
I Can Do Text Analytics!
Designing Development Tools for Novice Developers

Huahai Yang∗ Daina Pupons-Wickham∗∗ Laura Chiticariu∗

Yunyao Li∗ Benjamin Nguyen∗∗ Arnaldo Carreno-fuentes∗
∗IBM Research - Almaden ∗∗IBM Software - Silicon Valley

San Jose, CA, USA
{hyang,daina,chiti,yunyaoli,nguyenb,acarren}@us.ibm.com

ABSTRACT
Text analytics, an increasingly important application domain,
is hampered by the high barrier to entry due to the many con-
ceptual difficulties novice developers encounter. This work
addresses the problem by developing a tool to guide novice
developers to adopt the best practices employed by expert de-
velopers in text analytics and to quickly harness the full power
of the underlying system. Taking a user centered task analyti-
cal approach, the tool development went through multiple de-
sign iterations and evaluation cycles. In the latest evaluation,
we found that our tool enables novice developers to develop
high quality extractors on par with the state of art within a
few hours and with minimal training. Finally, we discuss our
experience and lessons learned in the context of designing
user interfaces to reduce the barriers to entry into complex
domains of expertise.

Author Keywords
Novice developer; text analytics; best practices; information
extraction; extraction plan; workflow guide.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces - interaction styles, user-centered design

General Terms
Human Factors; Design; Measurement; Languages.

INTRODUCTION
Text analytics (also known as information extraction) refers
to techniques that distill structured information from unstruc-
tured or semi-structured text. For example, one may want to
use text analytics to extract the revenue numbers from a large
number of companies’ annual reports; to identify people men-
tioned in the transcripts of recorded conversations; or to infer
consumers’ purchase intention from their Twitter messages.
Text analytics is crucial for maximizing the value of informa-
tion embedded within all sources of text, such as emails, web
pages, news reports, clinical records, social media and many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1899-0/13/04. . . $15.00.

others. Not surprisingly, text analytics has emerged as a criti-
cal building block for a wide range of applications, includ-
ing brand management, competitive intelligence, customer
relationship management, regulatory compliance, fraud de-
tection, and life science, among many others [8, 10, 31].

However, developing high-quality text analytics programs,
also known as annotators or extractors, is a very complex
task. Currently, developing extractors to solve real world
problems requires extensive knowledge and experience in
technical areas such as machine learning and rule systems.
It has been said that machine learning based text analytic so-
lutions “come packaged in a Ph.D.” [44]. Speeding up the
extractor development life cycle and reducing its barrier to
entry becomes a critical requirement to fulfill the increasing
demands for text analytics [3].

Not surprisingly, there have been considerable efforts in im-
proving the usability of text analytics systems. Lightweight
and interactive text analytics development environments such
as the Data Wrangler [11, 20] and MashMaker [9] are easy to
use and allow even non-technical users to do certain types of
analytics. However, they offer only a limited range of capa-
bilities and do not allow developers to build the sophisticated
extractors required by real world applications. While tools
designed to reduce the manual effort involved in text analyt-
ics development [1, 25, 26, 27, 42] are effective for expert
developers, using such tools for text analytics remains chal-
lenging for novices: unlike typical programming tasks, text
analytics requires a data-driven approach that is unfamiliar to
most programmers. In our experience, we have found that
novice developers, when facing a text analytics task, simply
do not know how to approach the problem.

Our contributions are summarized as follows. (1) We have
distilled the methodology and best practices followed by
trained linguists and expert text analytics developers via in-
terviews. (2) We have designed and implemented WizIE1,a
novel guidance tool that significantly lowers the barriers to
entry into text analytics. At a high-level, WizIE comprises of
two major components: the Workflow Guide and the Extrac-
tion Plan. The Workflow Guide takes the user through the
end-to-end development process based on the methodology
and best practices of trained linguists and expert developers.
Whereas the Extraction Plan maintains a model or specifi-
cation for the extraction task: the user builds this plan over
time by combining text snippets and clues. Each element of

1WizIE is available in two IBM enterprise software products: IBM
InfoSphere BigInsights [17] and IBM InfoSphere Streams [18].

the plan is associated with partially generated code to extract
those pieces of text. Our approach bridges the gap between
a full-fledged development environment and lightweight au-
thoring tools. It helps novice users learn the proper way of
approaching text analytics problems and how to harness the
full power of the underlying text analytics system. (3) WizIE
has been developed using a user centered design approach.
The development process went through a series of design it-
erations and user studies. In our latest user evaluation, we
found that our tool has enabled novice developers to write
high quality extractors on par with state of the art within a
few hours after a minimum amount of training.

RELATED WORK

Text Analysis Development Environment
Many text analysis software suites, such as GATE [5],
IBM Content Analytics Studio [16], SAP BusinessObjects
ThingFinder Workbench [41], and VisualText [43], include a
development environment. These development environments
usually provide comprehensive support for writing text ana-
lytics programs, such as an editor and facilities for executing
and testing an extraction program, and some of them may in-
clude tools designed to reduce the manual effort involved [1,
25, 26, 27, 30, 42]. While these tools are effective in assist-
ing expert developers, novice users (including experienced
software developers in other domains) find that developing
text analytics remains a challenging task that is suitable “for
geeks” only [4]. Our first user study attests to such difficul-
ties.

Recently, some lightweight and interactive text analytics de-
velopment environments such as the Data Wrangler [11, 20]
and MashMaker [9] appear to support casual users to perform
some text analytics tasks. However, as far as we are aware,
the limited capabilities included in these lightweight solutions
have yet to permit sophisticated extractors to be built as de-
manded by real-world business applications. In contrast, our
work attempts to lower the barriers for novice developers to
harness the full powerful of a complete text analytics solution.

Tools to Lower Barriers to Programming
Although we found limited existing research on lowering the
barriers to entry for developing text analytics programs, we
have drawn inspiration from the long and venerable line of
research on facilitating novices to learn general purpose pro-
gramming [21, 32, 38]. One approach transforms text-based
programming tasks into visual and direct manipulation tasks
to leverage people’s well tuned cognitive capabilities of deal-
ing with the physical world [2, 14]. Many of these systems
model themselves on physical metaphors that the target audi-
ences can easily relate to [19, 35] or build on declarative con-
structs that non-programmers are already familiar with [34].
We borrow similar strategies in designing our tools. However,
as we shall describe in detail, developing text analytics pro-
grams has its unique challenges distinct from general purpose
programming.

The field of end user programming investigates means to sup-
port programming that is “primarily for personal, rather pub-
lic use” [22]. Some text analytics development work could

fall into such categories, while most would not. Neverthe-
less, the historical focus of the field on novices provides
useful ideas related to the current research. Programming
by demonstration [6], extracting and re-purposing existing
content [45], or recording user actions with simplified lan-
guages [24] are some of the existing strategies. In these sys-
tems, while novices can quickly create some interesting pro-
grams, more complex tasks remain difficult to implement.

Our work bears some resemblance to research on lowering
the barrier to entry to machine learning [36, 37]. Similar
to Gestalt [36], our work provides explicit support for both
code and data, enables easy transition between implementa-
tion and analysis, and guides users through the implemen-
tation pipeline. However, unlike Gestalt, which focuses on
one specific machine learning task, WizIE is a generic tool
designed for supporting arbitrary text analytics tasks. As a
result, WizIE needs to overcome additional challenges such
as how to guide novice users to turn a high-level business
requirement into concrete text analytics tasks and how to pro-
vide generic task-independent structured guidance.

Learning Support
Due to the distinctive nature of text analytics tasks, our
work pays great attention to teaching the proper way of ap-
proaching text analytics problems. Learning science, partic-
ularly, Bruner’s theory of scaffolding [46] provides a theoret-
ical foundation for designing the learning support feature of
WizIE. In a sense, our tool is an instance of software-realized
scaffolding [12, 39], where the design goal of the user inter-
face is to give novice developers sufficient support to promote
learning the best practice of text analytics. Concretely, two
types of learning support were explicitly designed as major
components of WizIE. The Workflow Guide was designed to
teach the steps necessary for successful development of ex-
traction programs. Users learn the conceptual and procedu-
ral knowledge of text analysis by performing activities pre-
scribed by the guide. Another important component is the
Extraction Plan, a specification tool that allows users to form
a high level conceptualization of the problem and its solution
within the concrete context of source document collections.
The Extraction Plan also ties closely to the underlying pro-
gramming language, generating code templates to serve as the
means for self-disclosure [7], where novice users can gradu-
ally learn the full power of the underlying language, while ini-
tially staying in the comfort zone of a familiar graphical and
direct manipulation environment. While a model and specifi-
cation driven approach has its place in professional software
engineering [13] where it is used by expert developers, the
use of such an approach to help novice developers to bridge
the gap between high level requirement and concrete imple-
mentation is a new direction.

DESIGN PROCESS
This work was initiated as part of the tooling effort for
SystemT [3], a state-of-the-art text analytics platform built
around the text analytics programming language AQL (An-
notation Query Language) and commercially available [17,
18]. While our tool has been implemented for AQL, our de-
sign ideas can be applied to any text analytics rule language.

In this section, we first briefly discuss AQL at a level of detail
necessary to understand the ideas in this paper, followed by
our design process.

Background
AQL provides many constructs for text analytics, including
primitive extraction operators for finding parts of speech,
matches of regular expressions and dictionaries, as well as
higher-level set operators such as sequence, union, filter and
consolidate, to name a few. AQL programmers build text an-
alytics programs by composing these operators together into
sets of rules, or statements. As an example, consider the task
of extracting names of people from text. We will call each
name a person name for lack of a better term. A text analyt-
ics program for this task would make use of primitive opera-
tors to first identify basic features of person names, including
matches for dictionaries of honorifics (e.g. “Dr”, “Mr”) and
common first names and last names, or matches for regular
expressions that identify syntactic features (e.g. capitalized
words or initials). Next, the sequence operator can be used
to build candidate person names from basic features. In our
example, a possible rule is to identify a sequence of a first
name immediately followed by a last name, while another
possible rule is to identify a sequence of a honorific followed
by two capitalized words. Candidate person names generated
via such rules must then be merged into a single set using
the union operator, and further filtered and consolidated to
remove invalid candidates and resolve overlap among the re-
maining candidates. An example filter rule would be to sub-
tract from the set of all candidate persons, those that over-
lap with another type of entity (e.g., in the text “Bill and

Melinda Gates Foundation”, Bill and Melinda Gates are
not generally considered person names, since they are part of
an organization name). An example consolidate rule would
be to remove candidates completely contained within other
candidates (e.g., in the text “Mr. Bill Gates”, the two in-
dividual sequence rules mentioned above would identify two
candidates Bill Gates and Mr. Bill Gates; then the con-
solidate rule would remove the former, which is redundant.)

Original Design and User Study
From the start, tooling has been recognized as a strategic pri-
ority for SystemT. In addition to standard development tools
such as an editor for AQL and facilities to execute and ana-
lyze the output of AQL programs, a considerable investment
has been made to develop automated or semi-automated tools
to assist developers. For example, three separate approaches
were designed and implemented just to support the creation
of regular expressions: a regular expression builder in which
the developer composes a regular expression by manipulating
various GUI controls representing basic elements of regular
expressions; a regular expression generator, where develop-
ers specify examples of text, and a regular expression cov-
ering the examples is automatically generated; and the AQL
editor, where users can edit regular expressions directly. Each
of these approaches was designed in close collaboration with
existing expert AQL developers.

However, the first formal usability study with novice text an-
alytics developers revealed many problems. In that study, all

five participants (four male and one female) were professional
software developers with 3+ years of experience working
with the Eclipse development environment, upon which all
the tools were developed. Two participants had some limited
experience with regular expressions through creating code to
extract information from text files.

In the study, we asked participants to create extractors to iden-
tify telephone numbers within email text. Participants were
provided a corpus of email files on which to run the extrac-
tion tasks, and asked to utilize the three aforementioned regu-
lar expression tools. A Getting Started guide and online help
were available for use during the session.

Three of the five participants were able to complete the task
within the two hour time limit. The two participants who
failed to complete the tasks used the Getting Started guide
for over an hour and were still not successful. The overall
impression of the ease of use of the product was not very
positive: only two of the participants rated the product’s ease
of use as above neutral (on a 5 point scale).

This first usability test showed that the key usability issues in
the tool were due to high level conceptual difficulties, rather
than an issue of individual user interface component design.
Interviews with the participants indicated that they did not
understand how to approach the problem, and that they had
a poor grasp of the work flow. For instance, when creat-
ing a project for the first time and facing an empty project
workspace, they were unsure of the next steps. Participants
also had issues uncovering the prerequisite steps for config-
uring project properties and running AQL programs.

Design for Novice Users
Since the syntactic and semantic aspects of the AQL language
were well covered in the Getting Started guide and online
help, we realized the existence of a large gap between the
AQL experts and novices in terms of the “big picture” of text
analytics. Since we did not want the novice users to overcome
the gap “the hard way” (i.e. via trial and error), or subject
them to an expensive extended training regime, a plan was put
in motion to revise the user interface so that it helps novice
users get up to speed as quickly as possible.

Elicit Knowledge from Expert Users
The first step we took was trying to understand what expert
users know about the big picture of text analytics. We had
meetings with two expert AQL developers once a week for
two hours over a period of two months. In the meetings, we
probed their thought processes with sample extraction tasks,
and encouraged them to codify their implicit knowledge with
a set of “best practices”. The outcome of this collective re-
flection process is a methodology for extractor development.

Methodology for extractor development
Figure 1 illustrates the general methodology for the devel-
opment of high-quality, high performance extractors used by
text analytics experts, consisting of the following four phases.

• Extraction Specification: In this initial phase, extraction
tasks are defined. This critical step attempts to match the
abstract business requirements with the concrete reality of

Figure 1. Methodology for Extractor Development

the data, a process often involving manual examination of
the source text documents and/or look up of domain knowl-
edge.

• Code Development: Once extraction tasks are well de-
fined, code is written for each individual task. Writing
code is almost always an iterative process, multiple iter-
ations are required to produce high-quality extractors even
for simple tasks. Tests are performed between iterations,
until the quality of the extractor reaches the desired level.

• Performance Tuning: After the developer is satisfied with
the quality of the extractors, the code is profiled to identify
any performance (mainly running speed) bottlenecks and
further fine-tuned to ensure high performance.

• Delivery: Finally, the code is packaged to be easily em-
bedded in various applications.

In this study, we were concerned with the first two steps.

Design Features to Guide Novice Users
In order to define the Extraction Specification, developers
must first examine sample source text to determine (1) what
information should be extracted, and (2) which pieces of text
in the source file (also known as clues, or features) could be
leveraged in order to extract the desired information. Only af-
ter the developer is armed with such information, can she start
writing the extractor. Once a first version of the extractor is
ready, the developer tests it on the sample source text to assess
its quality. If the quality is insufficient, the developer must
identify additional clues, refine existing ones, and repeat the
process until the desired quality is achieved. Unfortunately,
this process is often labeled as an “art” by expert developers.
In particular, such a data centric, test driven development ap-
proach is largely unknown to many programmers proficient in
object oriented design methodology. In our initial user study,
two of the participants faced a seemingly insurmountable dif-
ficulty precisely due to this paradigm shift.

This type of high level conceptual difficulty seems to go be-
yond the six barriers identified by Ko [23] for novice pro-
grammers, but still falls within Norman’s Gulf of Execu-
tion [33], where user’s intention does not match the available
actions provided by the system. For example, in the origi-
nal design, the focal point of the user interface is the AQL
editor. However, the objects that AQL statements operate
on, the source text documents, are hidden in the background.
Novices would not realize the need to examine the source text
to look for clues. To overcome such a Gulf, our first design
decision was to bring the source text documents to the fore-
front and the center of the user interface. The goal is to make
the work objects explicitly visible to the users. To make the

effect of code changes immediately visible, the source doc-
uments display also serves as a place to show the results of
extraction, where extracted text snippets are highlighted.

In the remainder of this section, we describe the major fea-
tures introduced in the first iteration of our design of the
tool, and the user studies conducted with it. The user stud-
ies prompted a second design iteration, where some of the
initial features were enhanced to arrive at the current design.
In the next section, we shall describe the major features in
more detail in the context of the current design.

To make the source documents the center of operation, users
must first select a sample collection of text documents im-
mediately after initiating a project. Such ordering constraints
naturally lead us to a wizard-like user interface design that
includes all the steps in the expert’s methodology, a Workflow
Guide. From the perspective of learning science, the Work-
flow Guide serves the purpose of supporting a scaffolding
process, where users learn to perform a complex task through
clearly presented and incrementally built-up activities. Un-
like a wizard, the tool was not designed as a sequence of
modal dialogs that force users to step through, but as a guide
that suggests the proper steps to the user. We designed the
guide as an ordered set of collapsible panels, where each step
of the methodology takes up a panel. When a step is not in fo-
cus, it can be folded up. All the steps are optional, except for
the mandatory first step of defining the source text document
collection, which avoids the “blank screen” problem observed
in the first user study. The entire guide can be folded up if not
needed, once the user becomes an expert developer. From the
perspective of scaffolding, the guide can be said to fade away
as a learner becomes a self-sufficient user.

The Workflow Guide suggests using the mouse to mark,
within the source document display, portions of the text that
can be used as clues. Users then assign a label to each marked
clue. The labels are collected in a panel to the right of the doc-
ument display. Because clues representing low level concepts
can be combined to form larger units of extraction represent-
ing higher level concepts, we use a tree structure to organize
all the marked clues. For example, house number might be a
pattern of text that starts with a number, street name a pattern
of text that ends with “St.”, “Ave.” and so on; the combi-
nation of them can form an extraction unit for street address,
which combined with state, zip code and country could form
a full address. These clues form a natural hierarchy and there-
fore, are displayed as such.

Essentially, through direct manipulation, novice users are in-
structed by the user interface to form a conceptual level plan
of extraction. We therefore call such a tree of labels an Ex-
traction Plan, a model or specification for the extraction task.
In addition to the bottom-up approach of labeling the clues
then combine them, users can also start with a high level con-
cept and break it down into lower level concepts and finally
map to the text snippets as clues in the documents. In addi-
tion, users can move the branches of the tree around to reor-
ganize the extraction plan. All these operations are designed
to follow the principle of direct manipulation [15].

For the Extraction Plan to be more useful, so that users are
motivated to build one, we added capability to automatically
generate AQL code templates for each clue in the extraction
plan, based on the type of clue. The generated code has the
added benefit of self-disclosing the underlying language for
novices to learn [7]. The code generating dialogs also make
available other automation tools such as regular expression
builders. Therefore, the Extraction Plan effectively becomes
a hub that links user interface components together.

In summary, in our attempt to help novice users learn to
write extractors following a similar process as the experts, we
have developed two novel user interface components, a Work-
flow Guide that suggests the best practices and an Extraction
Plan that induce users to approach extraction problems in the
proper way. The Extraction Plan resembles a model driven
development tool, where a novice user builds a high level con-
ceptual model via direct manipulation, then uses the model to
drive code generation. To the best of our knowledge, using
such a model-driven development approach for novices is a
new way of lowering the barriers to programming.

Formative Evaluations of the Design
Working with two novice users of AQL, we used low fidelity
prototypes on paper and on white board to evolve our design.
The finalized prototype was then implemented. Once the im-
plementation was completed, we conducted two evaluation
studies: (1) the short term usage of the system in a lab set-
ting, and (2) a real world long term usage.

Lab Comparative Study
Setting. This study compared extractor development perfor-
mance with or without our new design, and was conducted
during a 2-day training session of AQL. On Day 1, 14 novice
developers of text analytics were given a thorough lecture on
the topic, shown code of example extractors, and given exer-
cises to develop extractors using the original user interface.
Towards the end of Day 1, participants were asked to solve
an extraction problem: developing an extractor to identify
mentions of a company’s revenue grouped by divisions in the
company’s official annual report. On Day 2, the new user
interface (with Workflow Guide and Extraction Plan) was in-
troduced to the same 14 participants, and its features demon-
strated and explained with examples. Participants completed
the same exercise as on Day 1, but using the new UI. Clearly,
such a study desigin could not avoid a potential learning ef-
fect. However, as the purpose of the study was formative
rather than summative, we considered such a limitation an
acceptable compromise since the cost of running a well con-
trolled experiment would be too high at this early stage.

Results. On Day 1, no participant was able to complete the
exercise after 90 minutes. In the after-lab survey, one par-
ticipant wrote “I don’t think I would be able to recreate the
example on my own from scratch”; another participant sug-
gested that “I’d like the [extractor] editor to be more visual”.
On Day 2, all participants were able to complete the exercise
under 90 minutes. In fact, two participants created extractors
with accuracy and coverage of over 90%. Overall, the partic-
ipants were much more confident about creating extractors.

One participant wrote “My first impression [of the User in-
terface] is very good”. On the other hand, another participant
asserted that “The nature of the task is still difficult”.

For the question “How easy was it to build extractors”, the
median rating was improved from 4 to 3 from Day 1 to Day
2, with 1 being “Very easy” and 7 being “Very difficult”.
Similarly, the median ratings of easiness of “setting up the
project”, “running the project” and “viewing and navigat-
ing results” were all improved from 4 to 2 (meaning “fairly
easy”). However, the median usefulness ratings of each com-
ponents of the interface was all 4, between ’useful’ and ’not
useful’. As one participant wrote, participants “need more ex-
posure and experience” to better judge the usefulness of the
interface components.

Real-world Use Study
In this study, participants used the interface over the course of
several months to complete a real project. At the end of the
project, participants were interviewed about their experience.

Setting. Ten participants were tasked with building an end-
to-end application for the pharmaceutical industry based on
information available from public data (e.g. SEC filings). The
project spanned over a period of 12 weeks, with each partic-
ipant contributing 4 to 5 hours/week to the project. Four of
the participants were responsible for developing the text ana-
lytics component using the tool to extract key information re-
lated to the pharmaceutical industry (e.g. drug names, clinic
trials) from financial reports. None of the participants had
any text analytics experience prior to the project. In addition
to the recording of the training given to the participants in our
earlier lab comparative study, the participants had access to
additional training materials and online references, as well as
assistance from a text analytics expert.

Interviews. We interviewed the 4 participants (3 male, 1 fe-
male) responsible for the text analytics development, They
identified themselves as: developer (2), infrastructure and so-
lution architect (1), and application and integration software
IT specialist (1). Participants used the tooling for an average
of 39 hours.

All interviewees felt the tooling was easy to use, but none
felt that they could have followed the flow without the tuto-
rial. Three especially liked the feature to mark snippets and
clues. Unfortunately, only one participant used the Extrac-
tion Plan. According to the participants, the low utilization
of the Extraction Plan was due to two reasons. One was that
the navigation from the Extraction Plan to the editor was not
always clear. The other was that some actions such as creat-
ing a dictionary were cumbersome in the user interface, and
as a result the interviewees started to do things manually. It
was clear that a redesign was needed in order to meet our
goal of providing a bridge for novice users. As a result, we
revisited our overall design of the Extraction Plan as well as
lower-level interactions within the UI. The updated design is
described in the following section.

CURRENT DESIGN
We now describe our current design with a focus on the first
two phases of extractor development: extraction specification

Figure 2. Extractor Development with WizIE: Extraction specification.

and rule development. For illustration purposes, we assume a
high-level business requirement of identifying trends in rev-
enue generated by each business division of a company based
on its press release. In the rest of the section, we use (a) –
(m) with reference to Figures 2 and 3.

Document selection. Step 1 of the Workflow Guide (a) in-
structs a user to select a set of documents and specify the lan-
guage of those documents. It lists the individual documents
within the chosen set. The user can then select any individual
document within the set and open it in the main editor area
within Eclipse (b) to begin working with it. The Extraction
Plan is empty as the user has not yet begun to label any snip-
pet of text or write any code.

Identifying snippets of interesting text. The first part
of Step 2 of the Workflow Guide (c) instructs the user
to identify snippets of interesting text. In our case, the
user would start by labeling example snippets of rev-
enue by division by selecting the relevant portion of
text (e.g., “revenues from Global Technology Services

increased [] to $8.6 billion”, and choosing Add Exam-
ple with New Label from the context menu. The user then
fills out a simple dialog with the label name and parent label
if any. The extraction plan is updated with the new label and
the example (d). Additionally, the embedded context menu is
updated to include the new label, to facilitate future labeling.

Once the user has a good set of examples, she can move onto
the next step, labeling extraction clues, as indicated by the
second part of Step 2 of the Workflow Guide (e). The user
would break down the examples into meaningful chunks or
clues. The process of recording clues is identical to that of
recording full examples, except that the user can now choose
a parent label to build the hierarchy. In our example, mean-
ingful clues would include: the word revenue, the division
name, and the amount, all recorded in the Extraction Plan (f).
Notice how the Extraction Plan effectively guides the devel-
oper in writing actual rules: by analyzing the text of interest
and chunking it into meaningful clues, the code structure has
begun to be defined.

Developing the extractor. Step 3 of the Workflow Guide (g)
informs the user how to proceed to start writing code. At this
point, the Extraction Plan moves from being a way to orga-
nize text into a launch point for generating AQL statements
to extract the text. Because AQL is a powerful language with
many constructs, one of our goals was to avoid overwhelming
the user by showing the (long) list of all possible constructs.
Therefore, we have designed the New AQL Statement menu
to first expand into three entries: Basic Features, Candidate
Generation and Filter & Consolidate, corresponding to the
three main parts of an extractor, as explained earlier in the
context of the Person extractor. Each category unfolds into a
small list of AQL constructs commonly used in that category.
For example, the Basic Feature menu leads to a list (shown
below) consisting of primitives: dictionary, regular expres-
sion, part of speech, whereas the Candidate Generation cate-
gory consists of constructs such as sequence and union.

Each category also corresponds to an individual AQL file au-
tomatically created to store the code for that category. For
example, if the user selects “Dictionary” as the type of Basic
Feature AQL statement to implement the label Division, then
the template for creating a dictionary (shown above) is auto-
matically added to the code in the editor, in the corresponding
file basics.ql. The user can then edit the template to point to
a dictionary of interest (h). Alternatively, if the user had a
list of division names identified within the Extraction Plan,
they could simply multiple select those items and opt to have
a dictionary created for them automatically. A similar facil-
ity allows the user to load multiple examples into the regular
expression generator tool, if the examples are best captured
with a regular expression rather than a dictionary. The Ex-

Figure 3. Extractor Development with WizIE: Rule development.

traction Plan also updates to show the Division basic feature
AQL statement under the Division label (i).

Note that the New AQL Statement menus do not capture all
possible AQL constructs. As the user gains more experience,
she can edit the code directly and associate resulting state-
ments with the Extraction Plan via drag-and-drop from the
AQL editor. Furthermore, in addition to the Extraction Plan’s
connection with the existing tools such as the AQL and dic-
tionary editors, the Workflow Guide panel (g) also has links
to existing tools (e.g., Pattern Discovery, Regex Generator)
that are helpful at this stage.

Testing the extractor. Once the user has completed one iter-
ation of development, the first part of Step 4 of the Workflow
Guide (j) allows her to execute the current extractor on the
collection of source documents and to analyze the extraction
results. The results are shown in a tabular form in the Anno-
tation Explorer panel (k), as well as highlighted within each
source document (l) for maximum context. The second part
of Step 4 (m) informs the user of the types of incorrect re-
sults she might encounter (false positives and negatives), and
the process to follow to fix them: understand false positives
using an existing Provenance tool, and iterate through Steps

2 and 3 in order to add and/or refine the examples for clues
and the rules.

Observations. While the first iteration of our design was
close to the second iteration in terms of the general purpose
and functionality of the Workflow Guide and Extraction Plan,
the second iteration added a number of enhancements to the
Extraction Plan to address concerns expressed by users in our
former lab setting and real use studies. Specifically: (1) the
ability to create regular expressions and dictionaries by se-
lecting examples from the Extraction Plan, to address a pre-
vious shortcoming that examples could not be reused and had
to be recreated in the dictionary editor or the Regex Gener-
ator from scratch; (2) enhancement to the Extraction Plan to
not show nodes that do not have any descendants, as well as
an alternative view for the plan that shows only AQL state-
ments, without the examples, to address the concern that the
Extraction Plan can become too large and difficult to scroll;
and (3) enhanced flexibility to add labels inside a category of
statement to address a concern that the hierarchy within a la-
bel may become disconnected from the implementation when
the hierarchy is more than two levels deep.

EVALUATION

Table 2. Top 10 Songs titles from billboard.com, week of May 5, 2012

Somebody That I Used To Know We Are Young
Payphone Boyfriend
Glad You Came Wild Ones
Call Me Maybe What Makes You Beautiful
Starships Stronger (What Doesn’t Kill You)

For the current iteration of evaluation, we wanted to test the
upper limit of the novice users’ performance using our user
interface design, i.e. given a non-trivial extraction task, how
good can extractors developed by novices be? To do so,
we used a competition format to motivate the participants.
The winners of the competition were given monetary awards
based on how well their extractors performed.

Procedure
The study consisted of the following components: (1) a 2
hour training session in which the participants learned about
basic concepts of text analytics, the AQL language, the WizIE
tooling, and the high-level task required for the contest; (2) a
10 day period in which the participants built extractors inde-
pendently to accomplish the task, with access to the recording
of the training session, and online reference materials about
AQL; (3) a 1 day period in which the participants submitted
their extractors along with a completed questionnaire; (4) an
award session, during which each participant gave a brief pre-
sentation detailing their experience with the task, followed by
the announcement of the contest winners; and (5) a hour long
post-study interview.

Participants. The participants were graduate students do-
ing summer internships in IBM. Six interns registered for the
contest and filled out the questionnaire. All participants were
computer science majors with various levels of Eclipse expe-
rience. None of them were interns for this research project,
nor had any prior experience in text analytics. Four partici-
pants submitted an entry and agreed to be interviewed.

Tasks. We asked participants to identify mentions of the Top
10 Billboard songs in the week of May 5, 2012 from Twit-
ter (see Table 2). We selected the task based on two criteria:
the difficulty and the relevancy to the participants. The task
needed be difficult enough to reflect the real-world complex-
ity of text analytics. As illustrated by Table 1, identifying
whether a match of the name of a song is a true mention of
the song is a non-trivial task even for a human being. At the
same time, we wanted a task that the participants would find
relevant and fun, since we realized that participants had to
squeeze time out of their own busy work schedule to make
the time commitment to our competition 2.

We further restricted the scope of the task by limiting the
identification of song names to a small set of tweets. Specif-
ically, we first randomly collected 10,000 tweets from the
week of May 5, 2012, each containing at least one of the
names listed in Table 2. Among these, we selected a set of
259 distinct tweets (i.e., no re-tweets) such that each song
name was mentioned in at least 10% of the tweets in the set
2These interns were expected to produce a publishable work in their
short three month internship.

Table 3. Extraction quality for the extractors built by the participants.
Participants

Quality 1 2 3 4

Precision (%) 96.26 97.00 97.96 96

Recall (%) 86.55 81.51 80.67 60.50

F1 (%) 91.15 88.58 88.48 74.23

Num of Rules Built 16 37 58 14

(a tweet may contain multiple song names). We manually la-
beled the correct song mentions in the 259 tweets and split
the set into a training set consisting of 159 tweets randomly
selected from the set, and the test set, consisting of the re-
maining 100 tweets. The training set was provided to the
participants for extractor development, and the test set was
used to evaluate the quality of the participants’ solutions. An
additional set of 25,000 unlabeled tweets (randomly selected
but with no overlap with the 259 mentioned above) was also
available to the participants.

Measures. We measured an extractor’s quality based on the
following standard metrics: precision = tp

tp+fp (also known
as accuracy), recall = tp

tp+fn (also known as coverage), and

F1 = 2 • precision•recall
precision+recall , where tp denotes the number of

true positives, fp denotes the number of false positives and
fn denotes the number of false negatives.

Hypothesis
Our hypothesis was that the participants would find the UI
intuitive and easy to use. We expected them to perform well
on the given task and to become reasonably proficient with
using text analytics to address high-level tasks with AQL and
WizIE. In addition, after a brief exposure to the tool, the par-
ticipants should understand how to build extractors to accom-
plish a high-level task and how to evaluate the quality of an
extractor.

Performance Results
The participants produced extractors consisting of 31 rules on
average. Table 3 lists the quality of extractors on the test set.
As can be seen, the precision scores of all the extractors are
above 96%, their recall scores range from 60.5% to 86.66%,
and the best F1 score is above 90%.

We regard the quality of the extractors built by the partici-
pants as surprisingly good, especially considering the short
amount of time spent on the task. Text analytics over Twitter
has been widely regarded as extremely challenging. In fact,
the extraction quality reported for similar tasks over tweets is
usually around 80% for F1 [28, 29, 40]. While the task used
in our study is more restrictive than the previous ones, two
expert AQL developers on our team note that the best extrac-
tor built by the participants is comparable to what they would
build for the same task.

Subjective Results
Questionnaires. The participants reported that they spent
a range of 1 to 15 hours completing the task, with an aver-
age of 6.8 hours. The overall ease of use ratings for the UI

Table 1. Example tweets containing matches of song names (highlighted in bold)
RT @ardanradio #NowPlaying FUN feat Janelle Monae - We Are Young | #RIAUW
RT @arieladriane: @1DirectionIndo what makes you beautiful - one direction cover by glee. http://t.co/t4BmvZbM
@Cimorelliband @LisaCim @LaurenCimorelli payphone was amazing can you guys please do we are young by fun!! Thanks.
RT @Jadore1Dx: Dear Mothers & fathers of 1D - as The Wanted would say, im glad you came.
RT @Melisaaa11: My boyfriend knows hes jealous of my relationship with Justin Bieber
Now u just somebody that I used to know!

were on the low side (2.8 on a scale of 1 to 5, with 5 being
very easy). The ease of use for creating extractors was rated
slightly higher (3.33 on the same scale). Reasons for these
ratings were probed for in the interviews.

Interviews. All participants said they did all of the work
the day before the deadline. The winner of the competition
only started working on it after work at 6pm, while the dead-
line was at 11:59pm. Participants mostly worked by using
the standard lab training material as a reference and did not
search for additional resources from the help section in the
tool, nor in the AQL language online reference.

All participants stated that the UI provided a good frame-
work for getting started with the task. Additionally, partic-
ipants called out the ease of use for creating dictionaries (an
enhancement made in the last iteration). Specific quotes in-
clude: “Because the process is very clear, the wizard is very
easy to follow”; “[The tool] is quite helpful to analyze the
sample data and define basic concepts. I used it extensively
to create my dictionaries”, and “I did not face any problems
using the tool”.

According to the interviews, the reason for the relatively low
ease of use rating of the UI was due to UI elements that were
not part of our design goals. Specifically, participant stated
that the steps required to measure precision and recall were
too tedious, as the contest participants needed to repeatedly
access this functionality in order to monitor their extraction
performance on the training data. One participant complained
that 13 clicks were needed to accomplish the action! Another
said: “It’s pretty easy to create a workable extractor. How-
ever, it’s very painful to create extractors with high perfor-
mance. You need to analyze your results and keep refining
your extractors”.

Two participants who used the Extraction Plan did so for both
organizing their code and for organizing text snippets and
clues. A third participant used the Extraction Plan while be-
coming familiar with the UI, for example to create his first
dictionary. He then moved on to using cut and paste during
subsequent iterations of refining his extractors. None of the
participants who used the Extraction Plan rated the tooling or
the task as difficult.

In summary, both the user task performance and the user sub-
jective reports give encouraging results that support our hy-
potheses. However, our study may represent a “best-case”
scenario, with the possibility of our participants being better
than average learners, an experiment with better control and
larger subject size would allow us to obtain a more conclu-
sive understanding of the impact of our UI design on novice
developers of text analytics.

DISCUSSION

Figure 4. Lower Barrier to Learning Domain Specific Languages

Through a series of design and evaluation iterations, we have
succeeded in building tools to bring a novice developer of
text analytics to a level of proficiency where she can write
high quality extractors. We took inspiration from a variety
of user centered design principles and learning theories. The
results were two unique tools, the Workflow Guide and the
Extraction Plan, which effectively work together to lower the
barriers to text analytics development.

It is our contribution to leverage such a model driven ap-
proach in helping novice users bridge the gap between high-
level task requirements and concrete implementations. We
believe this approach is not only applicable to text analyt-
ics, but also to other domain specific languages that operate
on visualizable sources of information. Figure 4 illustrates
this general idea. By bringing the primary source informa-
tion to the forefront, we bridged the gulf of execution, so that
users see the information pieces that they are working on and
view the changes happening on them immediately. Users can
then create and modify a conceptual plan of operations on
those information pieces through direct manipulation. The
conceptual plan self-discloses the underlying domain specific
languages, so that users can harness the full power of the lan-
guage gradually.

We are continuing to refine and iterate on this interface to
make it even more usable. We are also working to make
progress on the hard problem of bi-directional synchroniza-
tion between the Extraction Plan and the application code.
Finally, designing novel user interfaces for enabling non-
programmers to develop complex text analytics solutions is
our next challenge.

CONCLUSION
In this paper, we have demonstrated a new approach to lower-
ing the barriers to acquire expertise in a complex area of soft-
ware development. This approach integrates user centered
design principles, learning theories, and model driven devel-
opment methods. Working with the domain of text analytics,
a field with high barriers to entry, we show that novice de-
velopers can quickly reach a high level of expertise using our

tools. We hope that the applications of this approach can be
explored in other domains.

ACKNOWLEDGMENTS
We are grateful to Eser Kandogan for his contributions to
the first version of the system. We also thank the partici-
pants in our user studies for their contribution, Brent Hailpern
for sponsoring the programming competition, and the anony-
mous reviewers for their insightful comments.

REFERENCES
1. Brauer, F., Rieger, R., Mocan, A., and Barczynski, W. M. Enabling

information extraction by inference of regular expressions from sample
entities. In CIKM (2011).

2. Burnett, M., and Gottfried, H. Graphical definitions: Expanding
spreadsheet languages through direct manipulation and gestures. ACM
Transa. on Comput.-Hum. Interact. (TOCHI) 5, 1 (1998), 1–33.

3. Chiticariu, L., Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F., and
Vaithyanathan, S. SystemT: an algebraic approach to declarative
information extraction. In ACL (2010).

4. Crifasi, T. Hold your thoughts, SAP and NetBase will soon analyse
your sentiments in the Cloud. Post in Bluefin Solutions Insights Blog,
published on 12/15/2011, last accessed on 09/12/2012,
http://bit.ly/vCpLgH.

5. Cunningham, H., Maynard, D., Bontcheva, K., and Tablan, V. GATE:
an architecture for development of robust hlt applications. In ACL
(2002).

6. Cypher, A., and Halbert, D. Watch what I do: programming by
demonstration. 1993.

7. DiGiano, C., and Eisenberg, M. Self-disclosing design tools: a gentle
introduction to end-user programming. In DIS (1995).

8. Doan, A., Gravano, L., Ramakrishnan, R., and Vaithyanathan, S.
Special issue on managing information extraction. SIGMOD Record
37, 4 (2008).

9. Ennals, R., Brewer, E. A., Garofalakis, M. N., Shadle, M., and Gandhi,
P. Intel Mash Maker: join the web. SIGMOD Record 36, 4 (2007),
27–33.

10. Gro-Klumanna, A., and Hautschb, N. When machines read the news:
Using automated text analytics to quantify high frequency
news-implied market reactions. Journal of Empirical Finance 18, 2
(2011), 321340.

11. Guo, P. J., Kandel, S., Hellerstein, J. M., and Heer, J. Proactive
wrangling: mixed-initiative end-user programming of data
transformation scripts. In UIST (2011).

12. Guzdial, M. Softwarerealized scaffolding to facilitate programming for
science learning. Interactive Learning Environments 4, 1 (1994).

13. Hailpern, B., and Tarr, P. Model-driven development: The good, the
bad, and the ugly. IBM systems journal 45, 3 (2006), 451–461.

14. Hundhausen, C. D., Farley, S. F., and Brown, J. L. Can direct
manipulation lower the barriers to computer programming and promote
transfer of training?: An experimental study. ACM Trans.
Comput.-Hum. Interact. 16, 3 (Sept. 2009), 13:1–13:40.

15. Hutchins, E., Hollan, J., and Norman, D. Direct manipulation
interfaces. Human-computer interaction 1, 4 (1985), 311–338.

16. IBM. Content Analytics with Enterprise Search Version 3.0.
http://ibm.co/tun1ta, 2012.

17. IBM. InfoSphere BigInsights Version 2.0: https://ibm.biz/bdxmmt,
2012.

18. IBM. InfoSphere Streams Version 3.0: https://ibm.biz/bdxmmk, 2012.
19. Kahn, K. Toontalktm–an animated programming environment for

children. Journal of Visual Languages & Computing 7, 2 (1996),
197–217.

20. Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J. Wrangler:
interactive visual specification of data transformation scripts. In CHI
(2011).

21. Kelleher, C., and Pausch, R. Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice
programmers. CSUR 37, 2 (2005), 83–137.

22. Ko, A., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig,
M., Scaffidi, C., Lawrance, J., Lieberman, H., Myers, B., et al. The state
of the art in end-user software engineering. CSUR 43, 3 (2011), 21.

23. Ko, A., Myers, B., and Aung, H. Six learning barriers in end-user
programming systems. In VL/HCC (2004).

24. Leshed, G., Haber, E., Matthews, T., and Lau, T. Coscripter:
automating & sharing how-to knowledge in the enterprise. In CHI
(2008).

25. Li, Y., Chu, V., Blohm, S., Zhu, H., and Ho, H. Facilitating pattern
discovery for relation extraction with semantic-signature-based
clustering. In CIKM (2011).

26. Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., and
Jagadish, H. V. Regular expression learning for information extraction.
In EMNLP (2008).

27. Liu, B., Chiticariu, L., Chu, V., Jagadish, H. V., and Reiss, F. R.
Automatic Rule Refinement for Information Extraction. PVLDB
(2010).

28. Liu, X., Zhang, S., Wei, F., and Zhou, M. Recognizing named entities
in tweets. In HLT (2011).

29. Liu, X., Zhou, M., Zhou, X., Fu, Z., and Wei, F. Joint Inference of
Named Entity Recognition and Normalization for Tweets. In ACL
(2012).

30. Lowe, W. Software for Content Analysis: A Review. bit.ly/QMCC4M
(accessed on September 12, 2012).

31. Mack, R. L., Mukherjea, S., Soffer, A., Uramoto, N., Brown, E. W.,
Coden, A., Cooper, J. W., Inokuchi, A., Iyer, B., Mass, Y., Matsuzawa,
H., and Subramaniam, L. V. Text analytics for life science using the
unstructured information management architecture. IBM Systems
Journal 43, 3 (2004), 490–515.

32. Mayer, R. E. The psychology of how novices learn computer
programming. ACM Comput. Surv. 13, 1 (1981), 121–141.

33. Norman, D. The design of everyday things. 2002.
34. Pane, J., Myers, B., and Miller, L. Using HCI techniques to design a

more usable programming system. In HCC (2002).
35. Papert, S. Mindstorms: Children, computers, and powerful ideas. 1980.
36. Patel, K., Bancroft, N., Drucker, S., Fogarty, J., Ko, A., and Landay, J.

Gestalt: Integrated support for implementation and analysis in machine
learning processes. In UIST (2010).

37. Patel, K., Fogarty, J., Landay, J., and Harrison, B. Investigating
statistical machine learning as a tool for software development. In CHI
(2008).

38. Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen,
J., Devlin, M., and Paterson, J. A survey of literature on the teaching of
introductory programming. In ACM SIGCSE Bulletin, vol. 39 (2007),
204–223.

39. Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan,
R. G., Kyza, E., Edelson, D., and Soloway, E. A scaffolding design
framework for software to support science inquiry. Journal of the
Learning Sciences 13, 3 (2004).

40. Ritter, A., Clark, S., Mausam, and Etzioni, O. Named entity recognition
in tweets: An experimental study. In EMNLP (2011).

41. SAP. BusinessObjects Text Analysis: Text Services Platform Users
Guide: http://bit.ly/pgjyml, 2012.

42. Soderland, S. Learning information extraction rules for semi-structured
and free text. Machine Learning 34, 1-3 (1999), 233–272.

43. Text Analysis International Inc. Integrated development environments
for natural language processing, 2012.

44. Wagstaff, K. Machine Learning that Matters. In ICML (2012).
45. Wong, J., and Hong, J. Making mashups with marmite: towards

end-user programming for the web. In CHI (2007).
46. Wood, D., Bruner, J., and Ross, G. The role of tutoring and problem

solving. Journal of Child Psychology and Psychiatry 17 (1976),
89–100.

	Introduction
	Related Work
	Text Analysis Development Environment
	Tools to Lower Barriers to Programming
	Learning Support

	Design Process
	Background
	Original Design and User Study
	Design for Novice Users
	Elicit Knowledge from Expert Users
	Design Features to Guide Novice Users

	Formative Evaluations of the Design
	Lab Comparative Study
	Real-world Use Study

	Current Design
	Evaluation
	Procedure
	Hypothesis
	Performance Results
	Subjective Results

	Discussion
	Conclusion
	Acknowledgments
	REFERENCES

