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Federated Learning - Overview
How it works:
• Parties (P) collaboratively train a ML model, keeping training data to themselves
• Models are trained locally, within each party
• Local models’ parameters from parties are merged and distributed to parties, at the end or after each epoch
• Different topologies used in different trust models, often using an Aggregator (A)

P

P

P

A

Data

DataData

Model Parameters

Privacy Issues of Federated Learning
- privacy leakage of model output
- privacy disclosure of aggregation computation
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Hybrid Approach to Federated Learning 

P1

Aggregator

... …

P2 Pn
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(4) Composition of {𝑅,} and 
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(1) Send query request

Privacy Issues of Federated Learning
- privacy leakage of model output
- privacy disclosure of aggregation computation

Overview of existing FL framework

- combines secure multi-party computation (SMC) 
and differential privacy (DP) through reduced noise

Current approaches 

- very slow due to encryption algorithm used
- require multiple rounds of communication 
- do not support dynamic participation: dropouts and 

new additions are not allowed without full system re-
keying

- cannot prevent curious aggregators from getting 
partial decrypted data 

Limitation of current approaches 
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Existing approaches V.S. Our approach 

Comparison of privacy-preserving approaches in federated learning framework
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Comparison of SMC-based Secure Aggregation

(1) key setup & local training 
(2) encrypt model parameters 𝑐,*,9
(3) send 𝑐,*,9 to 𝒜
(4) combine cipher 𝑐;<= ← {𝑐,*,9}
(5) send back 𝑐;<=
(6) partial decrypt 𝑐&?@9 ← 𝑐;<=
(7) send 𝑐&?@9 to 𝒜
(8) (combine) decryption 
(9) update global model

Steps of SMC aggregation 

Aggregator 𝓐
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Our Approach
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Aggregator 𝓐 Aggregator 𝓐

P – SMC TP – SMC 

Issues • Current SMC protocols are not efficient enough
- crypto efficiency (time)
- communication steps

• Lack of support for dynamic participants
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Functional Encryption in a Nutshell

• In functional encryption for inner-product, a 
third-party authority that 
− generates the public key 𝑝𝑘 for encryptor to encrypt 

vector 𝒙 = [𝒙𝟏, … , 𝒙𝒏]
− generates functional private key s𝑘H,Q that is 

corresponding to a vector 𝒚 for the decryptor

• From now on, let us assume, there is a 
trusted third party other than aggregator 
to be involved in the federated learning

Functional Encryption for Inner-product [*]

𝐷-' 𝑓 𝐸&' 𝑥", … , 𝑥* , 𝒚 = ∑𝑥,𝑦,
without learning 𝑥", … , 𝑥*

𝑥", … , 𝑥* can be from one single source or multiple sources

𝑓 𝒙, 𝒚 = ∑𝑥,𝑦,

[*] Abdalla, Michel, Florian Bourse, Angelo De Caro, and David Pointcheval.  "Simple functional encryption schemes for inner products." In IACR PKC, pp. 733-751. 
Springer, Berlin, Heidelberg, 2015.
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AggregatorParties 

(1) Initialization: acquires public key {𝒑𝒌𝒊} for each participant 

Setup with 𝒎𝒔𝒌 and 𝒎𝒑𝒌

(1) Initialization: acquires function private key {𝑠𝑘H} for 𝒚 = 1,… , 1 *

(2) 𝑝, prepares inputs 𝑥, and encrypt {𝑐, = 𝐸\]^_, &'`(𝑥,)}, respectively

(3) Send {𝑐,}

Third Party Authority

(Non-interactive communication)

secure multi-party aggregation computation
- Parties 𝑃 = 𝑝",… , 𝑝,, … , 𝑝* , each party 𝑝, has input 𝑥,
- Aggregator acquire ∑ 𝑥, without learning specific 𝑥, of 𝑝,

(4) Collect {𝑐, = 𝐸\]^_, &'`(𝑥,)}
(5) Decrypt 𝑣 = 𝐷\]^_,-'c({𝑐,}), where 𝑣 is the result of  ∑ 𝑥,

[*] Abdalla, Michel, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. "Multi-input functional encryption for inner products: function-hiding realizations and constructions 
without pairings." In CRYPTO 2018.

Constructed from Multiple-input Functional Encryption (MIFE)[*]

Non-interactive Secure Computation
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Threat Model

• A trusted third party (TPA) that distributes keys

• An honest but curious aggregator, and the aggregator may 

collude with dishonest parties

• Parties may try to infer data from other participants through 

the final model or during the federated learning process

Aggregator

Parties 

Third Party Authority
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Hybrid Approach
- differential privacy + noise reduction through SMC
- privacy guarantee: model output / aggregation

Support Dynamic Participants
- Randomly drop out / join in

Efficiency Improvement 
- Efficient encryption/decryption algorithm
- Non-interactive secure computation

+TPA

P1

Aggregator

mpk
msk

(8) If (7) is ok, generate secret for 𝑤&:

(2) Public Key Distribution
... …

P2 Pn

𝑝𝑘,

𝑠𝑘H,de

6 𝑤& = (𝑤&( , 𝑤&g , … ,𝑤&h) 

𝐸&'g(𝑤7
ij) 𝐸&'h(𝑤*

ij)

Inference Prevention Module

𝑤k = ∑(𝑤&`𝑤,
ij) = 𝐷-'c,le ({𝐸&'` 𝑊,

ij })

+ +(3) Add DP-noise 𝑤"ij

(1) Setup

Local model 𝑤"

(4) Encrypt and Send  𝐸&'((𝑤"
ij)

(9) Decrypt

(5) Collect {𝐸&'` 𝑊,
ij }

7

Overview of HybridAlpha
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Inference Prevention Module

• Threshold t helps detect and stop attacks from 
curious aggregators and colluding participants, t
defines a threshold on the number of non-
colluding participants

• For example, if 𝑡 = 3, the module filters the 
following suspicious weight vector 𝑤&:
− infers one party’s model update:

• <0,0,0,1>
• <0.0009,0.009,0,1>
• <1> 

− exclude honest parties’ model update:
• <1,1,0,0>

• t has an impact on the number of dropouts 
allowed by the system
− Mainly, it helps set up the minimum quorum of 

participants replying to the system 
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Experimental Results
Cryptosystems Implementation
- Python + GMP/Charm-crypto library

Experimental Environment
- 44 core Intel Xeon E5-2699 v4 platform with 

384 GB of RAM
- CNN on MNIST dataset

Baselines
- FL without DP/ FL local DP
- TP-SMC FL (DP)
- P-SMC FL (DP)

On average reduces
the training time by 68%

the data transfer volume by 92%
While providing

the same model performance 
the same privacy guarantees as the 

existing solutions 

Baseline

HybridAlpha

Normal FL

Without DP

With DP

Local DP 
without 
encryption

Training time 
(hours)

F1 Score
(the higher,
the better)
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Thank you! Questions?

Find our AI Security and Privacy Solutions team at: 
https://resedit.watson.ibm.com/researcher/view_group.php?id=10276

https://resedit.watson.ibm.com/researcher/view_group.php?id=10276
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