« AvgValue: returns the average count across all n-grams
that were excluded from the synopsis;

o LeftBackoff: finds the longest prefix of the n-gram
included in synopsis @iopk, if the remaining postfix is
also included in ¢yopk, then multiply the counts of the
prefix and the postfix divide by the total n-gram count.
If the remaining prefix is not in ¢ypk, then multiply the
count of prefix with AvgValue divide by total count. If
no prefix is found in @wopk, the LeftBackoff technique
falls back on AvgValue.

We experimented with them and the LeftBackOff estimator
is shown to be the most accurate. However, the key difference
between language model and document synopsis, is that the
former expects an “open world”, where there exist unseen n-
grams, whereas the latter assumes a “closed world” where all
the n-grams are in the corpus. Thus, even the LeftBackOff

>The n-grams we consider are at the word level, following the convention
of the NLP literature.

estimator did not give us a very good estimate of the n-grams
not in the synopsis.

Given a regular expression re, @iopk.ESTCOUNT (re) returns
the sum of counts of all the n-gram entries in @yopk that
matches re.

B. Other N-gram Synopses

A simple variation of the top-k n-gram synopsis is the bag-
of-words synopsis, which consists of the set of the one-grams
in D, instead of n-grams, with the highest counts. We also
experimented with more sophisticated variations, including
probabilistic n-gram synopsis, where low-count n-grams are
included with probabilities proportional to their counts, and
wavelet-like n-gram synopsis, where counts of longer n-grams
are estimated from that of the shorter. However, we found
via extensive experimental study that none of those synopsis
outperforms top-k n-gram synopsis. Therefore, we chose not
to include further discussion of them in this paper.

V. BLOOM FILTER SYNOPSIS

In the n-gram synopses described in the previous section,
most of the space in the synopsis goes towards storing the
tokens of the n-grams. This pattern of space usage limits the
number of n-grams that can be stored within a given number
of bytes. In this section, we discuss an alternative class of
synopses that reduces this space pressure by avoiding storing
the n-grams themselves, and instead, uses Bloom filters to
represent sets of n-grams. This approach allows the synopsis
to store information about every n-gram in the corpus, with
the accuracy being controlled by the space allocated to the
filters.

A. Stratified Bloom Filter Synopsis

A Stratified Bloom Filter, or SBF, is a synopsis consisting
of an array of simple Bloom filters. The ith Bloom filter of
this array represents the set of n-grams whose total counts, if
encoded as binary numbers, would have a “1” in the ith bit
position.

Inserting an n-gram into an SBF synopsis is a straightfor-
ward procedure: First, compute the total count of the n-gram
in the document corpus, and convert this count to a binary
number. Then, for each bit in the count that is set to “17,
insert the n-gram into the corresponding Bloom filter.

The basic algorithm for finding the estimated count for a
given n-gram is also straightforward: Start with an estimated
count of zero, and look up the n-gram in each of the Bloom
filters in the synopsis. If the Bloom filter for bit i contains the
n-gram, then add 2! to the estimated count.

The simplest type of SBF synopsis is what we call the naive
Stratified Bloom Filter. A naive SBF divides the space budget
for the synopsis evenly among k Bloom filters (where k is the
highest bit position that is set to one in any n-gram’s count),
and then applies the basic insertion and estimation algorithms
to these Bloom filters.

As it turns out, a naive SBF makes a very poor synopsis for
estimating dictionary selectivities, generally producing much

greater error rates at a given synopsis size than a top-k n-
gram synopsis (refer to results of SBF.naive in Section VII-
B). Please refer to Appendix IX-A to understand the nature of
the errors that a SBF introduces when estimating the selectivity
of a dictionary.

B. Important SBF Optimizations

The naive SBF synopsis suffers from high estimation errors,
which stems from Bloom filter’s false positives, particularly on
the Bloom filters associated with higher-order bits. We have
developed three different optimizations to address these issues:
(1) compensate for false positives so as to bring the expected
estimation error to zero, (2) reallocate the total space budget
among the different Bloom filters to reduce the variance of
the estimation error by as much as possible, and (3) avoid
inserting n-grams with low counts.

We cover the first two methods in this section; the third
method effectively creates a hybrid of the SBF and top-k
approaches, so we devote a separate section (Section V-C) to it.

1) Compensating for false positives: To compensate the
one-sided estimation error of the naive SBF, we use a correc-
tive factor based on the false positive probability of a Bloom
filter. This correction is not applied at the level of individual
lookup operations, since it is not possible to tell the difference
between a Bloom filter that contains the n-gram and Bloom
filter that has a false positive. Instead, we compensate for false
positives across a series of lookups by applying a corrective
factor to the number of times each Bloom filter reported that
a given n-gram was not present.

If one were to probe a Bloom filter with n values that were
never inserted into the Bloom filter, then one would expect
that the Bloom filter would report that (1 — P[FP])n of the
values were actually present, where P[FP] is Bloom filter’s
false positive rate. So dividing the number of times the Bloom
filter returned “not present” by 1— P[FP] compensates for the
false positive rate.

Using this correction factor requires turning the estCount
procedure into a function that is applied across an entire
dictionary file instead of a single entry. Instead of computing
a separate estimated count for each dictionary entry, we track
the number of times each Bloom filter reported that a given n-
gram in the dictionary was not present. We then divide each n-
gram’s count by the correction factor, 1 — P[FP], and subtract
the result from the total number of n-grams to produce an
estimate of the number of counts that truly contain a “1” in
each bit position. Finally, we multiply these counts by the
appropriate powers of two to obtain an overall estimate of the
dictionary’s selectivity.

This updated procedure removes the bias from the SBF’s
estimator, but it does not change its variance. Also, since
the correction factor relies on each Bloom filter reporting
that at least some of the n-grams in the corpus are not
present, it does not work when the false positive probability
is close to 1. Sections V-B.2 and V-C address the issues
of reducing variance and correcting very high false positive

rates, respectively.

2) Allocating space across Bloom filters: Compensating for
the expected error, as described in the previous section, creates
an unbiased estimator, but the variance of this estimator is just
as high as before. We reduce this variance by using a more
effective method to allocate space across the Bloom filters.

Most of the variance in the estimation error of a naive SBF
is due to false positives on the higher-order bits. Reducing this
variance requires allocating more of the synopsis’s space bud-
get to the Bloom filters corresponding to these bits, reducing
their false positive rates. Note that one cannot just allocate all
the space to the higher-order bits; as they shrink in size, the
Bloom filters for the lower-order bits would quickly become
just as big a source of variance.

We allocate the space budget among Bloom filters by solv-
ing the following optimization problem: Minimize the variance
of the estimator by allocating space to different Bloom filters,
subject to the constraint that the total size of all the Bloom
filters must add up to the space budget.

To compute a concrete value of the variance of this
estimator, one needs to know the distribution of counts of
the n-grams that will be probed against the synopsis. To be
conservative, we use a “worst-case” estimate of this variance:
the variance of the estimator when all n-grams probed against
the synopsis have a true count of zero. Using the random
variable V; to represent the false positive rate for bit i, we
can express this variance as:

Var

1

k .
2"4‘1 ey
=1

As we noted in Section III-C, V; is 1 with probability

mj

0.6185% and O otherwise, where m; is the number of bits
in the Bloom filter for bit i and n; is the number of n-gram
counts for which this bit is set to 1. Substituting into the
above equation, we obtain the following optimization problem:

Minimize:
LI m; mo 2m;
Y 2%0.6185 " +0.6185" —210.6185 ")
i=1
Subject to:
k
Y mi=M, m;i>0forall 1 <i<k (3)
i=1

where M is the total space budget.

This optimization problem is difficult to solve in princi-
ple, but we found that a simple hill-climbing algorithm that
iteratively reallocates space among Bloom filters in one-byte
increments works well in practice.

C. Top-k Stratified Bloom Filter Synopsis

The Stratified Bloom Filter synopsis as described so far
stores information about all n-grams in the corpus. When the
number of bits allocated to the synopsis is small relative to the
total number of unique n-grams, this policy can lead to two
problems. First, the variance of the estimator rises because
fewer bits are available to represent the counts of each n-
gram. Second, as the space budget decreases, eventually the
false positive rate approaches 1.

The Top-K Stratified Bloom Filter addresses these two
problems by only storing information in the synopsis about
the n-grams with the top k counts. This approach effectively
creates a hybrid of the SBF and top-k synopsis types.

Removing the low-count n-grams from the synopsis reduces
the variance of the estimator, and also reduces the false
positive rates for all bits. However, the resulting synopsis
will likely return a count of zero for the n-grams that were
removed.

Unlike the systematic error we corrected in Section V-B.1,
this false negative error does not have a structure that allows
for a similar type of correction factor. Instead, we reduce the
bias of the estimator by balancing this negative error against
the portion of the false positive error that cannot be corrected.
Recall that the correction factor described in Section V-B.1
stops working as the false positive probability approaches 1.

We define the uncorrectable false positive error as the
expected false positive error due to the Bloom filters false
positive probabilities greater than ¢, where ¢ is a tuneable
constant. We then a hill-climbing algorithm to find the value
of k (the number of n-grams to retain) such that the total false
positive and false negative errors cancel each other out over
the entire corpus. The algorithm starts with k = |D| (that is,
retain all n-grams) and gradually decreases the value of k.
At each stage of the search, the algorithm uses the technique
described in the previous section to allocate the space budget
among Bloom filters, and computes expected false negative
and uncorrectable false positive errors. The search stops when
these errors cancel each other out.

VI. REGEX SYNOPSIS

A straightforward way to estimate the selectivity of a regex
is to match the regex over a sample document collection. This
approach can suffer from the following two problems: first,
due to the limited size permitted for the sample collection,
and the randomness in picking the samples, this approach can
provide little guarantee in accuracy; second, this approach can
also be very expensive as the given regex can be arbitrarily
complex.

To overcome these issues, we first describe how to estimate
the selectivity of a complex regex from only subparts that can
be matched over n-grams. This rewrite can potentially reduce
the estimation cost as well. Then we propose a new document
synopsis that summarizes the {n-gram,count} pairs from the
entire corpus to estimate the selectivity for regexes. It obtains
higher accuracy than using sample document collection that is
just a small subset of the entire corpus, or using top-k n-gram

R: \bTo:\s*.1,200\s*\n (>\s*) *\s* (CC) :\s*
Ro: To:

Ri:\s*.1,200\s+\n (>\s*) *

Ry: \s*(CC) :\s*

Fig. 2. Sample regex and its subregexes.

synopsis that drops rather than summarizes n-grams given a
size budget. Finally, we show how such a synopsis can be built
efficiently.

A. Regex and Subregex

The intuition is that each regex can be viewed as being
composed of multiple subregexes sequentially in conjunctive
form. If we can decompose the regex in such as way that
some of its subregexes can be matched against the ngram-
based synopsis discussed earlier, then the lowest selectivity of
such subregexes provides an upper bound on the selectivity
of the original regex. For instance, the regex R in Figure 2 is
composed of Ry, Ry, and R, sequentially (denoted as RoR|R>).
Both the subregexes Ry and R, corresponds to two tokens in
the original corpus and their selectivity thus can be estimated
using the ngram-based synopsis. Since the subregexes are
composed together to form the original regex in conjunctive
form, the selectivity of the original regex is no more than the
lowest selectivity of Ry and R5.

Formally, we denote a regex as R and each of its sub-
regex as R; (i € [0,m]) where R = RoR;...R,. Then we have

sel(R) < min(sel(Ry),..., sel(Ry)). In order to utilize n-
gram synopsis, we only use the subregexes of R that matches at
token boundary. For simplicity, from now on we refer to such
subregexes as token bounded subregexes, denoted as T BRs.

Figure 3 describes the algorithm to rewrite a regex into a set
of TBRs. We start from the left of a regex, and first identify
a character that matches the start of a token. Then we keep
on looking unless we find a character class that matches the
end of a token. If before finding a “end-of-token” character
class, we find another a character that is not in the middle of
a token, we discard whatever we have found so far and start
again. If we find a “end-of-token” character class, then we
have successfully found a subregex candidate. The algorithm
returns the merged list of all subregex candidates.

Depending on the subregexes generated and how they are
composed together to form the original regex, the accuracy of
the selectivity estimated based on TBRs varies. By measuring
the goodness of the estimation using error rate of the esti-
mation, denoted as e(sel(R)), we have the following regex
classification algorithm:

0 if m =0, Ry =R. (G1)

(0,6],6 < 1 if m=0and Ry C R. (G2)

e(sel(R)) =< (8,c],c< o if m > 1, VR; matches (G3)
strings of limited length.

(¢,00) otherwise. (G4)

REWRITE (R)
1 ListOfTBR.reset(); TBR.reset()

2 for each character c; € R do

3 if matchesTokStart(c;) thenT BR.append(c;);

4 endif

5 if matchesTokMiddle(c;) thenT BR.append(c;);
6 else

7 if matchesTokEnd(C;) then

8 ListOfTBR.add(TBR); TBR.reset();

9 elseTBR.reset();

10 endif endif endfor

11 return merge(ListOfTBR)

—_— O

Fig. 3. Algorithm for rewriting a regex into TBRs.

As shown in Section VII-C, the TBRs generated from most
regexes from a real Named Entity Resolution workload fall
into the first three conditions in the above equation.

B. Roll-Up Synopsis

Given the TBRs generated from a regex, one way to estimate
the selectivity is to match all TBRs with every n-gram in
the top-k n-gram synopsis. However, the estimation error can
be significant, as the regex could match many less frequent
n-grams, which are dropped by the top-k n-gram synopsis.
Moreover, the bloom filter synopsis cannot be used, because
it hashes n-grams into bit-maps without storing them literally.
But for regex selectivity estimation, we need the original n-
grams to perform the match. To address these issues, we
propose the roll-up synopsis.

The intuition of the roll-up synopsis is that rather than
dropping low-count n-grams as in top-k n-gram synopsis, we
summarize n-grams into regex-ngrams (refer to Section III-D)
to provide more accurate selectivity estimation. In most cases,
the summaries over sets of n-grams are sufficient for regex
selectivity estimation, as regexes themselves match sets of n-
grams. The basic technique to summarize n-grams is to merge
n-grams by rolling-up the character class lattice described in
Section III-D. Multiple n-grams can be rolled-up into one
regex-ngram. In order to decide, which roll-up operations to
perform for each n-gram, we rely on a utility function.

The utility function of a set roll-up operations over a set
of n n-grams that result in the same regex-ngram consists of
two parts: (1) benefit: the number of unique n-gram reduced
(n—1); and (2) cost: the error induced by the summarization.
Since the roll-up operation induce error over each instance of
a unique n-gram, the error can be estimated by d x X' n; X ¢;,
where n; is the number of roll-up operations, c; is the count
of the ith n-gram, and d is the weight of the cost relative to
benefit. Putting cost and benefit together, the utility function
is as follows:

n—1—dxZX nXc)
(n;>=0,¢; >=1,n>=1,d >=0)

According to Equation (4), the maximization of the utility
function will guide us to merge more n-grams (i.e., higher n)
and merge n-grams that have fewer roll-ups and low counts
(e.g., lower d;, ¢;’s) to minimize the estimation error.

The goal of the construction algorithm for the roll-up
synopsis is to find the set of roll-up operations performed
on each n-gram to achieve the global maximum utility value.
The global maximum utility value which is the sum of the
utility value of all the resulting regex-ngrams. The search
space of this optimization algorithm is exponential to the
number of unique n-grams, thus a brute force algorithm is
computationally infeasible.

We use a greedy algorithm to construct the roll-up synopsis
by picking, at each step, one regex-ngram with the maximum
utility value to include in the roll-up synopsis, and rolling
up all n-grams that match this regex-ngram. The algorithm
Prollup-BUILD(D, k) to construct the roll-up synopsis from a
set of n-grams generated from a corpus D contains following
steps:

1) For each unique n-gram a € o from D, generate all
possible regex-ngrams that can be derived by one or
more of the roll-up operations from a;

2) For each unique candidate regex-ngram b € 3 generated
from step one, compile the set of n-grams ¢, that can
be merged into b, and compute the utility value f(b) =
n—d x X(c; X n;), where n is the number of unique n-
grams in 0y, and d X X(¢; X n;) is the weighted sum of
their counts;

3) Pick the candidate regex-ngram b’ € 8 with the highest
utility value to be included in the roll-up synopsis and
perform the roll-up operations for all n-grams in oy;

4) Remove the n-grams in @ from the other o, where
b e B\{b'}, and recompute the utility values for each
remaining candidate regex-ngrams in § = B\{b'};

5) Repeat step 3 and 4, until no roll-up operation can
increase the global utility value, or the synopsis reaches
a predefined budget size k.

Example 2: Suppose we have a set of three n-gram and
count pairs {“the” 100, “Abc” 1, “All” 10}. In step one,
we generate all possible regex-ngrams, where some regex-
ngrams can be generated from multiple n-grams. For example,
“the” can generate 33 candidate regex-ngrams, one of which
\p{Alpha} {3} can be generated from all three n-grams.

In step two, the utility values can be computed for each
regex-ngram. For example, if we set d = 0.01, the utility value
for \p{Alpha} {3} is f(\p{Alpha}{3})=2-0.01 x (6%
1004+ 6+ 14+ 6% 10) = —4.66. The benefit is 2 because all
three n-grams can be rolled-up into it. The number of roll-
up operations for each n-gram is 6, because they all have
three characters, and each characters roll-up two levels in the
character class lattice.

In step three, we pick the regex-ngram with the highest util-
ity value: A\p{Lower} {2}, where f(A\p{Lower}{2})=
1-0.01 x (2% 1+2%10) =0.78, and perform the roll-ups on

“Abc” and “All”. In step 4, we do the book keeping to remove
“Abc” and “All” from the n-gram list of other regex-ngrams.

In this toy example, no more roll-up can be performed,
and the final set of regex-ngrams in the roll-up synopsis is:
y={ “the” 100, "A\p{Lower}{2}” 11}. In general if the
synopsis has not been reduced to the expected size budget, we
iteratively call step three and four to perform more roll-ups
to reduce the size of the synopsis. (|

C. Pruning the Search Space

Although the greedy algorithm described in the previ-
ous section reduce the computation from exponential to the
number of n-grams of the brute force algorithm to linear,
the computation needs to be done for each n-gram is still
expensive. This computation involves generating all candidate
regex-ngrams f from each n-gram, and picking out the one
with the highest utility. This a search problem where the search
space is B with size as large as O(N -2"%") where N is the
number of n-grams and maxlen is the maximum length of the
n-gram and 2 signifies the boolean decision of whether to roll-
up a character or not. For long n-grams, this search space can
be prohibitively large.

We used two rules to prune this search space while still
find the regex-ngram with the highest utility value. Both rules
explore the characteristics of the utility function in Equation
(4). The first rule states that any roll-up operation that does
not merge additional n-grams has a decreasing utility value.
The second rule states that the utility value of a set of roll-up
operations f(b2) is larger than the utility value of a other set
f(b1) if and only if:

n2—nl > def‘ilc,-xn,-—Zﬁlzlcjxnj
> dxX?cixn (5)

Based on these two rules, the algorithm to find the regex-
ngram with the highest utility value can be found in Ap-
pendix IX-B.

D. Matching Function

The selectivity estimation function of a regex over the roll-
up synopsis @roiiup.ESTCOUNT(re) involves: (1) Rewrite the
regex into subregexes according to the rewrite algorithm in
Section VI-A; (2) If the subregexes cannot give an accurate
estimate of the selectivity of the regex according to the classifi-
cation algorithm in Section VI-A, fall back to match the regex
over a sample document collection to estimate the selectivity;
(3) Otherwise, we match each subregex over the regex-ngrams
in the roll-up synopsis and take the lowest estimated selectivity
of the matched regex-ngrams as the estimation.

The matching algorithm of a subregex over a regex-ngram is
similar to the Java regex matching engine [21], except that the
matching also considers the containment relationship between
characters and character classes is described in Section III-D.

VII. EVALUATION

Having described the two types of document synopses and
the selectivity estimation functions for dictionaries and regexes
over them, we now present the experiment results comparing
the accuracy of the selectivity estimation over them and that
of the baseline synopses.

A. Setup

We implemented the n-gram, bloom filter and roll-up
synopsis as described in Section IV, V, VI in Java 1.6. We
conducted the experiments reported here on a 2.5GHz duo
core Intel Pentium 4 Windows 7 system with 4GB RAM.

1) Dataset: The dataset we used in all the experiments
is from the collection of 256,000 emails in the Enron
corpus [14].

2) Baseline Synopsis: We use the top-k n-gram synopsis
described in Section IV as a baseline synopsis. Moreover,
in some experiments, we also use Random sample synopsis
as a baseline. A random sample synopsis is constructed by
randomly picking a sample document collection, whose size
is bounded by a budget of N tokens.

3) Accuracy Measure: The average error rate of selectivity
estimation over a set of dictionaries (regexes), where the
error rate is computed as the absolute estimation error over
the actual selectivity.

4) Workload I: Named Entity Rules: A set of rules taken
from the state-of-the-art named entity annotator (NEA) library
developed in System T for Lotus Notes 8.01 and several other
IBM products [22].

o NERegexes A set of 32 regular expressions chosen based
on the profiling result of the NEA over Email, including
the five most expensive regular expressions and the five
least expensive ones, as well as 22 others from the middle
of the distribution.

e NEDicts A set of 137 dictionaries chosen from the NEA,
as well as from the annotators described in [1]. The
dictionaries ranged in size from one entry to 90,000
entries.

5) Workload II: Synthetic Queries:: For increased coverage
of the query space, we also ran experiments with synthetic
workloads.

e GeNgrams We randomly pick 100 n-grams from the
corpus D.

o GeRegexes We generate a set of level two regex-ngrams
from all the n-grams in a corpus D, by rolling up
all lowercases and uppercases into \p{Lower} and
\p{Upper}, and digits into \p{Digit}. Then
randomly pick 100 from this set.

N SBF
° 2.5
5 \ TopkSBF
o
§ 15 \ TopkNgram
w \
5 1

0.5 - — -

——
0 T T T T T .

10k 20k 50k 100k 200k 500k im

Synopsis Size (Byte)

Fig. 4. Average error for all dictionaries: Top-k N-gram vs. Stratified Bloom-
Filter Synopsis.

5 \ e SBF.NaIVE
% 4 \ e+ SBF.trackFalse
«
5 3 \ SBF.reDist
§ 24— SBF
£ ¥ TopKSBF
0 T T T T T T T \’ﬁ nalVeBF
FFSFFSLFSTFS LSS
Ny 9 ,\9 ,\/Q <,>Q Ny 9 ,\,Q ,\9
Synopsis Size (Byte)
Fig. 5. Average error for all dictionaries: different Bloom-Filter based
Synopsis.

B. Dictionary Selectivity Estimation:
N-gram vs. Bloom-Filter Synopsis

In this experiment, we first compare the accuracy of
dictionary selectivity estimation over top-k n-gram synopsis
(TopkNgram), stratified bloom filter (SBF) (see Section V-
A), and top-k stratified bloom filter (TopkSBF) synopsis
(see Section V-C). We measure the average estimation error
rate (y-axis) over all dictionaries in NEDicts for the three
synopsis given different space budget (x-axis), varying from
10 thousand to 1 million bytes.

Overall, the results show that a stratified bloom filter syn-
opsis as small as 50k can achieve an error rate of 0.5 over a
document corpus of size 5S0M. In Figure 4, the results show
that at small synopsis sizes (< 20k), SBF has higher error rate
compares to the TopkNgram. This is because SBF contains
all n-grams, which is overflowing the bloom filters. At larger
synopsis sizes (> 50k), SBF achieves lower average error,
because it has enough space to store all the n-grams with a
low false positive rate.

The TopkSBF combines the merits of top-k n-gram syn-
opsis at small synopsis sizes, and that of the stratified bloom
filter at larger sizes. As we can see, the error rates of TOpkSBF
are smaller than that of SBF, and half that of TopkNgram for
most synopsis sizes. On the other hand, to achieve similar
error rate (e.g., 0.5), the size of top-k n-gram synopsis (e.g.,
200k) has to be 4 times bigger than that of the stratified bloom
filters (e.g., 50k).

In addition, we compare the accuracy of different variations
of bloom filter synopsis. Figure 5 shows the accuracy of

of Regexes | Error Range
Gl 16 0
G2 7 (0,0.2]
G3 5 0.2,1]
G4 4 (1,00)

Fig. 7. Result of regex rewriting algorithm over NERegexes workload.

selectivity estimation of six variations of bloom filter synopsis.
SBF.naive is the naive stratified bloom filter described in
Section V-A; SBF.trackFalse is SBF.naive with the opti-
mization to compensate for the false positives; SBF.reDist is
SBF.naive with the optimization to allocate space unequally
among bloom filters; SBF is SBF.naive with two optimiza-
tions; TOpkSBF is the top-k stratified bloom filter; and finally
naiveBF inserts each n-gram into a single big bloom filter.

As we can see, naiveBF, SBF.naive, and SBF.trackFalse
perform the worst—the error rate does not drop under 1 until
the synopsis size increases beyond 5 million bytes. Among
them, the error rate of SBF.trackFalse stays to be 1 until
Im synopsis size, because with uniform allocation, the false
positive error rate for synopsis size < lm is so high (i.e.,
P[FP] 2 1) that the estimated count after compensating for
the false positive rate by multiplying (1 — P[FP]) is always
close to 0. SBF.reDist performs better, where the error rate
drops to below 1 after 1 million bytes. SBF and TopkSBF
perform better by far—the error rate drops below 1 at size
50k for SBF and at as low as 10k for TopkSBF.

C. Regex Selectivity Estimation: Regex
Rewriting and Classification Algorithms

In this experiment, we present the effectiveness and ac-
curacy of the regular expression rewriting and classification
algorithms described in Section VI-A.

The regular expression rewriting algorithm decomposes a
regular expression into a set of TBRs (token bounded sub-
regexes), where the selectivity of the regex is estimated by the
lowest selectivity of the TBRs. We use the rewriting algorithm
to rewrite the 32 regexes in NERegexes workload, then use the
classification algorithm to classify the regexes based on how
its TBRs are composed together and finally compute the error
rate of estimating the selectivity of a regex from its TBRs.
The results are listed in Table 6. As can be seen, out of
the 32 regexes, 16 are classified as G1, with their estimates
exactly the correct selectivity; 7 are identified as G2, with their
estimates within 0.2 error rate; 5 of them are classified as G3,
with the error rate of their estimates falling between 0.2 and
1; and only 4 are G4 regexes, with error rate larger than 1.
Moreover, Table 7 shows for each group an example regex
and the subregexes they are written into.

The results shows that the selectivity of most regular
expressions in NERegexes workload can be accurately esti-
mated by the selectivity of their subregexes. The results also
demonstrates that our classification algorithm can effectively
classify regexes of different expected error rate based on
how their subregexes are composed together. It thus can be

0.06

0.05 e
)
5 0.04 RollUp
g 0.03 +—— TopkNgram
w
‘;b 0.02 — — —— Random1
<

0.01 Random?2

0

05m 1Im 15m 2m 25m 3m 3.5m

Synopsis Sizes (entries)

Fig. 8. Average error rate for all Group 1 to 3 regexes in NERegex: roll-up
vs. top-k n-gram vs. random sample synopsis.

used to pick out the one whose subregexes cannot provide
an accurate estimate, for which we use the baseline random
sample synopsis.

D. Regex Selectivity Estimation:
N-gram vs. Roll-Up Synopsis

In this experiment, we compare the accuracy of regex se-
lectivity estimation over top-k n-gram synopsis (TopkNgram),
roll-up synopsis (RollUp) (see Section VI-C), and random
sample synopsis (Random). We measure the average estima-
tion error rate (y-axis) over all regexes in G1 to G3 (described
in Section VI-A) of NERegexes for the three synopsis given
different space budget (x-axis), varying from 0.5 million en-
tries to 3.5 million entries. Since the entries include unigrams,
bigrams and trigrams in RollUp and TopkNgram, we allow
the upper bound of the space budget—three times as many
tokens—for Random synopsis to be conservative.

In Figure 8, the results show that the error rates of two
runs of the Random synopsis, Random1 and Randomz2, are
quite different from each other with smaller synopsis sizes (<
2m). Moreover, the error rates do not decrease monotonically
with the increase of the synopsis sizes. This is because of
the randomness in the set of documents included in Random
synopsis and that the matches are non-uniformly distribute
over all documents. In general, the error rate of Random is
much higher than both TopkNgram and RollUp. Comparing
TopkNgram and RollUp, we can see that the error rate of
TopkNgram is two times that of RollUp at size 0.5m, and
gradually decreases to be the same as RollUp. The error rate
of RollUp keeps the same at 0.02 from 0.5m to 3.5m, which
corresponds to the error rate of the regex rewriting algorithm.

We also conducted the experiment to compare the accu-
racy of the TopkNgram and RollUp synopsis with synthetic
workloads GeNgrams and GeRegexes. We measure the average
error rate where the size budget is 0.5m. Using GeNgrams, the
average error rate is 0.3 for RollUp, 0.1 for TopkNgram; using
GeRegexes on the other hand, the average error rate is 0.005
for RollUp, 0.32 for TopkNgram. This result shows that the
RollUp synopsis is less accurate in estimating selectivity for
regexes containing n-grams, because a lot of them are rolled-
up into regex-ngrams. But, RollUp greatly outperforms Top-
kNgram in accurately estimating the selectivity for regexes

Example regex

Example TBRs

Gl \d{4} \d{4}
G2 [0-9\:\.1+ ([0-91+) | ([\:\.1)
G3 | To:\s*.{1,200}\sx\n(>\s*)*\s* (CClcc|Cc) :\s*(\n)? To:\s*

\sx (CC|cc|Cc) :\s*

G4 +1/1]

. SAL/T A (\@.+) 2\s*\n (>\s*) x\d{2,4} [/.] (/]
\d{2,4}[/.1\d{2,4}\s\d{2}\:\d{2} (\s+ (PM|AM)) ? [/]
\d{2,4}[/.]1\d{2,4} [/.1\d{2,4}\s\d{2}\:\d{2}

Fig. 6.

containing no ngram.

E. Summary

The results showed that accurate selectivity estimation, of
error rate less than 0.1, can be achieved by supporting docu-
ment synopsis as small as 100k bytes, less than 1/1000 size
of the text corpus. The experiments reported in Section VII-B
demonstrated that the top-k stratified bloom filter halves the
error rate of dictionary selectivity estimation from the top-
k n-gram synopsis. The results in Section VII-C and VII-
D showed that the roll-up synopsis is the most accurate in
regular expression selectivity estimation, compared to the top-
k n-gram and random document synopsis. Using these accurate
selectivity estimations, optimizer can be extended to pick good
plans for queries involving extraction operators over text.

VIII. CONCLUSION

The need for query processing to efficiently support ex-
traction operators over text data, including dictionaries and
regular expressions, is becoming increasingly acute. A lot of
text processing queries involve multiple extraction and join
operators, resulting in many possible query plans. However,
there has been little research on building the selectivity
estimation for these extraction operators. In this paper, we
proposed a document synopsis-based approach for selectivity
estimation. We developed three classes of document synopsis:
n-gram synopsis, bloom filter synopsis and roll-up synopsis.
Our experimental results show that these synopsis are compact
and enable accurate selectivity estimations. As future work, we
intend to look at cost estimation of extraction operators and
extend a database query optimizer to use these statistics.

REFERENCES

[1] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and S. Vaithyanathan,
“An algebraic approach to rule-based information extraction,” in Inter-
national Conference on Data Engineering Conference, 2008.

[2] S. Chaudhuri, “An overview of query optimization in relational systems,”
in Proceedings of the ACM Symposium on Principles of Database
Systems, 1998.

[3] Y. E. Ioannidis, “Query optimization,” ACM Comput. Surv., vol. 28,
no. 1, pp. 121-123, 1996.

[4] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access path selection in a relational database management
system,” in Proceedings of the ACM SIGMOD Conference, 1979.

[5] S. Chaudhuri, V. Ganti, and L. Gravano, “Selectivity estimation for string
predicates: Overcoming the underestimation problem,” in International
Conference on Data Engineering Conference, 2004.

[6] H. V. Jagadish, O. Kapitskaia, R. T. Ng, and D. Srivastava, “One-
dimensional and multi-dimensional substring selectivity estimation,”
VLDB Journal, vol. 9, no. 3, pp. 214-230, 2000.

Examples of regex rewriting algorithm over NERegexes workload.

[7]1 P. Krishnan, J. S. Vitter, and B. R. Iyer, “Estimating alphanumeric
selectivity in the presence of wildcards,” in Proceedings of the ACM
SIGMOD Conference, 1996.

[8]1 H. Lee, R. T. Ng, and K. Shim, “Extending qg-grams to estimate
selectivity of string matching with low edit distance,” in Proceedings
of the Very Large Databases Conference, 2007.

[9] L. Li and C. Li, “Selectivity estimation for fuzzy string predicates in

large data sets,” in Proceedings of the Very Large Databases Conference,

2005.

A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton, “Estimating the

selectivity of xml path expressions for internet scale applications,” in

Proceedings of the Very Large Databases Conference, 2001.

W. Wang, H. Jiang, H. Lu, and J. X. Yu, “Bloom histogram: path

selectivity estimation for xml data with updates,” in Proceedings of the

Very Large Databases Conference, 2004.

C. D. Manning, P. Raghavan, and H. Schtze, “Language models for

information retrieval,” in Introduction to Information Retrieval, 2008.

D. Jurafsky and J. H. Martin, SPEECH and LANGUAGE PROCESSING.

Prentice Hall, 2009.

“Enron Dataset,” http://www-2.cs.cmu.edu/ enron/.

W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan, “Declarative

information extraction using datalog with embedded extraction predi-

cates,” in Proceedings of the Very Large Databases Conference, 2007.

S. Cohen and Y. Matias, “Spectral bloom filters,” in Proceedings of the

ACM SIGMOD Conference, 2003.

G. Commode and S. Muthukrishnan, “An improved data stream sum-

mary: The count-min sketch and its applications,” in J. Algorithms, 2004.

D. Talbot and M. Osborne, “Smoothed bloom filter language models:

Tera-scale Ims on the cheap,” in EMNLP, 2007, pp. 468-476.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Communications of the ACM, vol. 13, pp. 422-426, 1970.

L. Fan, P. Cao, and J. Almeida, “Summary cache: A scalable wide-area

web cache sharing protocol,” in SIGCOMM, 1998.

M. Habibi, in Java Regular Expressions: Taming the java.util.regex

Engine. Apress, 2003.

L. Chiticariu, R. Krishnamurthy, Y. Li, F. Reiss, and S. Vaithyanathan,

“Domain adaptation of rule-based annotators for named-entity recogni-

tion tasks,” in EMNLP, 2010, pp. 1002-1012.

[10]

(11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
(21]

[22]

IX. APPENDIX

Section IX-A explains in detail the nature of the errors
introduced by a naive SBF when estimating the selectivity
of a dictionary. Section IX-B provides more details on the
algorithm that efficiently prune the search space to find the
regex-ngram that has the highest utility value.

A. Error Analysis for Naive SBF

The estimation error of the Stratified Bloom Filter synopsis
depends on the counts of the n-grams that are inserted into the
synopsis. This relationship is best explained with an example.
Consider an SBF synopsis with 10 Bloom filters. Since there is
one Bloom filter per bit, this synopsis can encode any n-gram
count between 0 and 2047. Imagine that the counts for every
n-gram in the corpus have been inserted into this synopsis,
using the basic insertion procedure outlined above.

Recall that the error of a Bloom filter is one-sided: If an
item has been inserted into a Bloom filter, lookup operations
on the Bloom filter will always indicate the presence of the
item inside the Bloom filter. If, on the other hand, an item has
not been inserted into the Bloom filter, the lookup operation
may report that a given element is present even though it is
not.

Now consider what happens if one probes our example
synopsis with an n-gram whose true count (the number of
times the n-gram appears in the corpus) is 2047. The bi-
nary representation of 2047 is 1111111111 (ten 1’s), so this
example n-gram must have been inserted into every Bloom
filter. Any subsequent lookup operation will find this n-gram
to be present in every Bloom filter, so the estimation algorithm
will always report an estimated count of 2047 for the n-gram.
Hence, the estimation error for this hypothetical n-gram will
always be zero.

Now consider what happens if the synopsis is used to
estimate the count of an n-gram whose true count is zero.
Since the n-gram’s count is zero, the n-gram should not
be present in any of the Bloom filters. However, a lookup
operation a given Bloom filter may generate a false positive.
If we denote the false positive probability of the ith Bloom
filter by the random variable V;, then the overall estimation
error is the sum of the (independent) errors across the
different bit positions:

20V, +2'v, + 4210V (6)

For n-grams with true counts between 0 and the maximum
count, the estimation error will fall between these two
extremes. In general, for an SBF with k£ Bloom filters, the
error is given by:

b .
Y 2v; ™
i=1

1 if bit i is not 1
where z; =)
0 otherwise
able as in Equation 6.

In most text corpora, the distributions of n-gram counts tend
to be quite uneven, with a few very large counts and a large
number of small counts. This type of distribution creates a
problem for a naive SBF synopsis, as the errors from the
Bloom filters associated with higher-order bits quickly add up.
For example, in the Enron corpus used in our experiments, the
most common n-gram occurs about 14 million times (meaning
that 23 bits are required to store these counts), while the
average n-gram count is only about 26.3. Imagine if, in an
SBF synopsis over this corpus, the Bloom filter for bit 23
had a false probability of 0.001 percent. Then, for any n-gram
whose true count was less than 223, the error from this bit
alone would have an expected value of 223 x 0.00001, or about
83.9. This expected error is more than three times the average
n-gram count for the corpus.

and V; is a random vari-

Worse, the variance of this error is also approximately 83.9.
Since the false positive probabilities of a Bloom filter for
individual n-grams are nearly uncorrelated, this variance adds
up very quickly when one is trying to estimate the selectivity
of a large dictionary.

B. Details on Pruning the Search Space

The algorithm to find the regex-ngram, generated by
rolling-up level one characters to level two character classes,
that has the highest utility value in one step of the greedy
algorithm described in Section VI-C is as follows:

1) For each unique ngram we generate a level two regex-
ngram by rolling-up each character or digit into level
two character classes;

2) For each unique level-two regex-ngram b, if it matches
only one ngram, the original ngram has the highest
utility of all the regex-ngrams generated from it based
on rule 1); if it mathes more than one ngram, compile
the list of matched ngrams o;

3) Enumerate all the combinations of the ngrams in o
that can generate a different regex-ngram from b, which
has the complexity of O(len) where len is the length of
ngrams merge into b;

4) For each combination, if it excludes more than d X
Yieq,ci X n; number of ngrams in oy, then its utility
function is less than b, otherwise computes its utility
value;

5) Pick the highest value regex-ngram to include in the
roll-up synopsis from the ones we computed the utility
value, and perform book-keeping.

Similar algorithm is used to find the regex-ngram, generated
by rolling-up level two character classes to level three
character classes, that has the highest utility value.

Example 3: Suppose we have the set of ngram and count
pairs o = {“Jun” 10, “Jul” 20, “Aug” 100}. At step one, we
generate all the level two regexes, in this case only one b =
\p{Upper}\p{Lower}{2}. At step two we generate the
set of ngrams o = {“Jun”, “Jul”, “Aug”} matches to it. At
step three, the combinations of this set of ngrams can be
enumerated by looking at each position: at position 1, the com-
binations are: {“Jun”, “Jul”}; at position 2, the combinations
are {“Jun”, “Jul”, “Aug”}; at position 3, the combinations are
0.

In step four, we check if each combination contains more
than (3—d x (10-3+20-3+100-3)) ngrams. When d = 0.01,
only the second combination, that generates a regex n-gram
\p{Upper}u\p{Lower}, satisfies the condition. Thus in
step four, we compute its utility value, which is higher than
the utility value of \p{Upper}\p{Lower} {2}. Thus, we

pick
\p{Upper}tul\p{Lower} to be included in the roll-up syn-
opsis in step five.]

