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Abstract—We consider the problem of placing a minimum
number of monitors in a communication network to identify
additive link metrics from path metrics under topology changes.
The core of our solution is a suite of robust monitor placement
algorithms with different performance-complexity tradeoffs that
guarantee network identifiability across multiple topologies. In
particular, we show that the optimal (i.e., minimum) monitor
placement is the solution to a generalization of the hitting set
problem, for which we provide a polynomial-time algorithm to
construct the input. Although the optimal placement is NP-
hard to compute in general, we identify non-trivial special
cases that can be solved efficiently. We further demonstrate
how the proposed algorithms can be augmented to handle
unpredictable topology changes and tradeoffs between monitor
cost and adaptation cost. Our evaluations on real topologies verify
the effectiveness of the proposed algorithms over an optimal
monitor placement algorithm designed for static networks.

I. INTRODUCTION

Network tomography refers to the methodology of inferring

internal performance metrics (e.g., link delays/losses) of a

network from external metrics measured between nodes with

monitoring capabilities (monitors). Since its introduction [1],

network tomography has attracted significant interest in the

research community as a promising alternative to the approach

of direct measurement. Traditionally, network monitoring sys-

tems rely on diagnostic tools such as traceroute, pathchar [2],

and Network Characterization Service (NCS) [3] to directly

measure performance metrics of individual links by sending

active probes, which suffers a high measurement overhead

and requires cooperation (e.g., support of Internet Control

Message Protocol (ICMP)) from every internal node. In con-

trast, tomography-based monitoring only requires cooperation

of nodes employed as monitors and can utilize end-to-end

performance experienced by data packets to reduce the need

of active probes [4].

A major challenge in applying network tomography to

network state monitoring is the lack of a unique solution.

For example, consider the inference of link metrics that are

additive, i.e., the combined metric over multiple links is the

sum of individual link metrics (e.g., delays, jitters, log of

packet delivery ratio). Network tomography infers such link
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metrics by solving a system of linear equations, where the

unknown variables are the link metrics, and each measurement

path provides an equation that relates the metrics of traversed

links to the end-to-end measurement on this path. From linear

algebra, we know that the system has a unique solution if and

only if the measurement paths span the entire link space, i.e.,

the number of linearly independent paths equals the number

of links. However, past experience shows that without careful

design, it is frequently impossible to uniquely determine all

link metrics from path measurements [5], [6], [7].

This problem, known as the identifiability problem, has been

recognized in the literature with several solutions proposed to

place monitors so as to be able to identify all link metrics [8],

[9], [10], under the assumption that the network topology is

fixed. While the fixed-topology assumption is valid in wired

networks, applying network tomography in wireless networks

faces the additional challenge that the network topology may

vary dynamically at runtime due to factors such as node mobil-

ity and channel variation. While a straightforward solution is

to handle the changes reactively by repeatedly applying static-

network solutions to design a new monitor placement after

each topology change, such a solution can lead to frequent

reconfigurations and instability in the monitoring system. To

maintain seamless monitoring of link performance in such

dynamic networks, it is desirable to have a monitor placement

strategy that can handle topology changes proactively.

In this paper, we aim at developing monitor placement

algorithms that are robust against topology changes. In many

networks, it is possible to predict network topologies under

changes with certain accuracy. For example, we can predict

topology changes based on models of node mobility and com-

munication range [11], [12], [13], [14], patterns of link failures

[15], or directly from frequently occurring topologies in the

past. Given such prediction capabilities, we are interested in

two closely-related problems: (i) At the network planning

phase, how does one select locations for monitors such that

the monitors can ensure identifiability across all predicted

topology changes? (ii) At runtime, how does one adapt the

monitor placement so that we can still achieve identifiability

under unpredictable changes? In both problems, we wish to

use as few monitors as possible to minimize cost.

A. Related Work

Our work belongs to a family of monitor placement algo-

rithms for uniquely identifying link metrics from end-to-end
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measurements collected at monitors. Existing solutions can be

categorized based on how measurements are performed: (1)

traceroute-like round-trip probing, (2) end-to-end probing.

In category (1), each monitor (aka beacon) independently

computes metrics of a subset of links by sending round-

trip probes to all possible destinations along given paths.

Algorithms based on set covering are proposed to select the

minimum set of monitors such that their monitored link sets

cover all the links [16], [17]. The problem is proved to be

NP-hard, and the NP-hardness persists even if monitors can

control the first hop of probes [18]. In category (2), link

metrics are inferred from measurements of all monitors using

network tomography. Under the assumption that monitors can

measure arbitrary cycles or paths (possibly) containing cycles,

[8] derives the first necessary and sufficient condition on the

network topology for identifying additive link metrics from

end-to-end measurements. Based on this condition, an efficient

monitor placement algorithm is developed. The condition is

later modified by [9] to incorporate an additional constraint

that measurement paths must be cycle-free, which allows

the use of data packets for measurements without incurring

forwarding loops. Based on the modified condition, a linear-

complexity algorithm is developed to identify all link metrics

using the minimum number of monitors. Interestingly, while

the optimal monitor placement is NP-hard to compute under

uncontrollable routing (category (1)), it can be computed

efficiently under controllable routing, with or without cycles

(categories (2)).

Existing work mostly assumes static network topology and

routing with a few exceptions in category (1). Specifically, [16]

and [17] propose variations of the set-covering-based solution

to select monitors that are guaranteed to cover all active links

under a limited number of link failures or route changes. For

network tomography (category (2)), the problem is much more

complicated as the identifiability of a given link is determined

by measurements between all monitors and can no longer be

attributed to a single monitor. We study the problem of monitor

placement under the measurement model in [9] but consider

arbitrary topology changes. Although it is possible to apply

the algorithm in [9] to every possible topology and maintain

identifiability by placing a monitor on every selected node,

such a solution can require an unnecessarily large number of

monitors. In this work, we aim at reducing the number of

monitors by jointly considering the required monitor locations

under different topologies.

A key enabler in robust monitor placement is knowledge of

potential topologies after changes. Modeling and prediction

of topology changes have been studied in the context of

wireless ad-hoc and vehicular networks, where techniques

including adaptive filtering and fluid dynamic modeling have

been proposed to predict link changes [11], [12], [13], [14].

In this work, we assume the existence of such a topology

predictor and focus on developing robust monitor placement

algorithms based on the predicted topologies.

B. Summary of Contributions

We study robust monitor placement for inferring additive

link metrics from end-to-end measurements along cycle-free

paths under dynamic topology changes. Our contributions are:

1) We develop robust monitor placement algorithms that

place monitors to simultaneously achieve identifiability for a

given set of topologies, including: (i) a one-shot placement

algorithm that applies an existing algorithm for static networks

to an aggregate topology, (ii) an incremental placement al-

gorithm that sequentially places monitors in each topology,

and (iii) an optimal placement algorithm that jointly consid-

ers monitor requirements of different topologies by casting

the problem as a generalized hitting set problem. All these

algorithms guarantee identifiability with different tradeoffs

between number of monitors and complexity. We also provide

an algorithm to remove unnecessary monitors in any robust

placement by solving the dual of the joint placement problem.

2) Although the robust monitor placement problem is NP-

hard in general (due to the hardness of the hitting set problem),

we identify several cases where the problem can be solved ef-

ficiently. In particular, one case corresponds to static networks

with fixed topologies, explaining why the problem is solvable

(by [9]) in this case.

3) Using the above solution as a building block, we present

several augmentations to address practical issues including

topology selection, unpredictable changes, and tradeoff be-

tween offline placement and online adaptation.

4) We evaluate the proposed solutions on realistic dynamic

topologies driven by node mobility traces. Besides verifying

the performance-complexity tradeoffs of various algorithms,

our results show that it is possible for a small number of

monitors (10−30%) to maintain identifiability across hundreds

of topology changes for dense networks, and our monitor

placement is highly robust against error in topology prediction.

The rest of the paper is organized as follows. Section II for-

mulates the problem of robust monitor placement. Section III

reviews existing results in static networks, based on which

Section IV presents a set of algorithms for robust monitor

placement in dynamic networks. Since the general problem

is NP-hard, Section V identifies special cases that can be

solved efficiently. Section VI discusses practical challenges

and solutions. Section VII evaluates the proposed solutions

via simulations. Section VIII concludes the paper.

II. PROBLEM FORMULATION

A. Network Models

Consider a fixed set of nodes V which form a (possibly

partitioned) network with time-varying topologies. We assume

that the network topology can be predicted (up to a certain

accuracy) at the time the network is planned using existing

topology prediction models such as [11], [12], [13], [14].

Based on the prediction, we identify a set of topologies of

interest, represented by undirected graphs {Gt : t = 1, . . . , T},
where Gt = (V, Lt) is a graph representing the t-th topology.

We note that these topologies do not need to occur sequentially

in time and do not need to be exclusive. We first focus on

monitor placement for given topologies and defer the selection

of topologies to Section VI-A. Although we focus on link

changes in this paper, node changes can also be handled by

modeling them as special link changes; see Section VI-D.
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B. Objective of Network Tomography

Given a topology G = (V, L) (subscript omitted), network

tomography aims at inferring the performance metrics of

individual links in L from end-to-end metrics along paths

that are monitored. In particular, we are interested in inferring

additive metrics where the path metric equals summation of

corresponding link metrics; examples of such metrics include

delay, jitter, and log delivery rate (under the assumption of

independent losses across links). Let w = (w1, . . . , w|L|)
T be

the column vector of link metrics, and c = (c1, . . . , c|P |)
T be

the column vector of path metrics for a set of monitored paths

P . These metrics are related by the following linear system:

Rw = c, (1)

where R = (Rij) is a |P | × |L| measurement matrix with

Rij ∈ {0, 1} denoting whether link j is present on path

i. The goal of network tomography is to invert this linear

system to solve for w given R and c. A basic requirement

of network tomography is therefore the invertibility of this

system, captured as follows.

Definition 1. A network G is identifiable if all its link metrics

can be uniquely determined from path metrics, i.e., if the

measurement matrix R in (1) has full column rank.

Clearly, whether G is identifiable depends on the set of mon-

itored paths. We assume that we can only monitor paths that

start/end at certain nodes employed as monitors. We further

assume that monitors can control the routing of measurement

packets as long as the path starts and ends at different monitors

and does not contain repeated nodes, i.e., we can measure

any simple path between monitors. Under this assumption,

whether G is identifiable or not is completely determined by

the placement of monitors. If G is identifiable under a given

monitor placement, we say that this placement identifies G. In

the degenerate network of only one isolated node, we assume

the network is identifiable if and only if this node is a monitor.

C. Objective of Monitor Placement

Our main objective in monitor placement is to select a

smallest subset of nodes as monitors during network planning

such that we can guarantee identifiability for all the topologies

of interest. We will discuss later (Section VI) how the planned

monitor placement can be combined with on-demand monitor

placement to maintain identifiability at reduced adaptation

cost.

III. IDENTIFIABILITY AND MONITOR PLACEMENT FOR

STATIC NETWORKS

We start by reviewing existing results from [9], including

the condition for a monitor placement to achieve network iden-

tifiability and an efficient algorithm to satisfy this condition

by placing the minimum number of monitors, all designed for

a static network with a fixed topology.

A. Identifiability Condition

Under the assumption of controllable routing, the definition

of identifiability (Definition 1) does not directly allow efficient

testing of whether a given monitor placement achieves identi-

fiability, as there can be exponentially many monitored paths.
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Fig. 1. (a) G with κ (κ ≥ 3) monitors; (b) Gex with two virtual monitors.

Fortunately, existing work [9] has established an equivalent

condition in terms of the topology and the placement of

monitors that can be tested efficiently. This condition is based

on an extended graph Gex constructed as follows: given a

network G with κ (κ ≥ 3) monitors1, Gex is obtained by adding

two virtual monitors m′
1

and m′
2
, and 2κ virtual links between

each pair of virtual-actual monitors, as illustrated in Fig. 1.

The identifiability condition is then expressed as a condition

on the connectivity of Gex as follows.

Theorem III.1. [9] Using κ (κ ≥ 3) monitors, G is identifiable

if and only if the associated extended graph Gex is 3-vertex-

connected, i.e., it remains connected after removing any two

nodes.

B. Minimum Monitor Placement for Static Networks

The above result has a direct application in monitor place-

ment. Given the identifiability condition in Theorem III.1, the

objective of monitor placement is changed to placing the min-

imum number of monitors to ensure that the extended graph

Gex is 3-vertex-connected. The solution is an algorithm, called

Minimum Monitor Placement (MMP), that decomposes G into

subgraphs with certain properties (triconnected components)

and sequentially places monitors in each subgraph to satisfy

the condition in Theorem III.1 [9]. We briefly review MMP

for completeness.

Definition 2. A k-connected component of G is a maximal

sub-graph of G that is either (i) k-vertex-connected, or (ii) a

complete graph with up to k vertices. The case of k = 2 is

also called a biconnected component, and k = 3 a triconnected

component.

A biconnected component is a sub-graph connected to the

rest of the graph by cut-vertices, and a triconnected component

(within a biconnected component) is a sub-graph connected

to the rest by 2-vertex cuts2. We refer to common vertices

between a bi/triconnected component and its neighboring

components as separation vertices, which are cut-vertices for

a biconnected component, and cut-vertices as well as vertices

in 2-vertex cuts for a triconnected component.

Algorithm 1 summarizes the steps of MMP. Given a sub-

graph D, let V (D) denote all the nodes in D, SD denote the

separation vertices in D, and MD denote the monitors placed

at internal nodes (i.e., non-separation vertices) of D. MMP

processes each connected component separately (the original

algorithm in [9] assumes connected graph). For each connected

component, MMP first places monitors at nodes with degree 1
or 2 (line 2), where the degree of node v refers to the number

1It has been shown [9] that a network with more than one link needs at
least three monitors to identify all link metrics.

2Since not all subgraphs separated by 2-vertex cuts form triconnected
components according to Definition 2, an iterative procedure is proposed in
[9] to fix this issue by adding virtual links between nodes in 2-vertex cuts.
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Algorithm 1: Minimum Monitor Placement (MMP) [9]

input : Network topology G
output: A subset of nodes in G as monitors

1 foreach connected component Ck of G do
2 choose all the nodes with degree less than 3 as monitors;
3 partition Ck into biconnected components B1,B2, . . .;
4 foreach biconnected component Bi with at least 3 nodes do
5 partition Bi into triconnected components T1, T2, . . .;
6 foreach triconnected component Tj do
7 compute STj

and MTj
;

8 if |STj
|+ |MTj

| < 3 then
9 randomly place 3− |STj

| − |MTj
| monitors at

nodes in V (Tj) \ (STj
∪MTj

);
10 end
11 end
12 compute SBi

and MBi
;

13 if |SBi
|+ |MBi

| < 3 then
14 randomly place 3− |SBi

| − |MBi
| monitors at

nodes in V (Bi) \ (SBi
∪MBi

);
15 end
16 end
17 compute MCk

;
18 if |MCk

| < 3 then
19 randomly place min(3, |V (Ck)|)− |MCk

| monitors at
nodes in V (Ck) \MCk

;
20 end
21 end

of neighbors of v. It then decomposes the component into

biconnected and then triconnected components (lines 3 and

5), which can be computed in linear time using fast graph

algorithms in [19] and [20]. Based on the decomposition,

MMP selects monitors such that each bi/triconnected com-

ponent with at least three nodes has at least three nodes that

are separation vertices or monitors (lines 9 and 14). Finally,

it places additional monitors if necessary to ensure that each

connected component with at least three nodes has at least

three monitors (line 19)3.

MMP is computationally efficient with a complexity of

O(|V | + |L|) for G = (V, L) [9]. It is also provably optimal

in the following sense.

Theorem III.2. [9] Given an arbitrary network topology G,

MMP places the minimum number of monitors to identify G.

Key observations: MMP places two types of monitors:

• deterministically placed monitors: nodes with degree one

or two have to be monitors (line 2), as otherwise their

neighboring links are not measurable by simple paths;

• randomly placed monitors: it suffices to ensure at least

three nodes that are either separation vertices or monitors

in each bi/tri/1-connected components, but the exact

monitor locations can be arbitrary (lines 9, 14, 19).

We will leverage these observations in deriving monitor place-

ment algorithms for dynamic networks.

IV. ROBUST MONITOR PLACEMENT FOR DYNAMIC

NETWORKS

In a dynamic network, the topology may vary over time. Let

{Gt : t = 1, . . . , T} denote the set of topologies of interest.

3In case of a component with only one or two nodes, all nodes are selected
as monitors.
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Fig. 2. Monitor placement for two topologies (the optimal monitor placement
is {c, f, h}): (a) G1 (3-vertex-connected); (b) G2 (2-vertex-connected, with a
2-vertex cut {d, e}).

Based on the identifiability condition in Theorem III.1, the

problem of robust monitor placement can be cast as follows:

select a minimum set of nodes M ⊆ V as monitors such that

for each t = 1, . . . , T , the extended graph Gt,ex constructed

from topology Gt and monitors M is 3-vertex-connected.

Given a placement algorithm like MMP that guarantees

identifiability for a single topology, one can guarantee identi-

fiability for all the T topologies by applying MMP to compute

a monitor placement Mt for each Gt, and then taking the

union M =
⋃T

t=1
Mt as the overall monitor placement. Such

a solution, however, may select many redundant monitors

as it fails to consider the common need of monitors across

topologies. For example, Fig. 2 shows a sample network with

two possible topologies G1 and G2. Since G1 in Fig. 2 (a) is

3-vertex-connected, selecting any three nodes as monitors can

achieve identifiability according to Theorem III.1. In contrast,

for G2 in Fig. 2 (b), node sets {a, b, c} and {f, g, h} must

each have at least one monitor according to MMP, although

the total number of required monitors is still three. Hence,

applying MMP separately to G1 and G2 may generate the

following monitor placements: M1 = {a, b, c} for G1, and

M2 = {c, f, h} for G2, i.e., |M | = |
⋃

2

t=1
Mt| = 5.

Nevertheless, M2 itself can identify both G1 and G2, i.e., two

redundant monitors are selected by MMP.

This example illustrates the need to jointly consider all

topologies during monitor placement. In this regard, we outline

a set of solutions that take such information into account with

various tradeoffs between performance (measured by number

of monitors) and complexity.

A. One-Shot Placement

Intuitively, placing monitors to identify multiple topologies

is more complex than placing monitors to identify a single

topology. Interestingly, we show that to identify multiple

topologies, it suffices for the monitor placement to identify

a single auxiliary topology referred to as the base graph. The

base graph, denoted by Gb, for a set of topologies {Gt =
(V, Lt) : t = 1, . . . , T} is defined as Gb := (V,

⋂T

t=1
Lt),

i.e., it is the maximum common subgraph of all topologies.

By definition, Gb is less connected than any Gt. Meanwhile,

we see from the identifiability condition in Theorem III.1 that

if a network G is identifiable under a monitor placement M ,

then it remains identifiable under M after adding links (be-

cause adding links to a 3-vertex-connected graph Gex results

in a 3-vertex-connected graph). This observation immediately

leads to the following result.

Lemma IV.1. If a monitor placement M achieves identifia-

bility for the base graph Gb of topologies {Gt = (V, Lt) : t =
1, . . . , T}, then it achieves identifiability for each individual

topology Gt (t = 1, . . . , T ).
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This result motivates a one-shot placement algorithm: first,

compute the base graph Gb by identifying common links in

all topologies, and then apply MMP to compute a monitor

placement that identifies Gb, and hence achieves identifiability

for all topologies Gt (t = 1, . . . , T ).

Generally, such one-shot placement uses more than the

minimum number of monitors. For example, if all Gt (t =
1, . . . , T ) are 3-vertex-connected, then by Theorem III.1, an

arbitrary placement of three monitors already achieves identi-

fiability for all Gt; however, since the base graph may not be

3-vertex-connected, MMP may place more than three monitors

in Gb, leading to a suboptimal placement.

Complexity: The base graph can be computed in

O(T mint |Lt|) time (assuming the existence of a link in a

topology can be checked in constant time), and applying MMP

to the base graph takes O(|V |+mint |Lt|) time. The overall

complexity of the one-shot placement algorithm is therefore

O(|V |+ T mint |Lt|).

B. Incremental Placement

A natural alternative to one-shot placement is to apply

MMP to each topology. Instead of applying the original MMP,

however, we use a variation that takes into account existing

monitors to reduce the number of additional monitors.

Specifically, in addition to a topology G, we modify MMP

to take an additional input of M0, the existing set of monitors.

Redefine MD to denote the internal (i.e., non-separation-

vertex) monitors in a subgraph D among both existing and

newly placed monitors. Then the modified algorithm, referred

to as incremental MMP (IMMP), follows the same steps as in

Algorithm 1, except that it only returns the set of newly placed

monitors Ma. We have the following property of IMMP.

Lemma IV.2. Given a topology G and existing monitors M0,

IMMP places the minimum number of additional monitors Ma

such that M0 ∪Ma identifies G.

Proof. First, M0∪Ma contains a (possible) monitor placement

by MMP as a subset, and thus it identifies G since the

placement by MMP identifies G by Theorem III.2. Moreover,

for any M ′
a with |M ′

a| < |Ma|, the placement M0 ∪M
′
a must

violate the condition in line 8, 13, or 18 for a subgraph D
of G (D can be a tri/bi/1-connected component). One of the

following cases will occur: (i) D is an isolated non-monitor,

(ii) D is a two-node graph connected by one link, where at

most one node is a monitor, or (iii) D contains at least three

nodes, out of which at most two are separation vertices or

monitors. In cases (i–ii), D is not identifiable by definition; in

case (iii), G does not satisfy the condition in Theorem III.1

as one can remove the separation vertices/monitors in D (at

most two of them) to disconnect D from the rest of Gex. Thus,

M0 ∪Ma is the minimum placement that identifies G.

The incremental placement algorithm based on IMMP

works as follows: for each Gt = G1, . . . ,GT (M0 = ∅),

1) Ma,t ←IMMP(Gt, Mt−1);
2) Mt ←Mt−1 ∪Ma,t.

Then MT is guaranteed to achieve identifiability for all

G1, . . . ,GT .

Complexity: Since IMMP has the same complexity as MMP,

i.e., O(|V |+ |Lt|) for each Gt, the overall complexity of the

incremental placement algorithm is O(T |V |+
∑T

t=1
|Lt|).

C. Joint Placement

Despite being locally optimal (Lemma IV.2), the overall

placement generated by IMMP is suboptimal in general. Such

suboptimality is caused by the lack of a joint consideration of

monitor requirements of all topologies so as to satisfy them

with the minimum number of monitors. Joint consideration of

all monitor requirements is highly nontrivial, as each topology

can have exponentially many, equally optimal monitor place-

ments, corresponding to all combinations of possible outcomes

of lines 9, 14, and 19 of Algorithm 1. The brute-force strategy

of enumerating all possible placements that are optimal in

individual topologies to find a minimum union is clearly

inefficient. Our idea in addressing this issue is to decouple the

problem into two stages: (i) constraint characterization and (ii)

monitor selection.

1) Constraints on Monitor Placement: Our key insight

is that all possible placements generated by MMP can be

succinctly encoded into a set of constraints. Specifically,

instead of randomly picking one placement as in MMP, we

record the constraints on monitor placement in the form of

set-integer pairs F = {(Si, ki) : i = 1, 2, . . .}, where each

Si ⊆ V is a set of candidate monitors, and ki is the minimum

number of monitors selected from this set. For example, if

MMP randomly places a monitor at any node in set S, we can

represent all possible placements by a constraint (S, 1). Given

a topology G, we can compute these constraints explicitly

using an algorithm called Feasible Monitor Placement (FMP).

As shown in Algorithm 2, FMP follows a similar procedure

as MMP, except that instead of selecting specific nodes as

monitors, FMP records the constraints on where monitors

should be placed such that there is one constraint for each

node that must be a monitor (line 3) and each component

that requires at least one monitor (lines 10, 14, 17). Here SD

again denotes the set of separation vertices in subgraph D. We

can show that the resulting constraints are both sufficient and

necessary for identifying G.

Lemma IV.3. The constraints computed by FMP for an

input topology G are necessary and sufficient for a monitor

placement to identify G, i.e., any monitor placement M ⊆ V
identifies G if and only if M satisfies F , i.e., |M ∩ Si| ≥ ki
for all (Si, ki) ∈ F .

Proof. If M satisfies F , then there exists a possible placement

by MMP that is a subset of M . Hence, M must identify G as

MMP is guaranteed to achieve identifiability by Theorem III.2.

If M does not satisfy F , then by arguments similar to the proof

of Lemma IV.2, Gex does not satisfy Theorem III.1 and thus

M cannot identify G.

Discussion: It is possible that not all constraints are needed,

e.g., if the total number of monitors required by triconnected

components within their parent biconnected component ex-

ceeds the number of monitors required by the biconnected

component, then we do not need a separate constraint for this

biconnected component. We can avoid redundant constraints
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Algorithm 2: Feasible Monitor Placement (FMP)

input : Network topology G
output: Monitor placement constraints F

1 foreach connected component Ck of G do
2 foreach node v with degree less than 3 do
3 add ({v}, 1) to F ;
4 end
5 partition Ck into biconnected components B1,B2, . . .;
6 foreach biconnected component Bi with at least 3 nodes do
7 partition Bi into triconnected components T1, T2, . . .;
8 foreach triconnected component Tj do
9 if |STj

| < 3 then
10 add (V (Tj) \ STj

, 3− |STj
|) to F ;

11 end
12 end
13 if |SBi

| < 3 then
14 add (V (Bi) \ SBi

, 3− |SBi
|) to F ;

15 end
16 end
17 add (V (Ck), min(3, |V (Ck)|)) to F ;
18 end

by counting the number of monitors for each bi/tri/1-connected

component due to existing constraints (by mimicking MMP)

and adding a new constraint to F only if the current number

of monitors is not sufficient.

2) Constrained Monitor Selection: After obtaining the

constraints F by applying FMP to each topology Gt
(t = 1, . . . , T ), we convert the problem to one of selecting

a minimum subset M ⊆ V such that |M ∩ Si| ≥ ki for all

(Si, ki) ∈ F . We refer to this problem as the minimum hitting

set problem (min-HSP) with input (V, F), as it contains the

classic hitting set problem (HSP) as a special case (when

ki ≡ 1). Because the constraints computed by FMP are neces-

sary and sufficient for achieving identifiability (Lemma IV.3),

we can obtain an optimal monitor placement by solving the

corresponding min-HSP optimally, stated as follows.

Theorem IV.4. Let F be the overall set of constraints com-

puted by applying FMP to each topology Gt (t = 1, . . . , T ).

Then the optimal solution to min-HSP(V,F) yields an optimal

(i.e., minimum) monitor placement for identifying G1, . . . ,GT .

Proof. First, the monitor placement computed by min-

HSP(V, F) satisfies all the constraints in F and thus iden-

tifies all G1, . . . ,GT since the constraints in F are sufficient

(Lemma IV.3). Moreover, by definition, any placement M
involving fewer monitors than min-HSP(V, F) must violate

at least one constraint in F . Suppose the violated constraint

is generated by Gt. Then M cannot identify Gt since the

constraints are necessary (Lemma IV.3).

The challenge is that min-HSP is NP-hard since HSP

is HP-hard. In fact, the inapproximability result for HSP

implies that no polynomial-time algorithm can guarantee

an approximation ratio smaller than (1 − o(1)) log |V | [21].

Although given constraints F , the problem of constrained

monitor selection is a special case of min-HSP, we show that

it is still NP-hard by a reduction from (general) HSP.

Theorem IV.5. The optimal monitor placement for arbitrary

topologies Gt (t = 1, . . . , T ) is NP-hard.

Proof. We prove hardness of the optimal monitor placement

problem by reducing HSP to it as follows. Given an HSP with

input (U, E), where E = {S1, . . . , SN} ⊆ 2U is a collection

of subsets of a universe U such that at least one item needs

to be selected from each Si. The goal of HSP is to satisfy

this requirement by selecting a minimum subset of U . We

introduce five dummy items v1, . . . , v5, such that none of them

is in U . For each Si ∈ E , we construct a topology Gi consisting

of three cliques (i.e., complete graphs): a clique formed by

items in Si ∪{v1, v2}, a clique formed by items in (U \Si)∪
{v1, . . . , v4}, and a clique (i.e., triangle) formed by items in

{v3, v4, v5} (each item is represented by a node). It can be

verified that Gi is a biconnected graph with three triconnected

components separated by 2-vertex cuts {v1, v2} and {v3, v4},
for which the monitor placement constraints generated by FMP

are (Si, 1) and ({v5}, 1). By Theorem IV.4, the optimal

monitor placement for topologies {G1, . . . ,GN} constructed

as above is the solution to min-HSP(U ∪{v1, . . . , v5}, F) for

F = {(S1, 1), . . . , (SN , 1), ({v5}, 1)}. Denote the optimal

placement for {G1, . . . ,GN} by M∗. Then M∗ \ {v5} is an

optimal solution to HSP(U, E) (note that M∗ must contain

v5). Thus, the optimal monitor placement problem is at least

as hard as HSP, which is NP-hard.

In our problem, we can speed up computation by first

determining nodes that must be monitors and excluding them

from subsequent selection. Specifically, let V ′ denote all

the nodes with degree less than three in at least one of

G1, . . . ,GT . We know that nodes in V ′ have to be monitors

to achieve identifiability, captured by degenerate constraints

F ′ = {({v}, 1) : v ∈ V ′}. It thus suffices to focus on

selecting the remaining monitors by solving a reduced min-

HSP on input (V \ V ′, F \ F ′).
Moreover, the greedy heuristic, known to achieve the opti-

mal approximation ratio of (1+ log |V |) for HSP [22], can be

applied to solve min-HSP efficiently4. For our problem, the

greedy heuristic works as follows: while there are unsatisfied

constraints, select the monitor that helps in satisfying the

maximum number of unsatisfied constraints, i.e., given current

monitors M , select v as the next monitor such that v is

in the maximum number of sets among {Si : (Si, ki) ∈
F , |Si ∩M | < ki}.

Complexity: Together, FMP and the greedy heuristic for

min-HSP provide a joint monitor placement algorithm. FMP

has the same complexity as MMP, which is O(|V |+ |Lt|) for

each Gt (t = 1, . . . , T ) [9]. The greedy heuristic has complex-

ity O(T |V |2), as there are O(T |V |) constraints and an O(|V |)-
complexity update upon satisfying each constraint (to compute

the number of unsatisfied constraints each candidate monitor

is involved in). Thus, the overall complexity is O(T |V |2).

D. Refinement of Placement

Due to the hardness of the optimal solution, the computed

monitor placement generally contains more than the minimum

number of monitors. A natural question is therefore whether

we can refine this placement by removing a subset of monitors

without losing identifiability. As shown below, the problem of

4Note that the log-approximation may not hold for min-HSP.
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Algorithm 3: Redundant Monitor Discovery (RMD)

input : Network topology G, monitor placement M that
identifies G

output: Monitor removal constraints R
1 foreach connected component Ck of G do
2 foreach node v with degree less than 3 do
3 add ({v}, 0) to R;
4 end
5 partition Ck into biconnected components B1,B2, . . .;
6 foreach biconnected component Bi with at least 3 nodes do
7 partition Bi into triconnected components T1, T2, . . .;
8 foreach triconnected component Tj do
9 if |STj

| < 3 then
10 add (MTj

, |MTj
| − 3 + |STj

|) to R;
11 end
12 end
13 if |SBi

| < 3 then
14 add (MBi

, |MBi
| − 3 + |SBi

|) to R;
15 end
16 end
17 add (MCk

, |MCk
| −min(3, |V (Ck)|)) to R;

18 end

(redundant) monitor removal can also be decoupled into two

stages.

1) Constraints on Monitor Removal: The problem of

characterizing constraints on monitor removal is similar to

that of characterizing constraints on monitor selection (Sec-

tion IV-C1). Since the constraints computed by FMP are

necessary and sufficient, we can follow a similar procedure to

compute the complement constraints for removing monitors.

The algorithm, referred to as Redundant Monitor Discovery

(RMD), is summarized in Algorithm 3, where MD denotes

the set of internal monitors in a subgraph D; note that in

contrast to MMP where internal monitors vary during monitor

placement, here MD is fixed for a given D, as it is based

on a given monitor placement. RMD follows similar steps as

FMP, except that it computes constraints on monitor removal

(lines 3, 10, 14, 17). Each constraint is also represented as a

set-integer pair (Si, ki), but now it means that no more than ki
monitors from Si can be removed to maintain identifiability.

It is easy to verify that starting from a monitor placement

that identifies G, satisfying the constraints computed by RMD

in removing monitors is necessary and sufficient for the re-

maining monitors to satisfy the constraints computed by FMP.

This duality in combination with Lemma IV.3 immediately

yields the following result.

Lemma IV.6. Given a monitor placement M that identifies

G, RMD computes the necessary and sufficient constraints for

monitor removal, i.e., for any subset of monitors M ′ ⊂ M ,

M \M ′ identifies G if and only if M ′ satisfies R, i.e., |M ′ ∩
Si| ≤ ki for all (Si, ki) ∈ R.

Discussion: As in FMP, it is also possible that not all

constraints computed by RMD are needed to ensure identi-

fiability. For example, if the parent biconnected component of

a triconnected component contains fewer redundant monitors,

then we do not need a separate constraint for this triconnected

component. We can simplify the constraints by removing

redundant constraints before adding each new constraint, i.e.,

when adding a constraint (S, k), all existing constraints
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Fig. 3. Example of placement algorithms (an optimal monitor placement is
{a, d, g, h}): (a) G1 and its decomposition; (b) G2 and its decomposition; (c)
base graph Gb of G1 and G2 and the decomposition of Gb.

(S′, k′) with S′ ⊆ S and k′ ≥ k can be removed.

2) Constrained Monitor Removal: Given an initial place-

ment M0 known to achieve identifiability for all Gt (t =
1, . . . , T ) and the constraints R obtained by applying RMD

to each Gt, the problem of selecting the maximum redundant

monitors to remove is converted to a problem of selecting a

maximum subset M ′ ⊂ M0 such that |M ′ ∩ Si| ≤ ki for all

(Si, ki) ∈ R. We refer to this problem as the maximum hitting

set problem (max-HSP) with input (M0, R). The duality

between minimum monitor selection and maximum redundant

monitor removal implies an alternative way of computing the

optimal placement as follows.

Corollary IV.7. Let R be the overall set of constraints

computed by applying RMD to each of G1, . . . ,GT with an

initial placement M0 = V . Let M ′ be the optimal solution to

max-HSP(V,R). Then V \M ′ is an optimal monitor placement

for identifying G1, . . . ,GT .

Unfortunately, max-HSP is again NP-hard. In fact, it is

exactly as hard as min-HSP because solving a min-HSP for

input (V, {(Si, ki) : i = 1, 2, . . .}) is equivalent to solving

a max-HSP for input (V, {(Si, |Si| − ki) : i = 1, 2, . . .}).
We can apply a greedy heuristic similar to the one used

in Section IV-C2: while there are redundant monitors (i.e.,

monitors such that removing any one of them does not violate

any constraint), remove the redundant monitor that is involved

in the minimum number of constraints.

Complexity: Although max-HSP has the same complexity as

min-HSP on the same input, the actual complexity of monitor

removal depends on the size of the initial placement, which

can be much smaller than |V |. Specifically, RMD has the

same complexity as FMP, which is O(T |V | +
∑

t |Lt|) for

processing G1, . . . ,GT . The greedy heuristic for max-HSP has

complexity O(T |V | · |M0|) to select from a size-|M0| set

under O(T |V |) constraints. The overall complexity of refining

an initial placement M0 using RMD and greedy max-HSP is

therefore O(T |V | · |M0|+
∑

t |Lt|).

Example: Fig. 3 illustrates an example of applying dif-

ferent algorithms to identify G1 and G2. Using the one-shot

placement, we first obtain the base graph Gb of G1 and G2
as shown in Fig. 3 (c) and then apply MMP to Gb, which
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yields a monitor placement {a, d, f, h, g}. In comparison,

the incremental placement first applies MMP to G1, which

selects {b, c, f, h} as monitors. Based on these monitors,

it then checks if further monitor placement is required in

G2. Since nodes a and g (degree less than three in G2)

must be monitors, the incremental placement finally selects

monitors {b, c, f, h, a, g}. Meanwhile, it can be verified using

Theorem III.1 that monitor placement {a, d, g, h} identifies

both G1 and G2 and is thus an optimal placement (since G1
already requires 4 monitors); therefore, both one-shot and

incremental placements select redundant monitors. In contrast,

the joint placement first computes the placement constraints:

({a, b}, 1), ({a, b, c, d}, 2), ({h}, 1), and ({f, h, g}, 2) for G1,

and ({a}, 1), ({g}, 1), and ({c, d, e, f, g, h}, 2) for G2. It then

applies the greedy heuristic to solve the min-HSP problem

under these constraints, which yields an optimal monitor

placement {a, g, h, d}. Following similar procedures, we can

show that the refined placement also generates the same

optimal monitor placement.

V. OPTIMALITY CONDITIONS FOR ROBUST MONITOR

PLACEMENT

We have seen from Section IV-C that, unlike the monitor

placement problem in a static network, optimal monitor place-

ment in a dynamic network is generally hard to compute even

with knowledge of topologies. This motivates us to identify

conditions under which the problem can be solved optimally.

In this section, we investigate several such conditions in the

order of increasing generality and identify the optimal solution

in each case5.

A. Optimality Condition for One-Shot Placement

An easy lower bound on the minimum number of monitors

needed by a robust placement is the maximum number of

monitors placed by MMP over all topologies. Therefore, if

the number of monitors needed to identify the base graph Gb
matches the lower bound, the one-shot placement based on Gb
is guaranteed to be optimal.

Theorem V.1. If ∃t ∈ {1, . . . , T} such that the number of

monitors placed by MMP in Gt equals the number of monitors

placed by MMP in Gb, then the one-shot placement is optimal.

Remark: Intuitively, this condition is satisfied when the link

sets of different topologies have a (roughly) nested structure.

A special case of this condition is when Gb = Gt for some

t, i.e., Gt is a subgraph of all other topologies Gt′ for t′ ∈
{1, . . . , T} \ t.

B. Optimality Condition for Incremental Placement

Generally, the performance of incremental placement is sen-

sitive to the order of applying IMMP to different topologies.

In a special case where all topologies are 3-vertex-connected,

however, the order no longer matters, and the incrementally

computed placement is guaranteed to be optimal.

5Note that the conditions are sufficient but not necessary, i.e., it is possible
for a given solution to be optimal when the corresponding optimality condition
does not hold.
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Fig. 4. A network with three biconnected (also triconnected) components Bi (i =

1, . . . , 3).

Theorem V.2. If G1, . . . ,GT are all 3-vertex-connected, then

incremental placement is optimal regardless of the order of

processing the topologies.

Proof. By MMP (Algorithm 1), we know that we need three

and only three monitors to identify a 3-vertex-connected

topology, and the three monitors can be placed arbitrarily.

Therefore, incremental placement achieves the minimum num-

ber of monitors, and its performance is invariant to the order

of processing the topologies.

Remark: Although under this condition, incremental place-

ment degenerates into MMP (monitor placement for any Gt
identifies all the other topologies), it is different from one-

shot placement. In particular, the base graph of multiple 3-

vertex-connected graphs may not be 3-vertex-connected, and

thus one-shot placement may need more than three monitors.

C. Optimality Condition for Joint Placement

As explained in Section IV-C2, the difficulty in solving

the monitor placement problem optimally is caused by the

hardness of min-HSP. Therefore, any condition that allows

min-HSP to be solved optimally in polynomial time leads to

an optimality condition for a polynomial-time joint placement

algorithm. To this end, we establish a condition for optimally

solving min-HSP that generalizes a well-known condition

for solving HSP and present a polynomial-time algorithm to

provide an optimal solution when this condition is satisfied.

It is well known that HSP is equivalent to the set covering

problem (SCP). Naturally, min-HSP can also be represented

by a variation of SCP, which we call the multi-set covering

problem (MSCP). MSCP differs from SCP in that instead of

requiring each item to be covered at least once, it can require

each item to be covered multiple times, and the frequency of

coverage can vary for different items. Given an input (U, E) for

min-HSP, where E = {(Si, ki) : Si ⊆ U} means that at least

ki items must be selected from Si, we can construct an input

(Ũ , Ẽ) for MSCP, where Ũ = E specifies each “item” Si and

its minimum frequency of coverage ki, and Ẽ = {Se : e ∈ U}
specifies the “sets” used to cover Si’s (Se := {Si : e ∈ Si}).
The min-HSP is equivalent to MSCP that selects the minimum

number of sets E ′ ⊆ Ẽ to cover each Si at least ki times. We

will work on MSCP for the ease of presentation.

Although the general SCP is NP-hard, it is polynomial-time

solvable when the input satisfies a condition known as the

consecutive ones property (C1P) [23]. In words, a SCP has

C1P if there is a permutation of the items such that each set

covers a set of consecutive items. It can be shown that MSCP

is also polynomial-time solvable under C1P6. This condition

is, however, too strong for our problem. For example, for the

network in Fig. 4, the monitor placement constraints computed

by FMP has the form {(B1, 2), (B2, 1), (B3, 2), (V, 3)},
where Bi denotes the set of internal nodes in component Bi

6This is because under C1P, the constraint matrix for the ILP representation
of MSCP is totally unimodular, and thus the LP relaxation gives an integral
solution which is optimal [23].
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(i = 1, . . . , 3) and V the entire node set. Since {B1, V },
{B2, V }, and {B3, V } all contain common nodes, there is no

permutation of {B1, B2, B3, V } such that the sets containing

a given node are always consecutive, i.e., the corresponding

MSCP violates C1P. However, we know that the optimal

monitor placement is polynomial-time solvable (by MMP).

Below, we give a more general condition for solving MSCP.

Our condition is motivated by a root cause of complexity in

MSCP: when the sets overlap arbitrarily, we can use multiple

sets to cover a given item and the optimal decision depends

on how other items are covered. However, for an item for

which the covering sets are nested, i.e., each set is a subset

of another, then the optimal decision is easy: selecting sets

with the largest cardinality is always optimal as it helps to

maximize the coverage of other items. The idea inspires the

following condition.

Theorem V.3. If the items can be represented by nodes in

a rooted tree such that each set covers a set of consecutive

nodes along a leaf-to-root path in the tree, then MSCP (and

the corresponding min-HSP) is polynomial-time solvable.

We prove this result by constructing an algorithm that solves

MSCP optimally under the above condition. Let I = {(e, ke) :
e ∈ U} denote the items and their required frequency of

coverage, and E = {Si : Si ⊆ U} the sets. The algorithm,

referred to as Leaf-based Greedy Cover (LGC), works as

follows: while ∃ a non-sufficiently covered item (i.e., e such

that the number of selected sets covering e is less than ke),

1) for an arbitrary, non-sufficiently covered leaf item7 e,

select the set S that covers the most non-sufficiently

covered items among sets covering e;

2) update the remaining coverage required by each item and

the remaining sets.

The idea of the proof is to show that under the condition in

Theorem V.3, LGC is optimal.

Proof. We prove the optimality of LGC by induction on the

number of items |U | to cover. If |U | = 1, then there is only

one way to cover e ∈ U and LGC is trivially optimal.

Assume that LGC is optimal for |U | < n. For |U | = n,

let e be the leaf item selected by LGC and S1, . . . , Ske
be

the ke largest sets covering e (ke is the coverage frequency

required by e). Then LGC gives a solution that is the union

of {S1, . . . , Ske
} and the LGC solution on a reduced input

(I ′ := {(e′,max(0, ke′−te′)) : e
′ ∈ U\e}, E\{S1, . . . , Ske

}),
where te′ is the number of times an item e′ is covered by

{S1, . . . , Ske
}. Suppose ∃ a feasible solution X that has a

smaller size than the solution by LGC. Let S′
1
, . . . , S′

ke
be the

ke largest sets covering e in X . Then the following statements

hold: (i) X \ {S′
1
, . . . , S′

ke
} is a feasible cover of I ′, and (ii)

X \ {S′
1
, . . . , S′

ke
} does not contain any of S1, . . . , Ske

. The

first statement holds because by the condition in Theorem V.3,

sets covering e must be nested; this implies that τe′ ≤ te′
for τe′ being the number of times an item e′ is covered

by {S′
1
, . . . , S′

ke
}, and hence X \ {S′

1
, . . . , S′

ke
} covers e′ at

least max(0, ke′ − te′) times. The second statement holds

7Precisely, e is such that e is not sufficiently covered, but all items below
e in the rooted tree are sufficiently covered.

because if any of S1, . . . , Ske
is in X , it must be one of

the ke largest sets covering e among sets in X and excluded

from X \ {S′
1
, . . . , S′

ke
}. Together, the statements imply that

X \ {S′
1
, . . . , S′

ke
} is a feasible solution to MSCP on input

(I ′, E\{S1, . . . , Ske
}), but has a smaller size than the solution

by LGC, contradicting the induction assumption that LGC is

optimal for |U | < n.

Translated back to the joint placement problem, the condi-

tion in Theorem V.3 requires that the node sets computed by

FMP be representable by nodes in a rooted tree such that only

sets on the same leaf-to-root path may overlap. One sufficient

condition of having such arrangement is as follows.

Corollary V.4. Let F = {(Si, ki), i = 1, 2, . . .} be the

constraints computed by FMP. If for any i 6= j, Si and Sj

are either disjoint or nested (one is a subset of the other), then

the constrained monitor selection problem (Section IV-C2) can

be solved optimally in polynomial time.

Proof. We arrange Si’s into a rooted tree by connecting each

Si to the smallest Sj containing Si via a directed link; the

entire node set V serves as the root. It is easy to verify that

since any two sets are either nested or disjoint, sets containing

a common item are always nested and thus always on a leaf-

to-root path. The result then follows from Theorem V.3.

Remark: A special case satisfying the condition in Corol-

lary V.4 is for placing monitors in a single topology, where

Si’s are internal nodes in tri/bi/1-connected components of the

topology. When the topology changes, this condition holds if

there is only splitting or merging of components. In this sense,

Corollary V.4 provides an explanation on why computing

the optimal monitor placement for a single topology is easy

(solved by MMP) but computing that for multiple topologies

is generally hard.

Example: In Fig. 2, the monitor placement constraint is

F = {({a, b, c}, 1), ({f, g, h}, 1), ({a, b, c, d, e, f, g, h}, 3)},
which satisfies the condition in Corollary V.4; therefore, the

corresponding monitor placement is polynomial time solvable.

VI. HANDLING PRACTICAL CHALLENGES

So far, we have focused on selecting monitors based on a

given set of topologies that the network will have during its

lifetime. In practice, a robust monitoring system has to address

additional challenges. For example, how do we determine the

set of topologies to plan for? What if the planned monitor

placement fails to identify every link at runtime? What if

it requires too many monitors? What if nodes also change?

In this section, we discuss the challenges and the possible

solutions for each of these issues.

A. Topology Selection

Robustness of monitor placement depends on the accuracy

of topology prediction. While it is out of our scope to study

specific topology prediction mechanisms, it is of interest to

understand how to best utilize the results of a given predictor.

Let {Gt : t = 1, . . . , N} denote all possible topologies dur-

ing a time window of interest and τt the expected fraction of

time for the topology to equal Gt. Assume that τ1 ≥ τ2 ≥ . . ..
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Given a parameter τ denoting the required fraction of time that

the network needs to be identifiable, the topology selection

problem is to select a subset of topologies {Gi : i ∈ I} for

I ⊆ {1, . . . , N} that can be identified with a minimum number

of monitors, subject to the constraint that
∑

i∈I τi ≥ τ .

The above optimization problem is clearly hard to solve as

evaluating the objective of a given solution (i.e., the minimum

number of monitors to identify given topologies) is already

NP-hard as shown in Section IV-C2. A straightforward alter-

native is to select the top-K frequently-occurring topologies

{G1, . . . ,GK} for the minimum K such that
∑K

t=1
τt ≥ τ .

Such a selection, however, ignores the structural difference

in these topologies and may require more than the minimum

number of monitors. Observing that a monitor placement

capable of identifying a given topology can also identify

a denser topology (Section IV-A), we can aggregate the

topologies by computing, for each Gt, the sum frequency τ̃t
of all topologies containing Gt as subgraph, which gives a

tighter lower bound (than τt) on the expected fraction of time

of achieving identifiability, once we place monitors to identify

Gt. We can then select topologies in descending order of τ̃t.

B. On-demand Monitor Placement

In case of unpredictable topology changes, monitors placed

during network planning may not be able to identify all

links. One way to ensure identifiability in this case is to

employ additional nodes as temporary monitors to identify

the topology at hand. Temporary monitors only participate

in taking measurements but not in other functions such as

storage or processing of measurements; to distinguish from

temporary monitors, we refer to monitors deployed during

network planning as persistent monitors. Given the current

topology Gt and the persistent monitors M0 (placed by a robust

monitor placement algorithm in Section IV), we can apply

IMMP to select temporary monitors to identify all links in

Gt, and Lemma IV.2 guarantees that the number of temporary

monitors is minimized.

C. Bounded Number of Monitors

So far, we have required that the placed monitors must

identify all (planned) topologies, which may require a large

number of monitors when the topologies are substantially

different. In such cases, it can be beneficial to relax the

objective such that we only place a small number of persistent

monitors during network planning, and employ temporary

monitors as needed to identify topologies at runtime. Since

it incurs a cost to change the status (monitor/non-monitor) of

a node, such relaxation faces an inherent tradeoff between the

number of monitors and the number of changes in node status.

One way of controlling such tradeoff is to specify a bound

m on the number of persistent monitors. Given m, the goal

of monitor placement during network planning is changed to

selecting a set M0 (|M0| ≤ m) of persistent monitors such

that the number of temporary monitors needed at runtime is

minimized. Given topologies {Gt : t = 1, . . . , T}, the number

of temporary monitors needed to identify any topology Gt
is upper-bounded by the number of additional monitors

needed to simultaneously identify all these topologies. To

minimize this upper bound, it suffices to ensure that M0

TABLE I
DYNAMIC TOPOLOGIES FOR TAXI NETWORK (86 NODES)

range (m) #topology changes avg #links avg #components

500 479 95.1 31.3

1000 479 334.3 6.3

1500 479 694.8 2.5

2000 479 1106.5 1.5

2500 479 1528.3 1.1

3000 479 1934.0 1.0

3500 479 2286.8 1.0

is a subset of the optimal robust monitor placement for

{Gt : t = 1, . . . , T}. This observation suggests that any

algorithm for robust monitor placement (see Section IV) can

be used for bounded monitor placement by enforcing early

termination after selecting m monitors.

D. Changes of Nodes

We have limited topology changes to addition/removal of

links, while in practice there may also be arrival/departure

of nodes. We can handle arrivals by always selecting the

newly arrived nodes as monitors; we can handle departures

by treating each departure as removal of all the links incident

to the departed node. It is easy to verify that both approaches

guarantee identifiability under node changes; we leave further

optimization to future work.

VII. PERFORMANCE EVALUATION

We evaluate the proposed solutions on dynamic topologies

extracted from mobility traces. We use two datasets: (1)

taxi cab traces from San Francisco8, from which we select

traces of 86 nodes over a 8-hour period with location updates

roughly every minute; (2) mobility traces generated by the

Network Science Research Laboratory at the US Army

Research Laboratory [24], which contain traces of 90 nodes

belonging to 7 groups during a 400-second tactical operation

with location updates every second9. Dataset (1) represents

independent node mobility, and dataset (2) represents grouped

node mobility. We study both datasets to understand the

impact of mobility patterns on monitor placement.

We extract dynamic topologies from each trace by speci-

fying a communication range and connecting two nodes by a

link whenever they are within the range. See Tables I and II

for a summary of extracted topologies under different ranges.

We see that both networks experience hundreds of topology

changes throughout their lifetime. As expected, the network

becomes denser (with a larger number of links) and better

connected (with a smaller number of connected components)

as the range increases.

Comparison of algorithms: We first compare the per-

formance of the proposed robust monitor placement algo-

rithms in terms of the number of monitors (note that all

algorithms guarantee identifiability). Here joint placement and

refined placement use greedy heuristics to solve the associated

8Traces are available at: http://crawdad.org/epfl/mobility/.
9The anonymized traces used for this evaluation are available at:

https://www.dropbox.com/s/bkhdifos9wzjwln/trace 90node 401second.txt?dl=0



11

TABLE II
DYNAMIC TOPOLOGIES FOR TACTICAL NETWORK (90 NODES)

range (m) #topology changes avg #links avg #components

15 399 325.9 17.3

75 293 539.9 10.4

225 196 1027.7 4.2

375 387 1256.1 2.0

450 380 1607.5 1.5

525 399 2191.1 1.1

min/max-HSP, and refined placement uses the result of one-

shot placement as the initial set of monitors. We also evaluate

a lower bound on the number of monitors by computing the

maximum number of monitors placed by MMP in any single

topology. Fig. 5 (a) shows the result for the taxi network

and Fig. 5 (b) shows the result for the tactical network.

As expected, the one-shot placement algorithm uses more

monitors than the other algorithms, although it is much faster

(omitted due to space). The refined placement algorithm uses

the fewest monitors at the cost of a longer computation time

(omitted). Comparing results for the two networks, we see

that the taxi network has very different topologies during

its lifetime and thus requires a large number of monitors to

maintain identifiability, while the tactical network contains

subnets (of nodes in the same group) with relative stable

topologies and thus requires fewer monitors. As the range

for the tactical network increases (Fig. 5 (b)), the refined

placement becomes optimal (achieving the lower bound) and

even the one-shot placement is near-optimal.

range
0 500 1000 1500 2000 2500 3000 3500 4000

#
m

o
n

it
o

rs

0

10

20

30

40

50

60

70

80

90

one-shot

incremental

joint

refined

lower bound

(a) taxi

range
0 15 75 225 375 412.5 450 487.5 525 600

#
m

o
n

it
o

rs

0

10

20

30

40

50

60

70

one-shot

incremental

joint

refined

lower bound

(b) tactical

Fig. 5. Comparing different robust placement algorithms under
varying ranges.

Varying number of persistent monitors: One way to

further reduce the number of monitors is to limit the number of

persistent monitors placed during network planning and place

additional temporary monitors as needed at runtime. Fig. 6

shows the results for the taxi network under various bounds on

the number of persistent monitors, where the persistent moni-

tors are randomly selected from monitors placed by the refined

placement algorithm. To evaluate the cost of (re)configure

temporary monitors, we count the number of changes in node

status, where a change occurs when a non-monitor is selected

as a temporary monitor or a temporary monitor becomes a

non-monitor. Fig. 6 (a) shows the median (red bar), 25/75-

th percentile (box), and 5/95-th percentile (whisker) of the

number of (both persistent and temporary) monitors over all

topologies, and Fig. 6 (b) shows the corresponding values

for the number of node status changes. The results show a

clear tradeoff between the number of monitors and the number

of changes, controlled by the number of persistent monitors

deployed during network planning. Similar observations are

made for the tactical network; see Fig. 7.
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Fig. 6. Bounding number of persistent monitors (taxi network, range
= 1500 meters).
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Fig. 7. Bounding number of persistent monitors (tactical network,
range = 225 meters).

Impact of prediction error: So far we have assumed

accurate knowledge of topologies. It remains to evaluate how

well our placement algorithms perform when input topologies

contain errors. To evaluate this, we add i.i.d. zero-mean

Gaussian noise with variance σ2 to node locations (x/y-

coordinates) and treat the resulting topologies as the new

ground truth; the process is then repeated for multiple Monte

Carlo runs. Meanwhile, the topologies computed from the

original trace are provided to the monitor placement algorithm

(refined placement) as predicted topologies10. We evaluate the

robustness of the resulting placement by: (i) testing whether

the placement achieves identifiability for each newly generated

topology, and (ii) if not, computing the number of temporary

monitors needed to achieve identifiability. The result in Fig. 8

shows that our monitor placement is highly robust to prediction

error. Specifically, our placement achieves identifiability for

0.95 fraction of time for the taxi network (Fig. 8 (a)), and

0.82 fraction of time for the tactical network (Fig. 8 (b)),

even if the error in node location11 is as large as 1/3 of the

communication range. For the rest of the time, we only need to

add a couple of temporary monitors to achieve identifiability.

VIII. CONCLUSION

We have studied the problem of placing monitors to identify

additive link metrics from end-to-end measurements in the

10This is equivalent to treating the original topologies as ground truth and
the modified topologies as estimates.

11The value of σ is basically the root-mean-squared error (RMSE) of the
maximum likelihood estimate of node locations.
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Fig. 8. Performance under prediction error (10 Monte Carlo runs).

face of topology changes. Unlike existing monitor placement

algorithms that consider a single topology, our algorithms pro-

vide robust monitor placements that simultaneously identify

multiple topologies. By casting the problem as a generalized

hitting set problem, we show that the optimal placement is

NP-hard to compute, and identify special cases where the

problem can be solved efficiently by the proposed algorithms.

We further extend the solution to include on-demand monitor

placement to handle unpredictable changes with controllable

tradeoff between monitor cost and adaptation cost. Our eval-

uations on topologies driven by real mobility traces verify the

effectiveness and robustness of the proposed solution.
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