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Abstract—Traditional approaches to rule-based information
extraction (IE) have primarily been based on regular expres-
sion grammars. However, these grammar-based systems have
difficulty scaling to large data sets and large numbers of
rules. Inspired by traditional database research, we propose
an algebraic approach to rule-based IE that addresses these
scalability issues through query optimization. The operators of
our algebra are motivated by our experience in building several
rule-based extraction programs over diverse data sets. We present
the operators of our algebra and propose several optimization
strategies motivated by the text-specific characteristics of our
operators. Finally we validate the potential benefits of our
approach by extensive experiments over real-world blog data.

I. INTRODUCTION

Search and business intelligence applications are increas-

ingly relying on the wealth of structured information that can

be extracted from text [1], [2]. Information of interest to such

applications ranges from mentions of entities and relation-

ships (e.g., persons, phone numbers, addresses, etc.) [3], [4]

to significantly more complex information such as reviews,

opinions, and sentiments.

The area of rule-based information extraction (IE) has

developed several rule languages and frameworks [5], [6], [7]

for building such information extraction programs (called an-

notators). Since extraction is viewed as a sequential operation

over text, such rule languages and their implementations are

predominantly based on the theory of grammars and finite-

state automata. However, there is a significant issue with the

scalability of such approaches, particularly as the complexity

of the annotators and the size of the document collections

increase. To illustrate these issues, let us consider the following

relatively complex extraction task of identifying certain kinds

of reviews from blogs.

Example 1 (Extracting informal reviews from Blogs):

Consider the task of extracting, from blogs, informal reviews

of live performances by music bands. Figure 1 shows the

high-level organization of an annotator that captures the

domain knowledge needed to accomplish this task. The

two individual modules ReviewInstance and ConcertInstance

identify specific snippets of text in a blog. The ReviewInstance

module identifies snippets that indicate portions of a concert

review – e.g., “show was great”, “liked the opening bands” and

“Kurt Ralske played guitar”. Similarly, the ConcertInstance

module identifies occurrences of bands or performers – e.g.,

“performance by the local funk band Saaraba” and “went

Fig. 1. Extraction of informal band reviews

to the Switchfoot concert at the Roxy”. The output from

the ReviewInstance module is fed into the ReviewGroup

module to identify contiguous blocks of text containing

ReviewInstance snippets. Finally, a ConcertInstance snippet

is associated with one or more ReviewGroups to obtain

individual BandReviews.

A. The grammar approach

In a traditional rule-based IE system, the annotator described

in Example 1 would be specified as a series of cascading

grammars. To illustrate, let us consider a particular rule in

the ReviewInstance module that is informally described as

follows:

BandMember followed within 30 characters by Instrument

Fig. 2. Example extraction rule for ReviewInstance

A translation of this specification into a cascading grammar

yields:

ReviewInstance ← BandMember .{0,30} Instrument (R1)

BandMember ← RegularExpression ( [A-Z]\w+(\s+[A-Z]\w+)* )(R2)

Instrument ← RegularExpression ( d1|d2| . . . |dn ) (R3)

Fig. 3. Cascading grammar rules

The top-level grammar rule R1 expresses the requirement

that the pattern BandMember and Instrument appear within



30 characters of each other. Executing R1 invokes rules R2

and R3 which in turn identify BandMember and Instrument

instances. In the interest of readability, we have include

a simpler version of the fairly complex regular expression

that we used for identifying BandMember instances 1. For

identifying Instrument instances, an exhaustive dictionary of

instrument names is used. However, the actual implementation

of a dictionary in a grammar-based system is via a regular

expression expressed as a union of all the entries in the

dictionary as shown in rule R3.

The most popular and well-understood standard for cascad-

ing grammars is the Common Pattern Specification Language

(CPSL) [5]. Using such a CPSL-like language, at the IBM

Almaden Research Center, we have built a large number of

annotators over several diverse data sets [8]. Our experiments

indicate that a significant drawback of the cascading gram-

mar implementations is their enormous execution time. For

example, even after extensive performance tuning, the total

running time for the annotator shown in Figure 1 over 4.5

million blog entries is approximately eight hours. Clearly such

high execution times are a bottleneck in the widespread use

of information extraction techniques.

1) Scalability Considerations: A careful analysis of our

annotator revealed that the primary reason for such high

execution times is the cost associated with the actual eval-

uation of each grammar rule. As an anecdotal data point,

when executing only the 3 grammar rules listed in Figure 3

over 480K blog entries, the CPU cost of regular expression

evaluation dominated all other costs (IO cost of reading in

documents, generating output matches, etc.), accounting for

more than 90% of the overall running time. Such high CPU

cost is a consequence of the fact that for a grammar rule to

be evaluated over a document, potentially every character in

that document must be examined. As the number of rules

increases, the associated CPU cost per document continues

to grow, resulting in a large execution time over the entire

collection.

Obviously, one approach to address this scalability problem

is that of employing more hardware, distributing the docu-

ment collection over a large number of processing nodes,

and executing the annotators in parallel. However, our goal

is to achieve scalability by improving the efficiency of the

processing operations performed by the annotator.

To this end, we draw inspiration from the approach pi-

oneered by relational database systems. By viewing data

manipulation procedures as operators in an algebra, database

query execution engines are able to consider equivalent but

potentially faster execution plans for a given user query. In

this paper, we ask, and answer in the affirmative, the question

of whether a similar approach, of treating annotator rules

as queries in a formal algebraic framework, can be used to

address the scalability problem described above.

1The particular task that necessitated the extraction of such band reviews
concerned the identification of new bands. This precluded the usage of any
existing dictionary containing the names of current bands.

Fig. 4. 3 execution strategies for a CandidateReview Rule

B. An algebraic approach

We propose a simple data model and associated operator

algebra for representing the text manipulation tasks that are

performed by an annotator. There are two important aspects

to our proposal: (i) since our focus is on information extraction

tasks that only require the examination of a single document

at any given time2, our data model and algebra only represent

intra-document operations; (ii) since the core operations of an

annotator involve the generation or examination of contiguous

regions of text, the fundamental concept in our algebra is that

of a span, a region of text within a document identified by its

“begin” and “end” positions.

A formal definition of a span, the algebra, and the associated

optimization techniques form the subject of Sections II and III.

However, to provide an intuition for how alternative execution

plans can be developed for an annotator, let us revisit the

cascading grammar rules listed in Figure 3. Three alternative

plans for this rule are shown in Figure 4.

On each document, Plan A first evaluates BandMember and

Instrument independently and then determines whether pairs

of these annotations are within 30 characters of each other.

Clearly, identifying BandMember and Instrument that are

not within 30 characters of the other is wasted computation.

Plans B and C exploit this very fact. Plan B first identifies

all instances of BandMember. For each such instance, it

identifies Instrument instances within a limited neighborhood

to the right. On the other hand, Plan C first evaluates all

instances of Instrument and for each instance evaluates

BandMember in the “left” neighborhood. The running times

for Plans A , B and C on 480K blog entries are 422 seconds,

391 seconds and 31 seconds respectively. The dramatic

difference in running time for Plan C is due to the high

selectivity of Instrument as compared with the low selectivity

of BandMember. This optimization strategy (referred to as

restricted span extraction), along with other text-specific

optimization strategies are described in detail in Section III.

2For instance, a task such as collection-level entity resolution that involves
examining the text of multiple documents is beyond the purview of this work.



Contributions

In this paper we propose a departure from traditional

grammar-based information extraction systems to address the

computational issues that have precluded scalable rule-based

information extraction. Specifically, we claim the following

contributions:

• An algebraic approach to rule-based information extraction

• An algebra consisting of span and text-specific operators

based on our experiences with building information extrac-

tion modules over a wide range of data-sets

• Three text-specific optimization strategies that emerge

from a holistic view of an information extraction task

• Extensive experiments over 4.5 million blog entries to

evaluate the benefits of this algebraic approach and com-

parisons against an implementation of a popular grammar-

based specification.

II. ALGEBRA AND DATA MODEL

In this section, we describe a simple object-relational data

model for representing annotations over a given document.

We then present a set of logical operators over this model and

demonstrate that complex rule-based annotators (including the

ones described in Section I) can be expresed as compositions

of these operators.

A. Data and Execution Model

Our algebra is designed to extract annotations from a single

document at a time, and we define the algebra’s semantics in

terms of the current document being analyzed. We model the

current document as a string called doctext.

Each annotator finds regions of doctext that satisfy a set of

rules and marks each region with an object called a span. A

span is simply an ordered pair 〈begin, end〉 that denotes the

region of doctext from position begin to position end.

To make the examples in this section easier to understand,

we also include the text of the span’s region in our nota-

tion. For example, if doctext was the string “Information

extraction”, 〈13, 22〉 : “extraction” would denote the range

from characters from positions 13 to 22 of the document.

Our algebra operates over a simple relational data model

with three data types: span, tuple, and relation. In our data

model, a tuple is an finite sequence of w spans 〈s1, ..., sw〉;
we call w the width of the tuple. A relation is a multiset

of tuples, with the constraint that every tuple in the relation

must be of the same width. Each operator in our algebra takes

zero or more relations as input and produces a single output

relation.

B. Local Annotation Database.

Our algebra runs over a local annotation database consist-

ing of the current document and a set of annotation relations

that represent precomputed annotations. As part of the process

of loading a document, the system computes a set of useful

general-purpose annotations like Sentence, Paragraph, Noun,

and Verb and inserts these annotations into the local annotation

TABLE I

OPERATOR ALGEBRA FOR INFORMATION EXTRACTION

Operator class Operators

Relational operators σ, π, ×, ∪, ∩, ...
Span extraction operators Ere, Ed

Span aggregation operators Ωo, Ωc, β

TABLE II

SPAN PREDICATES

Predicate Explanation

s1 �d s2 s1 and s2 do not overlap, s1 precedes s2, and
there are at most d characters between the end of
s1 and the beginning of s2

s1 ≃ s2 the spans overlap
s1 ⊂ s2 s1 is strictly contained within s2

s1 = s2 spans are identical

database. Since a local annotation database only deals with a

single document, it generally fits entirely in main memory.

A collection of local annotation databases forms a global

annotation database. To annotate all the documents in a global

annotation database, our execution framework applies an alge-

bra expression to every local annotation database separately.

Execution proceeds as follows:

E ←{ algebra expression }
for localDB in globalDB do
begin

1. { Read localDB into main memory }
2. R ← E(localDB)
3. { Add R to localDB }
4. { Write modified localDB to disk }

end

To run multiple annotators in a single pass, step 2 in the

above process can be repeated multiple times per document.

In our experience, step 2 of this loop is by far the most time-

consuming part of the annotation task, even for a very simple

annotator running in isolation.

C. Operator Algebra

The set of operators in our algebra can be categorized

broadly into relational operators, span extraction operators,

and span aggregation operators as shown in Table I. Since

our data model is a minimal extension to the relational model,

all of the standard relational operators ( select , project , join ,

etc.) apply without any change. The only addition is that we

use some new selection predicates (Table II) that apply only

to spans3. The rest of this section is devoted to a description

of the span extraction and aggregation operators.

D. Span Extraction operators

Span extraction operators identify segments of text that

match a particular input pattern and produce spans correspond-

ing to each such text segment. Since text pattern matching is

at the core of almost any information extraction task, these

3Note that several other predicates are possible [9] but we only list those
that are used in this paper.



doctext()

Talented guy wearing a stovepipe 

hat played the oboe, the flute, and  
the sax.

pipe

oboe

flute

sax

Instrument 
Dictionary

�d
�d

<b1, e1> : “oboe”

<b2, e2> : “flute”

<b3, e3> : “sax”

Output Tuples

Spans that match dictionary

Fig. 5. Span extraction using the dictionary operator Ed.

extraction operators are the workhorses of our algebra. Before

delving into the details of specific extraction operators such

as the regular expression matcher or the dictionary matcher,

we describe their general form as follows.

Definition 1 (Span extraction operator): For a function f :
〈Pattern, String〉 → {Span} that maps a string to a set of

pattern matches within the string, the corresponding span

extraction operator Ef (Pattern) returns the maximal set of

tuples {T1, . . . , Tn}, where each Ti consists of a span from

f(Pattern, doctext()).
Our algebra incorporates two kinds of span extraction

operators:

• Standard regular expression matcher (Ere). Given a regular

expression r, Ere(r) identifies all non-overlappingmatches

when r is evaluated from left to right over the text

represented by s. The output of Ere(r) is the set of spans

corresponding to these matches.

• Dictionary matcher (Ed). Given a dictionary dict con-

sisting of a set of words/phrases, the dictionary matcher

Ed(dict) produces an output span for each occurrence of

some entry in dict within the current document text.

In the presence of a generic regular expression operator,

a separate dictionary operator may appear to be redundant.

However, there are three reasons for including such an opera-

tor. First, most regular expression engines only produce non-

overlapping matches whereas the dictionary operator produces

all possible matches for each dictionary entry. Second, regular

expressions operate at the character level whereas dictionaries

are at the level of tokens (i.e, words and phrases). Especially

for dictionaries that can run into thousands of entries, the

use of a character-level regular expression matching engine

is very expensive. Finally, dictionaries automatically enforce

the semantics of word boundaries, i.e., dictionary matches only

include complete words and phrases. For example, as shown

in Figure 5, even though “pipe” is an entry in the dictionary,

the string “pipe” in the sentence is not a match as its part of

a larger word.

E. Span Aggregation operators

Span aggregation operators take in a set of input spans and

produce a set of output spans by performing certain aggregate

operations over their entire input. While the precise details are

different for the individual operators, the input and output of

Fig. 6. Operator graph for ReviewGroup

every span aggregation operator is a single-column relation of

the form R(a) where R.a is of type Span. Below we describe

three span aggregation operators: containment consolidatation,

overlap consolidation, and block.

1) Consolidate: The consolidate operators are motivated

by our observation that when multiple extraction patterns are

used to identify the same concept, two different patterns often

produce matches over the same or overlapping pieces of text.

To resolve such “duplicate” matches, we introduce two kinds

of consolidation operations.

• Containment consolidation (Ωc) is used to discard an-

notation spans that are wholly contained within other

annotation spans. Specifically, given a set of input spans,

Ωc produces as output only those spans in the input that are

not contained within another. It is easy to show that con-

tainment consolidation can be expressed using relational

operators by applying the correct span predicate.However,

since it has been our experience that containment consol-

idation is a common operation in several extraction tasks,

we have chosen to retain it as a first class operator in our

algebra.

• Overlap consolidation (Ωo) is used to produce new spans

by merging overlapping spans. Given a set of spans as in-

put, Ωo produces a set of non-overlapping spans generated

by repeatedly merging all possible spans in the input. In the

interest of brevity, we do not discuss overlap consolidation

in this paper but merely note that an expression for Ωo

in terms of relational operators requires a recursive fixed-

point computation.

2) Block: The block operator (β) identifies a large span of

text enclosing a set of input spans such that no two successive

spans are more than a specified distance apart. Intuitively, the

goal is to identify regions of text where input spans occur

with enough regularity. For example, as shown in Figure 6,

ReviewGroup is constructed by using the block operator to

identify regions of text containing regular occurrences of



ReviewInstance.

The block operator takes in two user-defined parameters

– a distance constraint and a count constraint. The distance

constraint controls the regularity with which input spans must

occur within the block and the count constraint specifies a

minimum number of such input spans that must be contained

within the block.

Formally, let the single-column relation R(a), where R.a is

of type Span, be the input to a block operator β with distance

constraint d and count constraint n. A span (b, e) is produced
as output by this block operator if there exists a set of input

spans ρ((b, e)) ⊆ R.a such that:

• B1. No two spans in ρ((b, e)) are overlapping

• B2. Each span in ρ((b, e)) is contained within (b, e)

• B3. |ρ((b, e))| ≥ n

• B4. Any two successive spans in ρ((b, e)) are separated by

at most d characters4

• B5. ∃ (b, e1) ∈ ρ((b, e)) and (b1, e) ∈ ρ((b, e))

The output of the block operator β(n, d, R) is the set of

all such spans that satisfy conditions B1..B5. Condition B5

ensures that every span output by the block operator begins

and ends with one of the input spans.

III. EXECUTION AND OPTIMIZATION

One of the primary reasons for developing an algebraic ap-

proach to information extraction is the opportunity to develop

a principled annotation optimizer similar to database query op-

timizers. Indeed, since our data model and algebra build upon

the standard relational model, all of the well-known strategies

for generating alternative plans in the relational model (e.g.,

pushing down selections, re-ordering joins, etc.) are directly

applicable. However, significantly more transformations can

be performed by exploiting the semantics of the text-specific

operators introduced in Section II. In this section, we present

a suite of such techniques.

A. Observations

There are three important observations that guide the design

of the techniques presented in this section:

• (O1) Document-at-a-time processing.

In keeping with the per-document nature of information

extraction, our algebra operates on a single document at

a time. As a result, the individual per-document relations

that our operators produce and consume are generally quite

small and are often completely empty.

• (O2) CPU-intensive text operations. The core text pro-

cessing operations of our algebra are the span extrac-

tion operators Ere and Ed. In the absence of any index

structures, these operators require the examination of each

character or token in a document, resulting in significant

CPU cost that often dominates the overall running time of

an annotator.

4Distance between non-overlapping spans is computed from the end of the
first span to the beginning of the second span

• (O3) Span properties. A span is merely a special instance

of the general mathematical object called an interval.

Therefore, spans obey all of the natural properties of

interval algebra [9] and these properties yield powerful

transformation rules.

In this section, we describe three techniques for transforming

annotator execution plans, inspired by these observations. The

common thread underlying all our techniques is one of avoid-

ing or reducing the effect of O2 by exploiting observations O1

and O3.

B. Shared Dictionary Matching (SDM)

Dictionary matching is a fairly expensive operation that

involves tokenizing the current document’s text and looking

for all occurrences of the set of words and phrases listed in

a specified dictionary. However, dictionaries are also fairly

powerful information extraction primitives and therefore used

quite often. For example, Figure 6 shows that ReviewInstance

is computed as a union of spans produced by multiple

subqueries. In our complete annotator, there were 39 such

subqueries with a total of 69 instances of Ed involving 33

distinct dictionaries. The naive implementation of separately

evaluating each instance of Ed proves to be extremely ex-

pensive. Even when documents are tokenized at the very

beginning of the processing pipeline, an entire pass over these

tokens for each Ed operator requires thousands of probes into

the dictionary data structures.

To improve this performance, we propose a technique,

called shared dictionary matching (SDM), in which each

dictionary is evaluated exactly once and the matches are

used repeatedly as required. To implement SDM, we use two

physical operators:

• A DictEval that produces a set of matching spans given a

dictionary and a tokenized document

• A Tee operator that duplicates its input stream so that it can

be fed into more than one operator further in the processing

pipeline

The above version of SDM is effective in avoiding redundant

computation when the same dictionary is used as part of

multiple extraction patterns (e.g., the Instrument dictionary is

used 9 times in the band review annotator shown in Figure 1).

However, each distinct dictionary still required one complete

pass over the tokens. Therefore, we extended SDM to use:

• a MultiDictEval operator that simultaneously produces

matches for multiple dictionaries using a single scan over

the tokens

• a modified version of the Tee operator that can forward a

different set of dictionary matches over each of its output

streams.

The use of SDM in the band review annotator improved

document throughput by a factor of 3 in our experiments (See

Section IV).



BandMember(Blog, B) = Ere(“regexp”, Blog) (1)

Instrument(Blog, I) = Ed(“dictionary”, Blog) (2)

ConcertInstance = BandMember ⋊⋉B�30I Instrument (3)

Fig. 7. Algebraic expression for Plan A in Figure 4

C. Conditional evaluation (CE)

The idea in conditional evaluation (CE) is to avoid eval-

uating an entire subquery over a particular document if it

is possible to infer that that document is not going to yield

any output annotations. For instance, consider the last step

in the BandReview annotator in which ConcertInstance and

ReviewBlock are joined together. If the subquery corresponding

to ConcertInstance is evaluated first on each document, the

evaluation of BandReview can be avoided on documents in

which there are no instances of the former. Note that the key to

this technique is the fact that the entire computation proceeds

one document at a time, providing a natural granularity at

which to implement such conditional evaluation. The symmet-

ric transformation of evaluating ReviewBlock and conditionally

evaluating ConcertInstance is also possible. The problem of

choosing between these two conditional evaluation transfor-

mations requires appropriate statistics and cost estimation and

we address some of these issues in Section III-E.

D. Restricted span extraction (RSE)

Both SDM and CE attempt to either reduce or eliminate

work at the document level. In contrast, our third technique,

called restricted span extraction (RSE), operates at the sub-

document level. The idea behind RSE is to restrict the eval-

uation of the expensive span extraction operators to some

carefully chosen region(s) of text (as opposed to the entire

document).

To illustrate this approach, let us revisit Plan A from Fig-

ure 4, expressed in our algebra as indicated in Figure 7. Notice

that the join condition in Equation 3 involves a span predicate

to enforce the requirement that Instrument must begin within

30 characters of the end of BandMember. Consider a particular

BandMember instance b with a span (10, 20). As per the join

condition, we know that for an Instrument span to join with

b, it must begin somewhere in the range (21, 51). Let us

further assume that the maximum length of any entry in the

Instrument dictionary is 15 characters. It is easy to see that

any Instrument instance that may potentially join with b can

be identified by running the dictionary extractor in Equation 2

only over the span (21, 66) (see below for why we must

actually use (20, 66)). Thus, by examining only a portion of

the document, the potential Instrument instances that join with

b can be computed.

RSE optimization is a generalization of the technique illus-

trated by the above example. RSE is applicable for expres-

sions, such as the one shown in Figure 8, involving a span-

based join predicate p with one of the inputs to p computed

using the dictionary operator. Similar expressions involving

Ere instead of Ed are also amenable to RSE.

�d�d

Åp(s1,s2)Åp(s1,s2)

s1

R1

D

p

RSE 

Dictionary 

Operator

s1 binding

s2’s that 

satisfy 

p(binding,s2)

Fig. 8. Applying RSE

Fig. 9. Word boundary issue in dictionary matching

We have implemented versions of our extraction operators

that accept bindings for all but one of the unbound variables

in a given join predicate p. These RSE extraction operators

compute the pattern matches that satisfy p for a given set

of bindings, and they do so without examining the entire

document. In our earlier example, we provided the intuition

for how our RSE dictionary extraction operator works for the

predicate �d. Our RSE implementation supports bindings for

all the predicates listed in Table II.

When implementing an RSE extraction operator, two im-

portant issues must be considered:

• As mentioned earlier, dictionary matches enforce word

boundaries, i.e., only match complete words or phrases.

When restricting the execution of the dictionary extractor

to a particular window of text, it is possible that spurious

matches are returned at the two end-points of the window.

Figure 9 illustrates how a spurious match for “pipe” can

be produced for the same piece of text that was shown

in Figure 5. To avoid this problem, we must examine one

extra character at each end of the span to check for word

boundaries. Thus, for our earlier example, the correct join

span binding is (20, 66).

• The design of an RSE regular expression extractor must

take into account the left-to-right matching semantics of

the regular expression operator. Typically, regular expres-

sion matches are evaluated in left-to-right order over the

entire document. By evaluating a regular expression over

an arbitrary window within this text, it may not be possible

to precisely compute the set of matches in this window that

would have been produced by evaluating over the entire

document. Therefore, whenever Ere is involved, we adopt

the conservative approach of using join span bindings

to only compute the end-offset and always evaluating

the regular expression from the very beginning of the

document.

Due to lack of space, we omit further details of our RSE

extraction operators.
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Fig. 10. Plan enumeration.

E. Annotation Plan Optimizer

In this section, we present the high-level design of an an-

notation plan optimizer based on the algebra and optimization

techniques presented in this paper. We describe the space of

execution plans that are considered and briefly sketch the

algorithm for choosing an execution plan.

Given an operator graph for an annotator in terms of our

algebra, the first step is to identify subgraphs that exclusively

contain the operators σ, π, ×, Ed, and Ere (i.e., a Select-

Project-Join (SPJ) block extended to include the span extrac-

tion operators). In the case of the band review annotator,

there are 40 such subgraphs as shown in Figure 10. We

optimize each subgraph independently, but first we apply a

topological sort to determine the order in which to process

the subgraphs. The sort order ensures that the query plans for

a given subgraph’s inputs are computed before we optimize

the subgraph itself.

Within each subgraph, we independently enumerate a space

of possible plans by

• all possible join orders including ones that involve cross-

products5

• standard transformations such as pushing down selections

and projections to the extent possible, and

• additional plans generated by the application of the CE and

RSE techniques introduced in Sections III-C and III-D.

In the simplest case, each subgraph would be treated inde-

pendently, the least cost plan would be picked for each, and

combined to produce the final plan.

However, with the SDM optimization, the cost of evaluating

dictionaries is now amortized across subgraphs and must be

carefully accounted for. There are two important considera-

tions. First, sharing of dictionary computations is possible only

between dictionary operators that are completely evaluated

over a document, not when an optimization such as RSE

5Since the execution works one document at a time, the potential blow up
in result size that is traditionally the problem with cross-product plans is not
an issue in our scenario.

has been applied to restrict the evaluation to a smaller span.

Second, we can view the cost of executing dictionary matches

as consisting of two parts: a certain fixed cost associated with

tokenization and a variable cost associated with the actual

matches produced by each operator. Given these considera-

tions, we adopt an approach similar to the one used to handle

interesting orders [10]. Essentially, for each subgraph B, we

compute two optimal plans along with their associated costs:

• One plan under the assumption that tokenization cost can

be amortized with another dictionary evaluation elsewhere

in the query

• Another under the assumption that there is no dictionary

evaluation in the rest of the query.

Once these pair of plans have been computed, a global pass

over all the blocks is used to pick one of the two plans for

each block and build the overall execution plan.

IV. EXPERIMENTS

The goal of the experimental study is two-fold : (i) validate

the performance benefits obtained by using an algebraic ap-

proach to information extraction (ii) understand and contrast

the different optimization techniques presented in Section III.

A. Experimental Setup

The document corpus used in the experiments is a col-

lection of 4.5 million web logs (5.1GB of data) crawled

from http://www.blogspot.com. We used two annotators that

identify informal reviews from these blogs (a) BandReview as

shown in Figure 1 and (b) RestaurantReview, which identifies

informal reviews of restaurants. Note that even though the

two annotators are similar in spirit they have very different

operator-graphs (omitted here for lack of space). All the

experiments were run single-threaded on an IBM xSeries

server with two 3.6GHz Intel Xeon CPUs.

B. Scalability Benefits of Using an Algebraic Approach

The first set of experiments compare the performance times

between the grammar-based implementation and our proposed

approach.

We started from a set of extraction rules such as the one

shown in Figure 2, based on manual examination of blogs

containing restaurant and band reviews. We then constructed

three implementations of these extraction rules:

• GRAMMAR: A hand-optimized grammar-based implemen-

tation

• ALGEBRABaseline: Baseline obtained by manually con-

structing an algebra expression for each extraction rule

• ALGEBRAOptimized: Plan obtained by applying the opti-

mization algorithm presented in Section III-E over ALGE-

BRABaseline .

The execution times for BandReview and RestaurantReview

are shown in Figures 11 from which we make the following

observations:
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Fig. 11. Running time of the BandReview annotator

• There is a two-fold improvement simply in moving from

a grammar-based plan to an algebra-based plan.

• Applying the transformations discussed in Section III-

E results in an order of magnitude improvement over

ALGEBRABaseline.

Despite the fact that ALGEBRABaseline and GRAMMAR

represent the same extraction rules, there is still a significant

improvement in running time. This is explained by the fact that

every rule in a cascading grammar is evaluated over the com-

plete text of the document. On the other hand operations in an

algebra work only over the input annotations and consequently

the running time depends primarily on the size of the input

annotations. From this experiment it is clear that the value

of an algebraic approach is unquestionable. The exact same

information extraction task (BandReview) which took about

eight hours in an optimized grammar-based implementation

now runs in just under 30 minutes.

C. Analyzing the Various Transformations

In Section III, we discussed four categories of algebraic

transformations: (i) Traditional (well-known relational opti-

mization techniques such as join-reordering) (ii) Shared Dic-

tionary Matching (SDM) (iii) Conditional Evaluation (CE)

and (iv) Restricted Span Extraction (RSE). To understand the

individual transformations and study their interactions with

each other we ran multiple versions of BandReview. Each

version applies a restricted combination of transformations

and in total we experimented with seven combinations. Four

combinations were obtained directly by applying each trans-

formation individually. Two more were obtained by combining

traditional with each of SDM and (RSE + CE) and the last

one obtained by applying all transformations.
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Fig. 12. Running time of the RestaurantReview annotator

Figure 13 shows the relative improvement of each combi-

nation with respect to ALGEBRABaseline based on which we

observe:

• Individual transformations provide speedups that are dra-

matically different from each other. For example, tradi-

tional transformations provides no speedup and RSE a

small 20%. On the other-hand CE and SDM give signifi-

cantly greater speedups (a factor of 2 and 3 respectively).

The improvement for CE is due to the gains obtained by

pruning of an entire subtree (e.g., in Figure 1 the absence

of a ConcertInstance enables the pruning of ReviewGroup

and ReviewInstance. SDM shows even greater gains due

to the fact that 33 dictionaries share computations.

• Combining a traditional transformation such as join-

reordering with RSE and CE provides significantly larger

speedups than using any of them separately. This is due

to the fact that join reordering enables a larger number of

applications of RSE transformations.

• As expected applying all four transformations provides a

significant improvement over all other combinations.

D. Clean Semantics

While the primary motivation for our algebraic approach

was to address problems of scalability, our approach has

another significant advantage over cascading grammars. To

illustrate, consider the following example that illustrates a

common problem in complex information tasks, namely, over-

lapping annotations.

Example 2 (Overlapping annotations): Figure 14 shows

two snippets of text drawn from real world blog entries.

Snippet 1 has one instance of BandMember and two instances

of Instrument while Snippet 2 has one instance of Instrument
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Fig. 13. Relative performance improvements from the initial plan for the BandReview annotator as different classes of optimizations are applied

Fig. 14. Overlapping Annotations

and two instance of BandMember. Notice that both snippets

have overlapping annotations. The text fragments “Pipe” in

Snippet 1 and “Hammond” in Snippet 2 have both been

identified as part of BandMember as well as Instrument.

There are two main reasons why annotations overlap: (a) in-

dividual rules are run independently, and (b) rules may make

mistakes (in the sense that the author of that rule did not

intend to capture a particular text snippet even though the

snippet turned out to be a match). Since the input to a grammar

must be a sequence of tokens, overlapping annotations must

necessarily be disambiguated, i.e., “Pipe” must either be an

Instrument or a part of BandMember and a similar choice

must be made for “Hammond”. In contrast, our algebraic

approach considers the cross-product of BandMember and

Instrument instances, thereby eliminating the need for such

disambiguation.

In a grammar-based system, one of several ad hoc dis-

ambiguation strategies are employed. Two popular strategies

are:(a) retain the annotation that starts earlier (e.g., BandMem-

ber for John Pipe), and (b) a priori, impose global tie-breaking

rules (e.g., BandMember dominates Instrument). Using (a),

the choice in the Snippet 2 is unclear since both annotations

start at the beginning of Hammond. Using (b) and assuming

BandMember dominates, Snippet 2 will not be identified by

the cascading grammar in Figure 3. On the other hand, with

the choice of Instrument dominating, Snippet 1 will not be

identified.

1) Experimental Verification: To appreciate the true effects

of such disambiguation, we ran two experiments using the

rules from Figure 3 on 4.5 million blogs. When Instrument

was chosen to be the dominant annotation, 6931 instances of

ReviewInstance were identified. On the other hand, reversing

the dominance resulted in only 5483 instances. Thus, with

only three rules arranged into a 2-level cascading grammar,

the number of resulting annotations varies dramatically de-

pending on the choice of disambiguation. For extraction tasks

with more rules, the situation can only become progressively

worse. By considering the cross-product of BandMember and

Instrument instances, our algebraic approach eliminates the

need for such disambiguation.

V. RELATED WORK

Information Extraction is a mature area of research that

has received widespread attention in the NLP, AI, web and

database communities (recent tutorials [11], [12], [13] provide

details of prior work). Both rule-based approaches [5] and

machine learning based approaches have been proposed [14],

[15], [16]. A majority of this work is targeted towards improv-

ing the quality of results.

A. Frameworks for IE

Realizing the importance of sharing annotators, the NLP

community has developed several software architectures, such

as GATE [6], ATLAS [17], and UIMA [7]. The focus of these

architectures is to provide a framework where annotators de-

veloped by different providers can be integrated and executed

in a workflow. The mechanics of each individual annotators is

opaque to the framework.



B. Optimizing IE

Recently, there has been work on improving the efficiency

of information extraction tasks [18], [19], [20] in specific

settings. For instance, [18], [20] provide techniques for scal-

ing up the named-entity recognition whereas [19] proposes

a technique to prune documents. In an alternative parallel

effort, [21] considers the problem of efficiently composing

multiple extraction modules into a larger program. In [21],

basic extraction modules are viewed as IE predicates and users

define whether these IE predicates satisfy certain properties. If

so, specific optimization techniques become applicable. On the

other hand, we propose an algebra that includes text-specific

operations and present optimization techniques that exploit

properties of these new operators.

C. Interval operations in other Domains

Interval operations are common in temporal databases [22]

and extensive research in both data model and query lan-

guage has culminated in temporal extensions to SQL. More

recently, [23] proposed an algebra for querying biological

datasets, another scenario where interval operations are com-

mon. While interval operations proposed in these contexts

are applicable as span predicates, the span extraction and

aggregation operations are specific to IE.

VI. SUMMARY

In this paper we address the important problem of scalability

of information extraction systems. We explain the limitations

of existing grammar-based systems for scaling to current-

day data sets and complex information extraction tasks. We

propose a novel algebraic approach to this problem using

lessons drawn from relational databases. Based on the obser-

vation that a large fraction of the time is spent in low-level

text operations, the proposed algebra consists of several text-

specific operators which enable significant optimization. We

present a design for a plan optimizer. Finally, we validate

our approach by implementing two complex annotators and

running them on a real-world multi-gigabyte data set. The al-

gebraic approach improves document throughput by a factor of

almost 20 relative to a state-of-the-art, heavily-tuned grammar-

based implementation.
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