Laura Chiticariu !

Sudarshan Rangarajart

Rajasekar Krishnamurthy !
Frederick R. Reiss

SystemT: an Algebraic Approach to Declarative Information Extraction

Yunyao Li ' Sriram Raghavan
Shivakumar Vaithyanathan!

IBM Research — Almaden 2IBM Software — Silicon Valley
San Jose, CA, USA
{chiti, sekar,yunyaoli,rsriramsrthitte, frreiss,vaithyan}@s.ibm com

Abstract

As information extraction (IE) becomes
more central to enterprise applications,
rule-based IE engines have become in-
creasingly important. In this paper, we
describeSystemT, a rule-based IE sys-
tem whose basic design removes the ex-
pressivity and performance limitations of
current systems based on cascading gram-
mars. SystemT uses a declarative rule
language, AQL, and an optimizer that

Common Pattern Specification Language (CPSL)
specification (Appelt and Onyshkevych, 1998). In
CPSL, the input text is viewed as a sequence of an-
notations, and extraction rules are written as pat-
tern/action rules over the lexical features of these
annotations. In a single phase of the grammar, a
set of rules are evaluated in a left-to-right fash-
ion over the input annotations. Multiple grammar
phases are cascaded together, with the evaluation
proceeding in a bottom-up fashion.

As demonstrated by prior work (Grishman and
Sundheim, 1996), grammar-based |IE systems can

generates high-performance algebraic ex-
ecution plans for AQL rules. We com-
pareSystemT’s approach against cascad-
ing grammars, both theoretically and with
a thorough experimental evaluation. Our
results show thadystemT can deliver re-
sult quality comparable to the state-of-the-
art and an order of magnitude higher an-
notation throughput.

be effective in many scenarios. However, these
systems suffer from two severe drawbacks. First,
the expressivity of CPSL falls short when used
for complex IE tasks over increasingly pervasive
informal text (emails, blogs, discussion forums
etc.). To address this limitation, grammar-based
IE systems resort to significant amounts of user-
defined code in the rules, combined with pre-
and post-processing stages beyond the scope of
CPSL (Cunningham et al., 2010). Second, the
rigid evaluation order imposed in these systems
In recent years, enterprises have seen the emédtas significant performance implications.
gence of important text analytics applications like Three decades ago, the database community
compliance and data redaction. This increasefaced similar expressivity and efficiency chal-
combined with the inclusion of text into traditional lenges in accessing structured information. The
applications like Business Intelligence, has dracommunity addressed these problems by introduc-
matically increased the use of information extracing a relational algebra formalism and an associ-
tion (IE) within the enterprise. While the tradi- ated declarative query language SQL. The ground-
tional requirement of extraction quality remainsbreaking work on System R (Chamberlin et al.,
critical, enterprise applications also demand ef1981) demonstrated how the expressivity of SQL
ficiency, transparency, customizability and main-can be efficiently realized in practice by means of
tainability. In recent years, these systemic requireaquery optimizethat translates an SQL query into
ments have led to renewed interest in rule-basedn optimized query execution plan.
IE systems (Doan et al., 2008; SAP, 2010; IBM, Borrowing ideas from the database community,
2010; SAS, 2010). we have develope8lystemT, a declarative IE sys-
Until recently, rule-based IE systems (Cunning-tem based on an algebraic framework, to address
ham et al., 2000; Boguraev, 2003; Drozdzynskiboth expressivity and performance issuesSys-
et al., 2004) were predominantly based on théemT, extraction rules are expressed in a declar-
cascading grammar formalism exemplified by theative language called AQL. At compilation time,

1 Introduction

Gazetteers containing first names and last names
\—g—“—‘ Document d, I ... Tomorrow, we will meet Mark Scott, Howard Smith and ... I
Phase | Types | Ruleld ~~:::'>~»‘Rgle Patterns Priority Legend
P, Input PR, ({Lookup.majorType = FirstGaz}) :fn > :fn.First 50 @) Las}(P1R2) LaSI(\P1R2) Rule skipped
Lookup . CPSL ol > due to priority
Token |PiR, |({Lookup.majorType =LastGaz}): In > n.lLast 50 Phase P, \ ... Mark Scott |, Howard Smith ... \ semantics
output |, & » — — —— A,
n 1Ry ({Token.orth = upperlnitial} | First(P.R.) First(P.R First(P,R. Last(P.R,
El;sstt {Token.orth = mixedCaps }) :cw > :cw.Caps ° rst(PRy) FirstP4Ry) (iR LastPRy)
Caps cPsL Person (P;R,) Person (P,R;) Rule fired
- Phase P. / i A i
o PR E E 50 2
Pz ::n utt R, ({First} {Last}) :full >:full.Person ‘ . Mark Scott Howard Smith ‘
Llarsst PR, ({Caps} {Last}) :full ->:full.Person 20 — ! 3 persons
s Person(P;R,) Person(P,R,) Person(P,R,) identified
Tali(’s PR, ({Last} {Token.orth = comma} {Caps | First}) : reverse 10
oken :reverse.Person (b) [Mark Scott Howard Smith ... |
Output | PR, First}) : fn - :fn.Person 10 JAPE ‘ ‘ . N
Person (First) Phase P, First(PRy) First(P,R,) First(P;Ry) Last(P;R,)
PR; |({Last}):In - :In.Person 10 (Brill) Caps(PiRs) Last(P4R,) Last(P,R,) Caps(P;R;)
Caps(PR3) Caps(P;Rs3)
Syntax: Rule part Action part JAPE Person (P,R,) Person (P;R,, P;Rs) mfﬁes omitted
—_— e N . P)
P,R; ({Last} {Token.orth = comma} {Caps | First}) : reverse > :reverse.Person Phase P, ‘ : Mark Scot; ‘Howard Smith ‘ for clarity
Last followed by Token whose orth-atribute has value Bind match | | Creaté Person (Appelt) L 2 persons
comma followed by Caps or First to variables | | annotation Person(P,R;) Person(P,R;) identified

Figure 1:Cascading grammar for identifying Person names Figure 2:Sample output of CPSL and JAPE
SystemT translqtes AQL statements into an al-, person name. The second phaBe, identifies
gebraic expression called aperator graphthat complete names using the results of ph&se
implements the semantics of the statements. The Applying the above grammar to documeft
SystemT optimizer_then pick_s a fast execution (Fig. 2), one would expect that to match “Mark
plan from many logically equivalent plan§ys- Scott” and “Howard Smith” agerson However,

temT is cu'rrer?tly deployed in a multitude of real- as shown in Fig. 2(a), the grammar actually finds

world applications and commercial prod@ct; threePersonannotations, instead of two. CPSL has
We formally demonstrate the superiority Of go\erg| jimitations that lead to such discrepancies:

AQL and SystemT in terms of both expressivity L1. Lossy sequencing In a CPSL grammar,

and efficiency (Seg’u_on 4). Spe_c'f'ca”M we ShOWeach phase operates on a sequence of annotations
that 1) the expressivity of AQL is a strict supersete o left to right. If the input annotations to a

of CPSL grammars not using external functions|Ohase may overlap with each other, the CPSL en-
anql 2_) the_search space explored by $ystemT gine must drop some of them to create a non-
optimizer includes operator graphs CorreSpondbverIapping sequence. For instance, in phBse

ing to efficient finite state transducer implemen—(Fig 2(a)), “Scott” has both acokup and aTo-

tations. Finally, we present an extensive experiy ., annotation. The system has made an arbitrary

mental evaluation that validates that high'qua”tychoice to retain theookupannotation and discard

e;]nno:‘at_ors can be developed \(\/Strster:ij, and the Tokenannotation. Consequently, @apsanno-
that their runtime performance is an order of Magytions are output by phaga.

nitude better when compared to annotators devet2 Rigid matching priority . CPSL specifies
oped with a state-of-the-art grammar-based |E SYShat, for each input annotation, only one rule can

tem (Section 5). actually match. When multiple rules match at the
same start position, the following tie-breaker con-
ditions are applied (in order): (a) the rule match-
A cascading grammar consists of a sequence Ghg the most annotations in the input stream; (b)
phases, each of which consists of one or morgne rule with highest priority; and (c) the rule de-
rules. Each phase applies its rules from left toclared earlier in the grammar. This rigid match-
right over an input sequence of annotations anghg priority can lead to mistakes. For instance,
generates an output sequence of annotations thas illustrated in Fig. 2(a), phas only identi-
the next phase consumes. Most cascading granfies “Scott” as aFirst. Matching priority causes
mar systems today adhere to the CPSL standardthe grammar to skip the corresponding match for
Fig. 1 shows a sample CPSL grammar thatiden“Scott” as aLast Consequently, phase, fails to
tifies person names from text in two phases. Thedentify “Mark Scott” as one singleerson
first phasep’;, operates over the results of the tok-1.3. Limited expressivity in rule patterns. It is
enizer and gazetteer (input typesenandLookun not possible to express rules that compare annota-
respectively) to identify words that may be part oftions overlapping with each other. E.g., “Identify
1A trial verel words that are both capitalized and present in the
FirstGaz gazetteer” or “ldentifyPersonannotations

2 Grammar-based Systems and CPSL

A trial version is available at
http://www.alphaworks.ibm.com/tech/systemt

Caps

3.1 Algebraic Foundation ofSystemT

Output Tuple 1 | Document | Span 1 SystemT executes IE rules using graphs of op-
Output Tuple 2 | Document | Span 2 \ erators. The formal definition of these operators
[A-Z}{\w|-}+ \W A% take§ the form of an algebra that_is similar to the
we will meetiMark:| relational algebra, but with extensions for text pro-

input Tuple Scott; .. cessing.

The algebra operates over a simple relational

Figure 3: Regular Expression Extraction Operatoflata model with three data types: span, tuple, and
relation. In this data model, spanis a region of

that occur within arEmailAddress. text within a document identified by its “begin”
_ and “end” positions; dupleis a fixed-size list of
Extensions to CPSL spans. Arelationis a multiset of tuples, where ev-

In order to address the above limitations, severagry tuple in the relation must be of the same size.
extensions to CPSL have been proposed in JAPEEachoperatorin our algebra implements a single

AFst and XTDL (Cunningham et al., 2000; Bogu- basic atomic IE operation, producing and consum-
raev, 2003; Drozdzynski et al., 2004). The extening sets of tuples.

sions are summarized as below, where each solu- Fig. 3 illustrates the regular expression ex-
tion S; corresponds to limitatioh;. traction operator in the algebra, which per-

e S1 Grammar rules are allowed to operate orfo'ms character-level regular expression match-

graphs of input annotations in JAPE and AFsting. Overall, the algebra contains 12 different op-

. , .__erators, a full description of which can be found
e S2 JAPE introduces more matching regimes. : :
. , . o in (Reiss et al., 2008). The following four oper-
besides the CPSL's matching priority and thus .
o . ators are necessary to understand the examples in

allows more flexibility when multiple rules

match at the same starting position. this paper:

e S3 The rule part of a pattern has been ex-
panded to allow more expressivity in JAPE,
AFst and XTDL.

Fig. 2(b) illustrates how the above extensions
help in identifying the correct matchegark Scott
and Howard Smithin JAPE. Phas&’; uses a match-
ing regime (denoted bgrill) that allows multiple
rules to match at the same starting position, and® TheJoin operator k<) takes as input two sets

e TheExtract operator £) performs character-
level operations such as regular expression and
dictionary matching over text, creating a tuple
for each match.

e TheSelectoperator §) takes as input a set of
tuples and a predicate to apply to the tuples. It
outputs all tuples that satisfy the predicate.

phaseP, uses CPSL’s matching prioritgppelt of tuples and a predicate to apply to pairs of
tuples from the input sets. It outputs all pairs
3 SystemT of input tuples that satisfy the predicate.

The consolidateoperator (2) takes as input a
set of tuples and the index of a particular col-
umn in those tuples. It removes selected over-
lapping spans from the indicated column, ac-
cording to the specified policy.

SystemT is a declarative IE system based on an ®
algebraic framework. IrSystemT, developers
write rules in a language called AQL. The system
then generates a graph operatorsthat imple-
ment the semantics of the AQL rules. This decou-
pling allows for greater rule expressivity, because
the rule language is not constrained by the need t8.2 AQL
compile to a finite state transducer. Likewise, theExtraction rules irSystemT are written in AQL,
decoupled approach leads to greater flexibility ina declarative relational language similar in syn-
choosing an efficient execution strategy, becaustx to the database language SQL. We chose SQL
many possible operator graphs may exist for theas a basis for our language due to its expres-
same AQL annotator. sivity and its familiarity. The expressivity of

In the rest of the section, we describe the partSQL, which consists of first-order logic predicates
of SystemT, starting with the algebraic formalism over sets of tuples, is well-documented and well-
behindSystemT'’s operators. understood (Codd, 1990). As SQL is the pri-

create view Caps as
extract regex /[A-Z](\w|-)+/ on D.text as name from Document D;

Compiled
AQL SystemT Operator |, IESEEULE

create view Last as Optimizer Graph Runtime
extract dictionary LastGaz on D.text as name from Document D;

create view CapslLast as
select CombineSpans(C.name, L.name) as name

from Caps C, Last L Figure 5: The compilation process8ystemT

where FollowsTok(C.name, L.name, 0, 0);

create view PersonAll as Original AQL it: G P!an B: o
(select R.name from FirstLast R) union all ... create view CapsLast as select Find matches of Last, then
.. union all (select R.name from CapsLast R); CombineSpans(C.name,L.name) as name remove matches that are not
’ from Caps C, Last L preceded by a match of Caps.
where FollowsTok(C.name, L.name, @, 0); i
create view Person as select * from PersonAll R (0 > 8, 0); dict

consolidate on R.name using 'ContainedWithin';
Plan A: Plan C:

> Find matches of Caps and Last, O Find matches of Caps, then

/ \ then identify pairs with 0 tokens T remove matches that are not

between them. Jfollowed by a match of Last.

Figure 4:Personannotator as AQL query Edict Eregex Eregex

output view Person;

Figure 6: Execution strategies for thepsLastrule

mary interface to most relational database sys'ln Fig. 4
tems, the language’s syntax and semantics are . .
common knowledge among enterprise applicatiofnatching for over 20 languages using Langggge-
programmers. Similar to SQL terminology, we Ware (IBM, 2010). Rule developers can utilize
call a collection of AQL rules an AQljuery, the multilingual support via AQL without hav-
Fig. 4 shows portions of an AQL query. As ing to configure or manage any additional re-
can be seen, the basic building block of AQL issources. In addition, AQL allows user-defined
aview A logical description of a set of tuples in functions to be used in a restricted context in or-
terms of either the document text (denoted by #ler to support operations such as validation (e.g.
special view calledocurent) or the contents of for extracted credit card numbers), or normaliza-
other views. EvenSystemT annotator consists tion (e.g., compute abbreviations of multi-token
of at least one view. Theutput viewstatement in- organization candidates that are useful in gener-
dicates that the tuples in a view are part of the finafiting additional candidates). More details on AQL
results of the annotator. can be found in the AQL manual (SyStemT, 2010)
Fig. 4 also illustrates three of the basic con-
structs that can be used to define a view.

e The extract statement specifies basic Grammar-based IE engines place rigid restrictions
character-level extraction primitives to be ©n the order in which rules can be executed. Due
applied directly to a tuple. to the semantics of the CPSL standard, systems

that implement the standard must use a finite state

transducer that evaluates each level of the cascade
with one or more left to right passes over the entire
token stream.

In contrast,SystemT places no explicit con-
straints on the order of rule evaluation, nor does
it require that intermediate results of an annota-

To keep rules compact, AQL also provides ator collapse to a fixed-size sequence. As shown in
shorthandsequence pattemotation similar to the Fig. 5, theSystemT engine does not execute AQL
syntax of CPSL. For example, th@éapsLast directly; instead, th&ystemT optimizercompiles

3.3 Optimizer and Operator Graph

e The sel ect statement is similar to the SQL
sel ect statement but it contains an additional
consol i date on clause, along with an exten-
sive collection of text-specific predicates.

e Theunion all statement merges the outputs
of one or moresel ect Orextract statements.

view in Figure 4 could have been written as: AQL into a graph of operators. By tying a collec-
create vi ew CapslLast as tion of operators together by their inputs and out-
extract pattern <C name> <L.name> puts, the system can implement a wide variety of

fromCaps C Last L; different execution strategies. Different execution

Internally, SystemT translates each of thesg- strategies are associated with different evaluation
tract patternstatements into one or moselect costs. The optimizer chooses the execution strat-
andextractstatements. egy with the lowest estimated evaluation cost.

SystemT has built-in multilingual support in- Fig. 6 presents three possible execution strate-
cluding tokenization, part of speech and gazetteegies for thecCapsLastrule in Fig. 4. If the opti-

Document d,
[... Talking with Skilling, Cindy Olson, Vince Kaminski, Mike McConnell and Mark F Revert ...

mizer estimates that the evaluation cost.adtis
much lower than that o€aps then it can deter-

. . Cascading Grammar AQL
mine that Plan C has the lowest evaluation cost T ‘

Rule PR, [osanvice || |17 Zieie micies to e 7y e veriar vt | L
among the three, because Plan C only evaluates Kaminski, Mike | | |7 T0ec0es, 0 e o e e s '
Capsin the “left” neighborhood for each instance : el Hubh Cosooie
of Last More details of our algorithms for enumer- S PR Ui || foece e wscomariseoiace
ating plans can be found in (Reiss et al., 2008). : select R s vame

The optimizer inSystemT chooses the best ex- T Gindy Oison
. . Olson, Vince Vince Kaminski
ecution plan from a large number of different al- o, ofp, [Kemnsimie Output of Q, | <@ Meceme!

gebra graphs available to it. Many of these graphs
implement strategies that a transducer could not-
express: such as evaluating rules from right to left,
sharing work across different rules, or selectively4.1 Expressivity

skipping rule evaluations. Within this large searchIn Section 2, we described three expressivity lim-

space, there generally exists an execution strateQy, vions of CPSL grammars: Lossy sequencing,
that implements the rule semantics far more effi-

iently than the f q . Wi frigid matching priority, and limited expressivity in
clently than the fastest transducer could. We re ®lule patterns. As we noted, cascading grammar

the_ re_ader to (Reiss et al., 2008) f0|_r a_detaned _deéystems extend the CPSL specification in various
scription of the types of plan the optimizer consid-

_ : ways to provide workarounds for these limitations.
ers, as well as an experimental analysis of the per- . .
In SystemT, the basic design of the AQL lan-

formance benefits of different parts of this search . .
space P guage eliminates these three problems without the

Several parallel efforts have been made recentlneed for any special workaround. The key design

to improve the efficiency of IE tasks by optimiz- Yifference is that AQL views operate over sets of

. . . les, n n f tokens. The in r out-
ing low-level feature extraction (Ramakrishnan ettUp €s, not sequences of tokens € input or out

al., 2006: Ramakrishnan et al., 2008: Chandel eg()ut tuples of a view can contain spans that overlap

. . in arbitrary w he | ncing prob-
al., 2006) or by reordering operations at a macros; arbitrary ways, so the lossy sequencing p ob

: o i lem never occurs. The annotator will retain these
scopic level (lpeirotis et al., 2006; Shen et al.,

2007; Jain et al., 2009). However, to the best O,[c_)verlqppmg Spans across any number of views un-
. til a view definition explicitly removes the over-
our knowledge ,SystemT is the only IE system

. . 7 ap. Likewise, the tuples that a given view pro-
in which the optimizer generates a full end-to-endI P S P . 9 P

-) . . . duces are in no way constrained by the outputs of
plan, beginning with low-level extraction primi-

. . . . other, unrelated views, so the rigid matching prior-
v nd ending with the final les. . ' ' .
tives and ending with the final output tuples ity problem never occurs. Finally, tfeelectstate-

ment in AQL allows arbitrary predicates over the
cross-product of its input tuple sets, eliminating

SystemT is designed to be usable in various de-e jimited expressivity in rule patterns problem.
ployment scenarios. It can be used as a stand-

| ¢ ith it devel ¢ and Beyond eliminating the major limitations of
alone system with 1is own development and rincpg) grammars, AQL provides a number of other
time environment. FurthermoreSystemT ex-

: . information extraction operations that even ex-
poses a generic Java API that enables the integra-

: . .) : 9" %nded CPSL cannot express without custom code.
tion of its runtime environment with other applica- c | e int i Consid

tions. For example, a specific instantiation of this IorT(;p exru et |fn erat%mrllzs. onsider a;]/l_ei((am— .
API allows SystemT annotators to be seamlesslyIO @ document from the Enron corpus (Minkov e

embedded in applications using the UIMA analyt-al" 2005), shown in Fig. 7, Whlch contains a list
ics framework (UIMA, 2010). of person names. Because the first person in the

list (‘skiling) is referred to by only a last name,
rule P, Rs in Fig. 1 incorrectly identifiesskilling,
Cindy as a person. Consequently, the output of
Having described both the traditional cascadingphaseP, of the cascading grammar contains sev-
grammar approach and the declarative approackral mistakes as shown in the figure. This problem
used inSystemT, we now compare the two in occurs because CPSL only evaluates rules over
terms of expressivity and performance. the input sequence in a strict left-to-right fashion.

igure 7: Supporting Complex Rule Interactions

3.4 Deployment Scenarios

4 Grammar vs. Algebra

Informal Band Review ConcertMention GenericReviewSnippet

cascading grammar can express patterns that can-

went to the Switchfoot concert at the Roxy. It was pretty fuf,... The lead singer/guitarist

was really good, and even though there was another gujtefist (an Asia;/y/ﬂ he ended up not be expressed |n AQ L

playing most of the guitar parts, which was really impressive. The biggest sdrprise though is

that | actually liked the opening bands. ...| especially liked the first bafid |t turns Out that we can make a Strong Statement
MusicReviewSnippet that such examples do not exist. In the absence

Example Rule

of an escape to arbitrary procedural code, AQL is
ConcertMention strictly more expressive than a CPSL grammar. To

/—}%
] D) state this relationship formally, we first introduce
D 7

the following definitions.

Consecutive review snippets are within 25 tokens

- X — .
Complete review is At least 4 occurrences of MusicReviewSnippet or GenericReviewSnippet We refer to a g rammar co nfo rmin g to th e C P S L
et andswih one of thes TP specification as £PSL grammar When a CPSL

grammar contains no external functions, we refer
to it as aCode-free CPSL grammarrinally, we
refer to a grammar that conforms to one of the
CPSL, JAPE, AFst and XTDL specifications as an
expanded CPSL grammar

Ambiguous Grammar Specification An ex-

Figure 8:Extracting informal band reviews from web logs

On the other hand, the AQL query; shown in
the figure applies the following condition: “Al-
ways discard matches to Rulg R; if they overlap

with rr:]atclgelsetpo ;;leg)?Rl or JI?ZRQ A(‘eVTr? i thﬁ_ panded CPSL grammanay be under-specified in
match to Ruler, It starts earlier). Applying this oo 0 caces For example, a single rule contain-

_rule ensures that the Person names in the list _ariﬁg the disjunction operatof)(may match a given
identified correctly. Obtaining the same effect in

based Id e th region of text in multiple ways. Consider the eval-
grammar-based systems would require the Use Qf,yion of RuleP, R over the text fragmentsSeott,

custom code (as recommended by (Cunningharnoward,, from documentd; (Fig. 1). If “Howard”

etal., _2010))' _ _ is identified both axapsandFirst, then there are
Counting and Aggregation Complex extraction 4 evaluations for Rulé R over this text frag-

tasks sometimes require operations such as counfient. Since the system has to arbitrarily choose
ing and aggregation that go beyond the expressivsne eyaluation, the results of the grammar can be
ity of regular languages, and thus can be expresseg,n_qeterministic (as pointed out in (Cunning-
in CPSL only using external functions. One suchy5m et al., 2010)). We refer to a gramni@ras
task is that of identifying informal concert reviews ., ambiguous grammar specificatidar a docu-

embedded within blog entries. Fig. 8 describes, bynant collectiorD if the system makes an arbitrary
example, how these reviews consist of referencey,qice while evaluating’ overD.

to a live concert followed by several review snip- Qefinition 1 (UnambigEquiy A queryQ is Un-

pets, some specific to musical performances an : : : :
. . _ambigEquiv to a cascading gramm@irif and only
others that are more general review expressions,

. - . . If for every document collectigR, whereG is not
An example rule to identify informal reviews is . o
. . . . an ambiguous grammar specification oy, the
also shown in the figure. Notice how implement- .)
. . . . results of the grammar invocation and the query
ing this rule requiregounting the number ofiu-

_ . _ _) . : evaluation are identical.
sicReviewSnippendGenericReviewSnipp&nnotations
within a region of text andggregating this occur- e now formally compare the expressivity of
rence count across the two review types. While®QL and expanded CPSL grammars. The detailed
this rule can be written in AQL, it can only be ap- Proof is omitted due to space limitations.
proximated in CPSL grammars. Theorem 1 The class of extraction tasks express-
Character-Level Regular Expression CPSL ible as AQL queries is a strict superset of that ex-
cannot specify character-level regular expressiongressible through expanded code-free CPSL gram-
that span multiple tokens. In contrast, #sdract mars. Specifically,
regexstatement in AQL fully supports these ex- () Every expanded code-free CPSL grammar can
pressions. be expressed as an UnambigEquiv AQL query.
We have described above several cases whef@) AQL supports information extraction opera-
AQL can express concepts that can only be extions that cannot be expressed in expanded code-
pressed through external functions in a cascadfee CPSL grammars.
ing grammar. These examples naturally raise th@roof Outline: (a) A single CPSL grammar can
guestion of whether similar cases exist where de expressed in AQL as follows. First, each rule

r in the grammar is translated into a set of AQL set of states that are currently active.

statements. I does not contain the disjundy (Theorem 2 For any acyclic token-based finite
operator, then it is translated into a single AQI‘state transducel’, there exists an UnambigEquiv
selectstatement. Otherwise, a set of AQL state-Operator graph(, such that evaluating? has the
ments are generated, one for each disjunct OpPerds me computational complexity as evaluatifig

tcl)lr in ruler, and ;he results Irlnerged USIgIoN - \yith Thompson'’s algorithm starting from each to-
all statements. Then,union all statement is used o bocition in the input document,

to combine the results of individual rules in the

grammar phase. Finally, the AQL statements fofProof Outline: The proof constructér by struc-

multiple phases are combined in the same order d§ral induction over the transducéf. The base

the cascading grammar specification. case converts transitions out of the start state into
The main extensions to CPSL supported by exEXxtractoperators. The inductive case a_lddSG&

panded CPSL grammars (listed in Sec. 2) are harléct operator to for each of the remaining state

dled as follows. AQL queries operate on graphstransitions, with e_ach selectiqn predicate being the

on annotations just like expanded CPSL gramSameas the predicate that drives the corresponding

mars. In addition, AQL supports different match- State transition. For each state transition predicate
ing regimes through consolidation operators, spaffat 7' would evaluate when processing a given
predicates through selection predicates and cdlocument(z performs a constant amount of work
references through join operators. on asingle tuple. -

(b) Example operations supported in AQL tha
cannot be expressed in expanded code-free CP
grammars include (i) character-level regular ex4n this section we present an extensive comparison
pressions spanning multiple tokens, (ii) count-study betweerSystemT and implementations of
ing the number of annotations occurring within aexpanded CPSL grammar in terms of quality, run-
given bounded window and (iii) deleting annota-time performance and resource requirements.
tions if they overlap with other annotations start-TasksWe chose two tasks for our evaluation:

ing later in the document. U e NER: named-entity recognition forPerson,
Organization, Location, Address, PhoneNumber,
EmailAddress, URL andDateTime.

tS?. Experimental Evaluation

4.2 Performance

For the annotators we test n our gxperlments. BandReview: identify informal reviews in blogs
(See Section 5), thBystemT optimizer is able to (Fig. 8)
choose algebraic plans that are faster than a com- e

parable transducer-based implementation. The V& ChOSENER primarily because named-entity
question arises as to whether there are other afgcodnitionis awell-studied problem and standard
notators for which the traditional transducer ap_datasets are available for evaluation. For this task

proach is superior. That is, for a given annota V€ USEGATE and ANNIE for comparisof. We

tor, might there exist a finite state transducer thaf10S€BandReview to conduct performance evalu-
is combinatorially faster than any possible algebration for @ more complex extraction taslf.
graph? It turns out that this scenario is not possiPatasets.For quality evaluation, we use:

ble, as the theorem below shows. e EnronMeetinggMinkov et al., 2005): collec-

Definition 2 (Token-Based FST)A token-based tion of emails with meeting information from

o) L the Enron corptfswith Person labeled data;

finite state transducgFST) is a nondeterministic _ _

finite state machine in which state transitions are ® ACE(NIST, 2005): collection of newswire re-
triggered by predicates on tokens. A token-based ports and broadcast news/conversations with
FST isacyclicif its state graph does not contain Person, Organization, Location labeled dat?

any cycles and has exactly one “accept” state. Table 1 lists the datasets used for performance

Definition 3 (Thompson’s Algorithm) evaluation. The size oFinance.is purposely

Thompson’s algorithmis a common strategy %To the best of our knowledgyNNIE (Cunningham et

; _ I, 2002) is the only publicly available NER library imple-
for evaluating a tOKer? based_ FST (based Orﬁwented in a grammar-based system (JAPEATE).
(Thompson, 1968)). This algorithm processes the 4xp:/amww.cs.cmu.edu/ enron/

input tokens from left to right, keeping track of the *Only entities of type NAM have been considered.

Table 1: Datasets for performance evaluation.

Dataset Description of the Content Number of | Document size]
documents | range [average |

Enron, Emails randomly sampled from the Enron corpus of averagexsi®(0.5 < = < 100)? 1000 zKB +/ — 10% KB

WebCrawl | Small to medium size web pages representing company news, with HTML tags remoyed 1931 68b - 388.6KB 8.8KB

Financeys Medium size financial regulatory filings 100 240KB - 0.9MB 401KB

Financer, Large size financial regulatory filings 30 1MB - 3.4MB 1.54MB

. a) Throughput on Enrony
Table 2: Quality ofPerson on test datasets. 700

Recall (%) F1 measure (%)

’ ‘ Precision (%)

(Exact/Partial) | (Exact/Partial) (Exact/Partial) ——ANNIE
[EnronMeetings] : /T*’\"\"\I‘_:'E’Op“mized

ANNIE 57.05/76.84 48.59/65.46 52.48/70.69 -

T-NE 88.41/92.99 82.39/86.65 85.29/89.71

Minkov 81.1/NA 74.9/INA 77.9/NA -
ACE 0 20 40 60 80 100

ANNIE [39.41/78.15 | 30.39/60.27 [34.32/68.06 Average document size (KB)

T-NE [93.90/95.82 [90.90/92.76 [92.38/94.27

b) Memory Utilization on Enrony

Error bars shov
25th and 75th
percentile

——ANNIE

® ANNIE-Optimized
- M- T-NE

small becauseATE takes a significant amount of
time processing large documents (see Sec. 5.2).
Set Up The experiments were run on a server -
with two 2.4 GHz 4-core Intel Xeon CPUs and ° i - -
64GB of memory. We useATE 5.1 (build 3431) Average document size (K8)
and two configurations forNNIE: 1) the default

configuration, and 2) aoptimizedconfiguration Figure 9: Throughput (a) and memory consump-
where the Ontotext Japec Transdaeplaces the 1ion (b) comparisons o&nron, datasets.

default NE transducer for optimized performance.

We refer to these con_figurations asINIE and Clearly, considering the large gap between
ANNIE-Optimized, respectively. ANNIE’s F'1 and partial F1 measures on both
datasets,ANNIE’s quality can be improved via

_ o dataset-specific tuning as demonstrated in (May-
The goal of our quality evaluation is two-fold: narq et al., 2003). However, dataset-specific tun-
to validate that annotators can be built 3iys- ing for ANNIE is beyond the scope of this paper.
temT with quality comparable to those built in Based on the experimental results above and our
a grammar-based system; and to ensure a fajfrevious formal comparison in Sec. 4, we believe
performance comparison betwe8gystemT and it js reasonable to conclude that annotators can be
GATE by verifying that the annotators used in thepji in SystemT of quality at least comparable to

study are comparable. _ those built in a grammar-based system.
Table 2 shows results of our comparison study

for Person annotators. We report the classical5.2 Performance Evaluation

(exzp) plreC|S|on, recz;ll, and‘;l measures that We now focus our attention on the throughput and
credit only exact matches, and correspongiag memory behavior oBystemT, and draw a com-

tial measures that credit partial matches in a faShf)arison WIthGATE. For this purpose, we have con-

ion similar to (NIST, 2095)_'_ AS can be seen,_ figured bothANNIE and T-NE to identify only the
NE produced results of significantly higher quality same eight types of entities listed foER task.

than ANNIE on both datasets, for the sam@son Throughput. Fig. 9(a) plots the throughput of

extraction ?Sk'.m;a;;’ cr)]ﬁnhronmeetl[rrl]gstt)hef? 1 b the two systems on multiplEénron, datasets with
measure OTNE IS 7.4% figher than the best pu “average document sizes of between 0.5KB and

“Sheg resgjlt (er;k;)v et a!., 2005).d8|m|I§1r results 100KB. For this experiment, both systems ran
can be observed fabrganization and Location ON i (o osiin i Jaua heap size of 1GB.

ACE (exact numbers omitted in interest of space). As shown in Fig. 9(a), even though the through-

®http:/www.ontotext.com/gate/japec.html put of ANNIE-Optimized (using the optimized trans-

Avg Heap size (MB)

5.1 Quality Evaluation

tures used (e.g., dictionaries, FST/operator graph),

Table 3: Throughput and mean heap size. and is comparable for both systems. As docu-

ANNIE ANNIE-Optimized TNE L
Dataset Throughpl.WMemor Throughpjt Memory Throughps.xls/lemor ments get |a|’ger, memaory Consumptlon Increases
(KBJs) | (MB) | (KBJS) | (MB) | (KBIS) | (MB) for both systems. However, the increase is much
ebCran] 23.9 | 212.6] 4238 2018 | 4989 | 772
Finance,| 18.82 | 715.1| 263 | 6018 | 7035 | 143.7 smaller for -NE compared to that for botlAN-
Finance. | 19.2 29862 211 | 20835 | 9545 |1898] NjE and ANNIE-Optimized. A similar trend can be

observed on the other datasets as shown in Ta-
] ble 3. In particular, foFinance,, bothANNIE and
ducer) mcreaseg tWO'TOId comparedAn@NlE un- ANNIE-Optimized required 8GB of Java heap size to
der default configuration-NE is between 8 and ycpieve reasonable throughfuin contrast tor

24 times faster compared BNNIE-Optimized. FOT e \vhich utilized at most 300MB out of the 2GB
both systems, throughput varied with documemb]c maximum Java heap size allocation
size. FOrT-NE, the relatively low throughput on

)) SystemT requires much less memory than
very small document sizes (less than 1KB) is due yS q . . . y !
4 . . GATE in general due to its runtime, which monitors
to fixed overhead in setting up operators to pro- .
L data dependencies between operators and clears
cess a document. As document size increases, the
. out low-level results when they are no longer
overhead becomes less noticeable.

. needed. Although a streaming CPSL implemen-
We have observed similar trends on the res g g P

. %ation is theoretically possible, in practice mecha-
of the test collections. Table 3 shows that yp P

nisms that allow an escape to custom code make it

NE Is at I_egst an order of magnitude faster thandifficult to decide when an intermediate result will
ANNIE-Optimized across all datasets. In partic-

.)) no longer be used, hen@GATE keeps most inter-
ular, on Finance, T-NE’'s throughput remains

:) it i
high. whereas the performance of bafiIE and mediate data in memory until it is done analyzing

o I the current document.
ANNIE-Optimized degraded significantly. _ . .
. . . The BandReview Task. We conclude by briefly dis-
To ascertain whether the difference in perfor- . . . i
. . cussing our experience with tiEandReview task
mance in the two systems is due to low-level com-

. . from Fig. 8. We built two versions of this anno-
ponents such as dictionary evaluation, we per-

formed detailed profiling of the systems. The pro-tator’ one in AQL, and the other using expanqled
. . CPSL grammar. The grammar implementation
filing revealed that 8.2%, 16.2% and respectively . -

. : processed a 4.5GB collection of 1.05 million blogs
14.2% of the execution time was spent on aver:

. in 5.6 hours and output 280 reviews. In contrast,
age on low-level components in the case@®NIE, .
o . the SystemT version (85 AQL statements) ex-
ANNIE-Optimized andT-NE, respectively, thus lead-

ing us to conclude that the observed differencegaCtEd 323 reviews in only 10 minutes!
are due tdSystemT’s efficient use of resources at)

a macroscopic level. 6 Conclusion

Memory utilization. In theory, grammar based

systems can stream tuples through each Staga?tive IE system based on an algebraic frame-

for minimal memory consumption, where&gs- work. We presented both formal and empirical
temT operator graphs may need to materialize in_aro ur.nenti 1|?or('e fﬁe t?ene]fi)ts o(f)ou‘:laa rozchptoCIaE
termediate results for the full document at certairt 2 . . PP _
. Our extensive experimental results show that high-
points to evaluate the constraints in the original

AQL. The goal of this study is to evaluate Whetherql.mlr[y annotators can be built usi gst_emT,
) X . . with an order of magnitude throughput improve-
this potential problem does occur in practice.

. _ment compared to state-of-the-art grammar-based
In this experiment we ran both systems with a .
. . systems. Going forwardgystemT opens up sev-
maximum heap size of 2GB, and used the Java . T
\ o eral new areas of research, including implement-

garbage collector’s built-in telemetry to measure,

i i : : ing better optimization strategies and augmentin
the total quantity of live objects in the heap over g P g g g

. . . . the algebra with additional operators to support
time while annotating the different test corpora. g P Pp¢

. S ; advanced features such as coreference resolution.
Fig. 9(b) plots the minimum, maximum, and mean

heap sizes with thEnron, datasets. On small doc-
.uments. of size up to 1_5KB' memory CONSUMPLION 7GATE ran out of memory when using less than 5GB of
is dominated by the fixed size of the data struc-Java heap size, and thrashed when run with 5GB to 7GB

In this paper, we describeflystemT, a declar-

References Diana Maynard, Kalina Bontcheva, and Hamish Cun-

ningham. 2003. Towards a semantic extraction of
Douglas E. Appelt and Boyan Onyshkevych. 1998. hameq entities. IiRecent Advances in Natural Lan-
The common pattern specification languageT IIR- guage Processing

STER workshap
L Einat Minkov, Richard C. Wang, and William W. Co-
Branimir Boguraev. 2003. Annotation-based finite hepn 2005, Extracting personal names from emails:
state processing in a large-scale nlp arhitecture. In Applying named entity recognition to informal text.
RANLP pages 61-80. In HLT/EMNLP

1981. A history of System R and SQL/data system.
In vidb. Ganesh Ramakrishnan, Sreeram Balakrishnan, and

) _ ~ Sachindra Joshi. 2006. Entity annotation based on
Amit Chandel, P. C. Nagesh, and Sunita Sarawagi. inverse index operations. BMNLP.

2006. Efficient batch top-k search for dictionary-
based entity recognition. CDE. Ganesh Ramakrishnan, Sachindra Joshi, Sanjeet Khai-
] tan, and Sreeram Balakrishnan. 2008. Optimization
E. F. Codd. 1990.The relational model for database issues in inverted index-based entity annotation. In
management: version 2Addison-Wesley Longman InfoScale
Publishing Co., Inc., Boston, MA, USA.
Frederick Reiss, Sriram Raghavan, Rajasekar Kr-
H. Cunningham, D. Maynard, and V. Tablan. 2000. ishnamurthy, Huaiyu Zhu, and Shivakumar
JAPE: a Java Annotation Patterns Engine (Sec- Vaithyanathan. 2008. An algebraic approach to
ond Edition). Research Memorandum CS-00-10, rule-based information extraction. I€DE, pages
Department of Computer Science, University of 933-942.
Sheffield, November.
SAP. 2010. Inxight ThingFinder.
H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: A framework and graphical SAS. 2010. Text Mining with SAS Text Miner.
development environment for robust NLP tools and)
applications. InProceedings of the 40th Anniver- Warren Shen, AnHai Doan, Jeffrey F. Naughton, and

sary Meeting of the Association for Computational R@ghu Ramakrishnan. 2007. Declarative informa-
Linguistics pages 168 — 175. tion extraction using datalog with embedded extrac-

tion predicates. Iwvidb.
Hamish Cunningham, Diana Maynard, Kalina

Bontcheva, Valentin Tablan, Marin Dimitrov, Mike SyStemT. 2010. AQL ~ Manual.
Dowman, Niraj Aswani, lan Roberts, Yaoyong http://www.alphaworks.ibm.com/tech/systemt.

Li, and Adam Funk. 2010. Developing language .

; . ; Ken Thompson. 1968. Regular expression search al-
SL(i)gg)SS|ng components with gate version 5 (a user gorithm. pages 419-422.
MA. 2010. Unstructured Information Management
Architecture.
http://uima.apache.org.

AnHai Doan, Luis Gravano, Raghu Ramakrishnan, anc}JI
Shivakumar Vaithyanathan. 2008. Special issue on
managing information extractiolsIGMOD Record
37(4).

Witold Drozdzynski, Hans-Ulrich Krieger, Jakub
Piskorski, Ulrich Schfer, and Feiyu Xu. 2004.
Shallow processing with unification and typed fea-
ture structures — foundations and applications.
Kunstliche Intelligenz1:17-23.

Ralph Grishman and Beth Sundheim. 1996. Message
understanding conference - 6: A brief history. In
COLING, pages 466-471.

IBM. 2010. IBM LanguageWare.

P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano.
2006. To search or to crawl?: towards a query opti-
mizer for text-centric tasks. I8IGMOD

Alpa Jain, Panagiotis G. Ipeirotis, AnHai Doan, and
Luis Gravano. 2009. Join optimization of informa-
tion extraction output: Quality matters! IGDE.

Table 4: Quality ofPerson on test datasets. Throughput on Enronx

8

Precision (%) Recall (%) F1 measure (%) TR e u
(Exact/Partial) | (Exact/Partial) | (Exact/Partial) rl IR L I
l EnronMeetings] Loy - & T-NE (SystemT 1.3)
5o —e—ANNIE+ (GATE 7)
ANNIE 57.05/76.84 48.59/65.46 52.48/70.69 S0 —e— ANNIE-Optimized (GATE 5)
ANNIE+ 66.22/84.07 46.87/59.49 54.88/69.68 FE
T-NE 88.41/92.85 82.54/86.69 85.38/89.66 Eol _ _
Minkov 81.1/NA 74.9/NA 77.9INA 0 U' = - - ~ - - o
ACE Average Document Size (KB)
ANNIE 39.41/78.15 30.39/60.27 34.32/68.06
ANNIE+ 45.04/78.21 36.92/64.12 40.58/70.47))
TNE 91.76/93.77 | 91.60/93.61 | 91.68/93.69 Figure 10: Throughput comparison denron,
datasets.

A Comparison with JAPE+

) _ and ACE datasets. As can be seamE outper-
We have conducted a series of experiments i, ms annie+ and ANNIE in precision, recall and
compareSystemT with the JAPE+ transducer re- r_measure. The precision eiNIE+ is slightly
leased as part of GATE v7 on Feb. 8, 2012. Inyeter when compared tennIE, but lower com-
summary, our study shows th8ystemT contin- yareq to that of (Minkov et al., 2005), armehE.
ues to achieve an order of magnitude throughpuipe guality of -NE is minimally different when
improvement compared to JAPE+, for NER €x-compared to Table 2 due to minor changes in en-

tractors of higher quality. tity type definitions.
Systems and Extractors.We have evaluated the

quality and throughput of the following configu-
rations of systems and extractors. All extractor

have been configured with the same eight types ofe now focus on the throughput behaviorSyfs-
entities as described in Sectionfrson, Organiza- temT, and draw a comparison with the two ver-
tion, Location, Address, PhoneNumber, EmailAddress, sions of GATE. The datasets used in this exper-
URL andDateTime. iment are described in Table 1. Each experi-
ment was repeated three times and we report the
throughput of each system averaged across the
three executions.

Figure 10 shows the throughput of the three
e ANNIE+: the ANNIE NER library available systems on multipleEnron, datasets with aver-
in GATE v7 (build 4195) , configured with age document sizes of between 0.5KB and 100KB.
default resources, including the JAPE+ transdn this experiment, all systems ran with a max-
ducer. imum Java heap size of 1GB. As can be seen
i from Figure 10,T-NE is between 6 and 24 times
* ANNIE-Optimized: _the ANNIE NER library = gt \yhen compared withunie+. In turn, AN-
avallab!e in GATE v7 (build 3431), config- NIE+ is faster when compared BNNIE-Optimized
ured with default resources,_except that t_heon smaller document sizes (1.6 and respectively
default NE Jape transducer is replaced wit .2 times faster on documents of average size of

the Ontotext Jape_c Transdu_cer for_optimizedo_SKB and 1KB). HowevelNNIE+ performs 20%
performance, as discussed in Section 5. to 30% slower compared taNNIE-Optimized for

Set Up. Our experiments were run on a serverdocuments of average size 5KB or larger.

with two 2.8 GHz 4-core Intel Xeon CPUs and We have observed similar trends on the rest
32GB of memory, running OpenJDK v6. of the test collections. Table 5 lists the aver-
age throughput obtained from each system on the
larger datasets, and the maximum Java heap size
In this section, we verify that the extractors usedused in each experiment. When feasible, each sys-
in the study are comparable, to ensure a fair perttem was run with a maximum Java heap size of
formance comparison betwe&ystemT and the 1GB. OnFinance,, ANNIE-Optimized and ANNIE+

two versions of GATE. Table 4 compares the qual+equired at least 4GB, and respectively, 5GB of
ity of the Person extractors on th&nronMeetings maximum Java heap size to achieve a reasonable

SA.2 Throughput Evaluation

e T-NE: the NER library used in Section 5 with
SystemT v1.3 (commercially available as
Infosphere Biglnsights Text Analytics v1.3).

A.1 Quality Evaluation

Table 5: Throughput and maximum heap size

ANNIE-Optimized ANNIE+ T-NE
Dataset Throughpjt -Xmx ThroughpﬂtXm Throughps.xtXm

(KBls) | (GB) | (KBIs) |(GB) (KBls) |(GB
WebCraw] 58.14 T 7699 | 1| 61285 1
Financey| 41.61 1 3441 | 1| 87347 | 1
Finance, | 31.27 4 2541 | 5| 1075 | 1

throughpu®. We have observed thaiNE is be-
tween 13 and 40 times faster when compared to
ANNIE+ on the three datasets. Furthermore, the
throughput of -NE remains high on all collec-
tions, whereas the throughput &fiNIE+ degrades
rapidly with larger document sizes. The through-
put of ANNIE+ is 20% lower compared taNNIE-
Optimized on all three datasets.

8GATE v5 thrashed when ran with 3GB of maximum Java
heap size. Gate v7 thrashed when ran with a maximum Java
heap size of 4GB.

