
Performance Evaluation () –

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Dynamic service migration and workload scheduling in
edge-clouds
Rahul Urgaonkar a,∗, Shiqiang Wang b, Ting He a, Murtaza Zafer c, Kevin Chan d,
Kin K. Leung b

a IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
b Department of Electrical and Electronic Engineering, Imperial College London, UK
c Nyansa Inc., Palo Alto, CA, USA
d US Army Research Laboratory, Adelphi, MD, USA

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Edge-clouds
Service migration
Stochastic optimization
Markov decision processes

a b s t r a c t

Edge-clouds provide a promising new approach to significantly reduce network opera-
tional costs by moving computation closer to the edge. A key challenge in such systems is
to decidewhere andwhen services should bemigrated in response to usermobility and de-
mand variation. The objective is to optimize operational costswhile providing rigorous per-
formance guarantees. In this paper, we model this as a sequential decision making Markov
Decision Problem (MDP). However, departing from traditional solution methods (such as
dynamic programming) that require extensive statistical knowledge and are computation-
ally prohibitive, we develop a novel alternate methodology. First, we establish an interest-
ing decoupling property of the MDP that reduces it to two independent MDPs on disjoint
state spaces. Then, using the technique of Lyapunov optimization over renewals, we design
an online control algorithm for the decoupled problem that is provably cost-optimal. This
algorithm does not require any statistical knowledge of the system parameters and can
be implemented efficiently. We validate the performance of our algorithm using extensive
trace-driven simulations. Our overall approach is general and can be applied to otherMDPs
that possess a similar decoupling property.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The increasing popularity of mobile applications (such as social networking and photo sharing) running on handheld
devices is putting a significant burden on the capacity of cellular and backhaul networks. These applications are generally
comprised of a front-end component running on the handheld and a back-end component (that performs data processing
and computation) that typically runs on the cloud. While this architecture enables applications to take advantage of the
on-demand feature of cloud computing, it also introduces new challenges in the form of increased network overhead and
latency. A promising approach to address these challenges is to move such computation closer to the network edge. Here,
it is envisioned that entities (such as basestations in a cellular network) closer to the network edge would host smaller-
sized cloud-like infrastructure distributed across the network. This idea has been variously termed as Cloudlets [1], Fog

∗ Corresponding author.
E-mail addresses: rurgaon@us.ibm.com (R. Urgaonkar), shiqiang.wang11@imperial.ac.uk (S. Wang), the@us.ibm.com (T. He),

murtaza.zafer.us@ieee.org (M. Zafer), kevin.s.chan.civ@mail.mil (K. Chan), kin.leung@imperial.ac.uk (K.K. Leung).

http://dx.doi.org/10.1016/j.peva.2015.06.013
0166-5316/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.peva.2015.06.013
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
mailto:rurgaon@us.ibm.com
mailto:shiqiang.wang11@imperial.ac.uk
mailto:the@us.ibm.com
mailto:murtaza.zafer.us@ieee.org
mailto:kevin.s.chan.civ@mail.mil
mailto:kin.leung@imperial.ac.uk
http://dx.doi.org/10.1016/j.peva.2015.06.013

2 R. Urgaonkar et al. / Performance Evaluation () –

Computing [2], Edge Computing [3], and Follow Me Cloud [4], to name a few. The trend towards edge-clouds is expected
to accelerate as more users perform a majority of their computations on handhelds and as newer mobile applications get
adopted.

One of the key design issues in edge-clouds is service migration: should a service currently running in one of the edge-
clouds be migrated as the user locations change, and if yes, where? This question stems from the basic tradeoff between the
cost of service migration vs. the reduction in network overhead and latency for users that can be achieved after migration.
While conceptually simple, it is challenging to make this decision in an optimal manner because of the uncertainty in user
mobility and request patterns. Because edge-clouds are distributed at the edge of the network, their performance is closely
related to user dynamics. These decisions get even more complicated when the number of users and applications is large
and there is heterogeneity across edge-clouds. Note that the service migration decisions affect workload scheduling as well
(and vice versa), so that in principle these decisions must be made jointly.

The overall problemof dynamic servicemigration andworkload scheduling to optimize system costwhile providing end-
user performance guarantees can be formulated as a sequential decision making problem in the framework of MDPs [5,6].
This approach, although very general, suffers from several drawbacks. First, it requires extensive knowledge of the statistics
of the user mobility and request arrival processes that can be impractical to obtain in a dynamic network. Second, even
when this is known, the resulting problem can be computationally challenging to solve. Finally, any change in the statistics
would make the previous solution suboptimal and require recomputing the optimal solution.

In this paper, we present a newmethodology that overcomes these drawbacks. Our approach is inspired by the technique
of Lyapunov optimization [7,8] which is a general framework for designing optimal control algorithms for non-MDP
problems without requiring any knowledge of the transition probabilities. Specifically, these are problems where the cost
functions and control decisions are functionals of states that evolve independently of the control actions. However, as we
will show later, this condition does not hold for the joint servicemigration andworkload scheduling problem studied in this
paper. A key contribution of this work is to develop a methodology that enables us to still apply the Lyapunov optimization
technique to this MDP while preserving its attractive features.

2. Related work

The general problem of resource allocation andworkload scheduling in cloud computing systems using the framework of
stochastic optimization has been considered in several recentworks. Specifically, [9] considers a stochasticmodel for a cloud
computing cluster, where requests for virtual machines (VMs) arrive according to a stochastic process. Each VM request is
specified in terms of a vector of resources (such as CPU, memory and storage space) and its duration and must be placed
on physical machines (PMs) subject to a set of vector packing constraints. Ref. [9] defines the notion of the capacity region
of the cloud system and shows that the MaxWeight algorithm is throughput optimal. Virtual machine placement utilizing
shadow routing is studied in [10,11], where virtual queues are introduced to capturemore complicated packing constraints.
Ref. [12] considers a joint VM placement and route selection problem where in addition to packing constraints, the traffic
load between the VMs is also considered. All theseworks consider a traditional cloudmodel where the issue of usermobility
and resulting dynamics is not considered. As discussed before, this issue becomes crucial in edge-clouds and introduces the
need for dynamic service migration that incurs reconfiguration costs. The presence of these costs fundamentally changes
the underlying resource allocation problem from a non-MDP to an MDP for which the techniques used in these works are
no longer optimal.

The impact of reconfiguration or switching cost has been considered in some works recently. Specifically, [13] considers
the problem of dynamic ‘‘right-sizing’’ of data centers where the servers are turned ON/OFF in response to the time-varying
workloads. However, such switching incurs cost in terms of the delay associated with switching as well the impact on
server life. Ref. [13] proposes an online algorithm that is shown to have a 3-competitive ratio while explicitly considering
switching costs. A similar problem involving geographic load balancing is considered in [14] using a receding horizon
control framework. Ref. [15] focuses on a wireless scheduling problem with reconfiguration delay while [16] studies the
reconfiguration problem from a queueing theory perspective and derives analytical expressions for the performance. All
the approaches in [14–16] assume knowledge of the statistics of the underlying system while [13] considers a single data
center with homogeneous servers. Our work differs from all these because we explicitly consider the reconfiguration costs
associated with service migrations while treating a very general model for a distributed edge-cloud system.

The methodology used in this paper is inspired by the framework of Lyapunov optimization over renewals proposed
in [17]. This framework extends the Lyapunov optimization approach of [7,8] to treat constrained MDPs. The basic idea
involves converting a constrained MDP into a sequence of unconstrained stochastic shortest path problems (SSPs) [5,6] that
are solved over consecutive renewal frames. However, solving the resulting SSPs typically still requires knowledge of the
underlying probability distributions and can be computationally prohibitive for large state spaces.

In this work, we also make use of the framework of Lyapunov optimization over renewals. However, instead of directly
applying the technique of [17], we first establish a novel decoupling property of our MDP which shows that it can be
decoupled into two independent MDPs that evolve on disjoint state spaces. This crucial property enables us to apply the
framework of [17] in such a way that the resulting algorithms are simple deterministic optimization problems (rather
than stochastic shortest path problems) that can be solved efficiently without any knowledge of the underlying probability
distributions. For example, one of the components of our overall algorithm involves solving a deterministic shortest path

R. Urgaonkar et al. / Performance Evaluation () – 3

Fig. 1. Illustration of our edge-cloud model showing the collection of edge-clouds, back-end cloud, and mobile users.

problem instead of an SSP every renewal frame. As such, the resulting solution is markedly different from classical
dynamic programming based approaches and does not suffer from the associated ‘‘curse of dimensionality’’ or convergence
issues.

3. Problem formulation

We consider an edge-cloud system comprised of M distributed edge-clouds and one back-end cloud that together host
K applications (see Fig. 1). The system also consists of N users that generate application requests over time. The collection
of edge and back-end clouds supports these applications by providing the computational resources needed to serve user
requests. The users are assumed to be mobile while the edge and back-end clouds are static. We assume a time-slotted
model and use the notion of ‘‘service’’ and ‘‘application’’ interchangeably in this paper.

3.1. System model

Mobility model: Let Ln(t) denote the location of user n in slot t . The collection of all user locations in slot t is denoted by
vector l(t). We assume that l(t) takes values from a finite (but potentially arbitrarily large) set L. Further, l(t) is assumed to
evolve according to an ergodic discrete timeMarkov chain (DTMC) over the states inLwith transition probabilities denoted
by pll′ for all l, l ′ ∈ L.

Application request model: Denote the number of requests for application k generated by user n in slot t by Akn(t) and the
collection {Akn(t)} for all k, n by vector a(t). Similar to l(t), we assume that a(t) takes values from a finite (but potentially
arbitrarily large) set A. We further assume that for all k, n there exist finite constants Amax

kn such that Akn(t) ≤ Amax
kn for all t .

The process a(t) is also assumed to evolve according to an ergodic DTMC over the states in A with transition probabilities
qaa′ for all a, a′

∈ A. All application requests generated at each user are routed to a selected subset of the edge-clouds for
servicing. These routing decisions incur transmission costs and are subject to certain constraints as discussed below.

User-to-edge-cloud request routing: Let rknm(t) denote the number of application k requests from user n that are routed
to edge-cloud m in slot t and let r(t) denote the collection {rknm(t)} for all k, n,m. Routing of these requests incurs a
transmission cost of rknm(t)cknm(t) where cknm(t) is the unit transmission cost that can depend on the current location of
the user Ln(t), the application index k, as well as the edge-cloud index m. More generally, it could also depend on other
‘‘uncontrollable’’ factors such as background backhaul traffic andwireless fading, butwe do not consider these for simplicity.
Denote the sum total transmission cost incurred in slot t by C(t), i.e., C(t) =

knm rknm(t)cknm(t). For each (k,m), we denote

by Rkm(t) the total number of application k requests received by edge-cloud m in slot t , i.e., Rkm(t) =
N

n=1 rknm(t). We
assume that the maximum number of requests for an application k that can be routed to edge-cloud m in any slot is upper
bounded by Rmax

km . Given these assumptions, the routing decisions r(t) are subject to the following constraints

Akn(t) =

M
m=1

rknm(t) ∀k, n (1)

0 ≤

N
n=1

rknm(t) ≤ Rmax
km ∀k,m (2)

where (1) captures the assumption that no request buffering happens at the users. In addition to (1) and (2), there can
be other location-based constraints that limit the set of edge-clouds where requests from user n can be routed given its
location Ln(t). Given l(t) = l, a(t) = a, denote the feasible request routing set by R(l, a). We assume that R(l, a) ≠ ∅ for
all l ∈ L, a ∈ A.

4 R. Urgaonkar et al. / Performance Evaluation () –

Application configuration of edge-clouds: For all k,m, define application placement variables Hkm(t) as

Hkm(t) =

1 if edge-cloudm hosts application k in slot t,
0 else. (3)

The collection {Hkm(t)} is denoted by the vector h(t). This defines the application configuration of the edge-clouds in slot t
and determines the local service rates {µkm(t)} offered by them in that slot. An application’s requests can only be serviced
by an edge-cloud if it hosts this application in that slot. Thus, µkm(t) = 0 if Hkm(t) = 0. When Hkm(t) = 1, then µkm(t)
is assumed to be a general non-negative function ϕkm(·) of the vector h(t), i.e., µkm(t) = ϕkm(h(t)). This results in a very
general model that can capture correlations between the service rates of co-located applications. A special case is where
µkm(t) depends only on Hkm(t). For simplicity, we assume that µkm(t) is a deterministic function of h(t) and use µkm(t) to
mean ϕkm(h(t)). Further, we assume that there exist finite constants µmax

km such that µkm(t) ≤ µmax
km for all t .

An edge-cloud is typically resource constrained and may not be able to host all applications. In general, hosting an
application involves creating a set of virtual machines (VMs) or execution containers (e.g., Docker) and assigning them a
vector of computing resources (such as CPU, memory and storage) from the physical machines (PMs) in the edge-cloud. We
say that an application configuration h(t) is feasible if there exists a VM-to-PM mapping that does not violate any resource
constraints. The set of all feasible application configurations is denoted by H and is assumed to be finite. We also assume
that there is a system-wide controller that can observe the state of the system and change the application configuration
over time by using techniques such as VMmigration and replication. This enables the controller to adapt in response to the
system dynamics induced by user mobility as well as demand variations. However, such reconfiguration incurs a cost that
is a function of the degree of reconfiguration. Given any two configurations a, b ∈ H , the cost of switching from a to b is
denoted by Wab. For simplicity, we assume that it is possible to switch between any two configurations a, b ∈ H and that
Wab is upper bounded by a finite constantWmax. We further assume, without loss of generality, that

Wab ≤ Wac + Wcb ∀a, b, c ∈ H . (4)

The last assumption is valid ifWab is the minimum cost required to switch from a to b, This is because ifWab > Wac + Wcb,
then we could carry out the reconfiguration from a to b by switching from a to c and then to b, achieving lower cost. Denote
the switching cost incurred in slot t by W (t). For simplicity, we assume that switching incurs no delay while noting that
our model can be extended to consider such delays (for example, by setting the local service rates to zero during those slots
when a reconfiguration is underway).

Request queues at the edge-clouds: As illustrated in Fig. 1, every edge-cloud m maintains a request queue Ukm(t) per
application k that buffers application k requests from all users that are routed to edge-cloud m. Requests in Ukm(t) can
get serviced locally in a slot by edge-cloudm if it hosts application k in that slot. In addition, buffered requests in Ukm(t) can
also be routed to the back-end cloud which is assumed to host all applications at all times. However, this incurs additional
back-end transmission cost as discussed later. The queueing dynamics for Ukm(t) is given by

Ukm(t + 1) = max[Ukm(t) − µkm(t) − υkm(t) + Rkm(t), 0] (5)

where υkm(t) denotes the number of requests from Ukm(t) that are transmitted to the back-end cloud in slot t and µkm(t)
is the local service rate. It is assumed that the requests in Ukm(t) are serviced in a FIFO manner. The collection of all queue
backlogs {Ukm(t)} is denoted by the vector U(t). From (5), note that requests generated in a slot can get service in the same
slot. It should also be noted that requests can be routed to Ukm(t) in a slot even if Hkm(t) = 0.

Edge-cloud to back-end cloud request routing: The back-end cloud is assumed to host all applications at all times. However,
transmitting requests to the back-end may incur very high costs and therefore it is desirable to maximize the fraction
of requests that can be serviced locally by the edge-clouds. Let υkm(t) denote the number of requests from Ukm(t) that
are transmitted to the back-end cloud in slot t and let υ(t) denote the collection {υkm(t)} for all k,m. Routing of υkm(t)
incurs a transmission cost of υkm(t)ekm(t) where ekm(t) is the unit back-end transmission cost that can depend on the
application index as well as the edge-cloud index. Similar to request routing costs cknm(t), ekm(t) can also depend on
other ‘‘uncontrollable’’ factors (such as background backhaul traffic), but we only consider the average impact of these for
simplicity. Since both the edge-clouds and the back-end cloud are static, we have ekm(t) = ekm for all t . We assume that
there exist finite constants υmax

km such that υkm(t) ≤ υmax
km for all t . Further, Rmax

km ≤ υmax
km which models the baseline scenario

where all requests are serviced only by the back-end cloud. Denote the set of all υ(t) that satisfy these constraints by V and
the sum total back-end transmission cost incurred in slot t by E(t), i.e., E(t) =

km υkm(t)ekm. We assume that the back-end

cloud has sufficient processing capacity such that it can service all requests in υ(t) with negligible delay. Thus, queueing in
the back-end becomes trivial and is ignored. It should be noted that in ourmodel any user request that is eventually serviced
by the back-end cloud is transmitted first to an edge-cloud.

Performance objective: Given this model, our goal is to design a control algorithm for making request routing decisions at
the users and edge-clouds as well as application reconfiguration decisions across the edge-clouds so that the time-average
overall transmission and reconfiguration costs are minimized while serving all requests with finite delay. Specifically, we
assume that the time-average delay for the requests in each queue Ukm(t) should not exceed davg, where davg is a finite
constant. This can be formulated as a constrained Markov Decision Problem (MDP) [5,6] as shown in Section 3.2.

Timing of events in a slot: We assume the following sequence of events in a slot. At the start of slot t , the controller
observes the queue backlogs U(t), new arrivals a(t), user locations l(t), and the last configuration h(t − 1). Then it makes a

R. Urgaonkar et al. / Performance Evaluation () – 5

reconfiguration decision that transitions the configuration state to h(t) and this determines the local service rates offered in
slot t . Then the controllermakes user to edge-cloud and edge-cloud to back-end cloud routing decisions. The queue backlogs
U(t + 1) at the start of the next slot evolve according to (5).

3.2. MDP formulation

The control problem described in Section 3.1 can be formulated as a constrained MDP over the joint state space
(l(t), a(t), h(t),U(t)). It is well-known that if this problem is feasible, then an optimal control policy for this MDP can
be obtained by searching over the class of stationary, randomized control algorithms that take control actions purely as a
function of the system states [5,6]. Specifically, consider a control algorithm that operates as follows.

First, given last state φ′
= (l(t − 1) = l′, a(t − 1) = a′, h(t − 1) = h′,U(t − 1) = u′) and current location, arrival,

and queue backlog states l(t) = l, a(t) = a and U(t) = u, the control algorithm chooses current configuration h(t) = h
with probability zφ′φ , thereby transitioning the state to φ = (l(t) = l, a(t) = a, h(t) = h,U(t) = u). Note that the routing
decisions taken in the last slot together with its configuration h′ determine U(t) through the queueing equations in (5).
Denote the resulting transition probability from U(t − 1) = u′ to U(t) = u by sφ

′

u′u. Then the total expected reconfiguration
cost incurred when transitioning from state φ′ is given by

Wφ′ =

φ

pl′ lqa′as
φ′

u′uzφ′φWh′h. (6)

Next, given current state φ = (l(t) = l, a(t) = a, h(t) = h,U(t) = u), the control algorithm chooses routing vector
r(t) = r with probability xφ(r) subject to r ∈ R(l, a). This incurs a total expected transmission cost given by

Cφ =

r∈R(l,a)

xφ(r)

knm

rknmcknm. (7)

Finally, given current state φ = (l(t) = l, a(t) = a, h(t) = h,U(t) = u), it chooses back-end routing vector υ(t) = υ
with probability yφ(υ) subject to υ ∈ V and this incurs a total expected back-end transmission cost given by

Eφ =

υ∈V

yφ(υ)

km

υkmekm. (8)

Let us denote the steady state probability of being in state φ under this policy by πφ . Then, the overall time-average
expected transmission plus reconfiguration cost is given by

C + E + W =

φ

πφCφ +

φ

πφEφ +

φ

πφWφ . (9)

Let Ukm and Rkm denote the time-average expected values of Ukm(t) and Rkm(t) under this control algorithm. By Little’s
Theorem, we have that the average delay Dkm for the requests in queue Ukm(t) satisfies Ukm = RkmDkm. In order to meet the
average delay constraint, we need that Dkm =

Ukm
Rkm

≤ davg∀k,m.

The constrained MDP optimization searches for an optimal policy that minimizes C + E + W subject to meeting the
average delay constraint. Assuming that the problem is feasible, let c∗, e∗, and w∗ denote the optimal time-average user-to-
edge-cloud transmission cost, edge-cloud-to-back-end cloud transmission cost, and total reconfiguration cost respectively.
Solving this optimization is extremely challenging and quickly becomes intractable due to the complexity of the state
space under traditional solution methods (such as value iteration [5,6]). Further, these techniques require knowledge of the
transition probabilities of the user mobility and request arrival processes that may not be known a priori. In the following,
we develop an alternate methodology for tackling this problem that overcomes these challenges. Specifically, we take the
following approach.

(1) We first relax this MDP by replacing the time-average delay constraints by queue stability constraints. This results in an
MDP whose state space involves only (l(t), a(t), h(t)).

(2) For this relaxedMDP, we prove a novel decoupling property which shows that it can be decoupled into two independent
MDPs that evolve on disjoint state spaces.

(3) This decoupling property enables us to develop an online control algorithm that does not require any knowledge of the
probability distributions, yet can achieve (arbitrarily) close to optimal cost while providing worst-case delay guarantees.

Before proceeding, we make the following assumption about the above (non-relaxed) MDP. Let R∗

km, µ∗

km and υ∗

km
respectively denote the time-average request arrival rate, local service rate, and back-end routing rate for queue Ukm(t)
under the optimal control policy. For all k,m for which R∗

km > 0, define ϵkm = µ∗

km +υ∗

km − R∗

km and let ϵ = minkm ϵkm. Then
we assume that ϵ is strictly positive, i.e., ϵ > 0. Note that, in general, in a queue with stochastic arrivals and service rates,
if the average arrival rate is not smaller than the service rate, then the average delay becomes unbounded. Therefore this
assumption is not very restrictive.

6 R. Urgaonkar et al. / Performance Evaluation () –

4. MDP relaxation and decoupling

Consider a relaxation of the original MDP discussed in Section 3.2 where we replace the average delay constraints by the
following queue stability constraints ∀k,m.

µkm + υkm − Rkm ≥ ϵ if Rkm > 0 (10)

where Rkm, µkm and υkm respectively denote the time-average expected arrival rate, local service rate and back-end routing
rate under any control algorithm. It can be shown that meeting these constraints ensures that all queues are rate stable [8].
Further, we add the constraints that C = c∗, E = e∗, and W = w∗. That is, we enforce the time-average transmission and
switching costs under the relaxed problem tomatch those under the optimal solution to the originalMDP. It is clear that this
problem is a relaxation of the original MDP since the solution to the original MDP is feasible for this problem. However, a
solution to the relaxed problemwill not necessarily satisfy the average delay constraints. An optimal stationary, randomized
control algorithm for the relaxed problem can be defined similarly to the original MDP and is described in Appendix A. The
motivation for considering this relaxation is that, unlike the original MDP, it suffices to consider the reduced state space
defined by (l(t), a(t), h(t)) for this problem. This follows by noting that none of the constraints involve the queue backlogs.
Further, the relaxed problem has an interesting decoupling property (discussed next) that can be leveraged to design an
online control algorithm that can achieve close to optimal cost while providing explicit worst-case delay guarantees (as
shown in Section 5).

4.1. Decoupling the relaxed MDP

We now show that a decoupled control algorithm is optimal for the relaxed MDP defined above. Specifically, under this
decoupled algorithm, the control decisions for user request routing are taken purely as a function of (l(t), a(t)), those for
application reconfiguration are taken purely as a function of h(t), and the back-end routing decisions are taken in i.i.d.
manner every slot, independent of all states. As a result, under this algorithm, the states (l(t), a(t)) and h(t) become
decoupled and evolve independently of each other. Note that, in general, when searching for the optimal policy for the
relaxedMDP, one must consider the class of algorithms where the control decisions are taken as a function of the joint state
(l(t), a(t), h(t)). Under such algorithms, the states (l(t), a(t)) and h(t) would be coupled and their evolution would not be
independent. Thus, it is noteworthy that such a decoupled policy exists.

We next specify the decoupled control algorithm and show that it achieves the same time-average cost as the relaxed
MDP (and hence the original MDP). The decoupled algorithm is defined in terms of the control decision probabilities (and
resulting steady-state values) of the optimal solution to the relaxed MDP. We use the superscript ‘‘xdp’’ to indicate the
control actions and resulting steady state probabilities of the optimal solution to the relaxed MDP while the superscript
‘‘dec’’ is used for the decoupled control algorithm. We use the shorthand notation φ = (l(t) = l, a(t) = a, h(t) = h) and
φ′

= (l(t − 1) = l′, a(t − 1) = a′, h(t − 1) = h′). Let π
xdp
φ denote the steady-state probability of state φ under the optimal

solution to the relaxed MDP and

la π
xdp
φ sums this over all states φ for a given configuration h. Define H ′ as the set of all

configuration states h for which

la π
xdp
φ > 0. The decoupled algorithm has the following components:

Reconfiguration policy: The reconfiguration policy is defined by probabilities θdec
h′h which denote the probability of

switching to configuration h given that the configuration in the last slot was h′. These probabilities are given by

θdec
h′h =

l′a′

π
xdp
φ′

la

pl′ lqa′az
xdp
φ′φ

l′a′

π
xdp
φ′

if h, h′
∈ H ′,

0 else.

(11)

Routing policy: Given l(t) = l, a(t) = a, choose a routing vector r ∈ R(l, a) with probability ζ dec
la (r) given by

ζ dec
la (r) =

h

π
xdp
φ xxdpφ (r)
h

π
xdp
φ

if

h

π
xdp
φ > 0,

0 else

(12)

where

h π
xdp
φ sums π

xdp
φ over all states φ for which l(t) = l and a(t) = a.

Back-end routing policy: In each slot t , choose a back-end routing vector υ ∈ V with probability ϑdec(υ) given by

ϑdec(υ) =

φ

π
xdp
φ yxdpφ (υ). (13)

R. Urgaonkar et al. / Performance Evaluation () – 7

Let us denote the time-average arrival and service rates for queue Ukm(t) under the decoupled algorithm by Rdec
km , µdec

km
and υdec

km respectively. Then we have the following.

Theorem 1. For the decoupled control algorithm defined by (11), (12), and (13), the following hold:
(1) The time-average reconfiguration cost is equal to w∗.
(2) The time-average transmission cost is equal to c∗.
(3) The time-average back-end routing cost is equal to e∗.
(4) For each queue Ukm(t), the time-average arrival and service rates Rdec

km , µdec
km and υdec

km are equal to those under the relaxed
MDP and satisfy (10), i.e., µdec

km + υdec
km − Rdec

km ≥ ϵ if Rdec
km > 0.

Proof. See Appendix B. �

We emphasize that the time-average arrival and service rates Rdec
km , µdec

km , and υdec
km need not be equal to the corresponding

values for the original MDP, i.e., R∗

km, µ∗

km and υ∗

km. Theorem 1 can be intuitively explained by noting that the probability θdec
h′h

is chosen to be equal to the fraction of time that the relaxed MDP chooses to switch to configuration h′ given that the last
configuration was h, in steady state. Similarly, ζ dec

la (r) is chosen to be equal to the fraction of time the relaxed MDP chooses
routing vector r ∈ R(l, a) given that the current user location and request arrival states are (l, a), in steady state, and the
same applies to the back-end routing decisions. Thus, it can be seen that the decoupled control algorithm tries to match
the time-average costs of the relaxed policy while meeting the queue stability constraints. Note that under the decoupled
control algorithm, the reconfiguration and local servicing decisions are a function only of the configuration state hwhile the
routing is only a function of the user location and arrival states (l, a). It should also be noted that in our model, the latter
states (l, a) evolve on their own, independent of the control actions of this algorithm. On the other hand, the evolution
of the configuration state is completely governed by this control algorithm. Finally, we note that the decoupled control
algorithm is expressed in terms of the steady state probabilities and control actions of the optimal solution of the relaxed
MDP which is itself hard to calculate and requires knowledge of the statistics of the mobility or arrival processes that may
not be available. However, our objective is not to calculate this control algorithm explicitly. Rather, we will use its existence to
obtain an alternate online control algorithm that will track the performance of this control algorithm. The online algorithm
does not require any knowledge of the statistics of the mobility or arrival processes and can be implemented efficiently.
Further, the online algorithm stabilizes all queues and provides worst-case delay bounds for all requests. Recall that H ′ is
the set of all configuration states h′ for which

l′a′ π

xdp
φ′ > 0. It can be shown that the reconfiguration policy (11) of the

decoupled algorithm results in a finite state Markov chain M over the states in H ′ (see Lemma 2 in Appendix B). Further,
all states h ∈ H ′ are positive recurrent. Suppose the Markov chain M is in configuration h at time t and let T dec

h denote the
time spent in other configurations before returning to h (recurrence time). Then, by basic renewal theory [18], the following
holds for all t .

E

t+Tdech −1

τ=t
µdec

km (τ)

E

T dec
h

 = µdec
km ,

E

t+Tdech −1

τ=t
W dec(τ)

E

T dec
h

 = w∗. (14)

Further, the first and second moments of the recurrence times, i.e., E

T dec
h

and E

(T dec

h)2

are bounded.

5. Online control algorithm

We now present an online control algorithm that makes joint request routing and application configuration decisions as
a function of the system state (l(t), a(t), h(t),U(t)). However, unlike traditional MDP solution approaches such as dynamic
programming [5,6], this algorithm does not require any knowledge of the transition probabilities that govern the system
dynamics. In addition to the request queues Ukm(t), for each (k,m) this algorithm maintains the following ‘‘delay-aware’’
queues that are used to provide worst-case delay guarantees for user requests (as shown later in Theorem 3) and are similar
to the delay-aware queues used in [8].

Zkm(t + 1) =

max[Zkm(t) − µkm(t) − υkm(t) + σkm, 0] if Ukm(t) > µkm(t) + υkm(t),
0 if Ukm(t) ≤ µkm(t) + υkm(t) (15)

where 0 ≤ σkm ≤ υmax
km are control parameters that affect the delay guarantees offered by this algorithm. Our algorithm

also uses a control parameter V > 0 that affects a cost-delay tradeoff made precise in Theorem 3. Denote the collection
{Zkm(t)} by Z(t) and the collection {σkm} by σ. We assume that all request queues Ukm(t) and delay-aware queues Zkm(t) are
initialized to 0 at t = 0. As shown in the following, our online algorithm is designed to ensure that all request and delay-
aware queues remain bounded for all t and this guarantees a deterministic worst-case delay bound for each request. Similar
to the decoupled control algorithm defined by (11)–(13), this algorithm consists of decoupled components for routing and
reconfiguration decisions. The control decisions in each component are made independently but they are weakly coupled
through the queue backlogsU(t) andZ(t). In the following,wedescribe each of these components in detail. The performance
guarantees provided by our algorithm are presented in Section 6.

8 R. Urgaonkar et al. / Performance Evaluation () –

5.1. User-to-edge-cloud request routing

We first describe the user-to-edge-cloud routing component of the algorithm. In each slot t , the routing decisions
{rknm(t)} are obtained by solving the following optimization problem.

Minimize

k,m

n

Ukm(t) + Vcknm(t)

rknm(t)

subject to {rknm(t)} ∈ R(l, a) (16)

where R(l, a) is defined by constraints (1), (2), rknm(t) ∈ Z≥0∀k, n,m, and other location-based constraints as discussed in
Section 3.1. The resulting problem is an integer linear program (ILP) in the variables rknm(t). Further, the problem is separable
across k, i.e., it is optimal to solve K such problems separately, one per application k. When Rmax

km ≥
N

n=1 Akn(t) for all k,m,
the above optimization has a particularly simple solution that can be obtained independently for each user n and can be
calculated in closed-form as follows. For each (k, n), set rknm∗(t) = Akn(t) for the particular edge-cloud m∗ that user n can
route to (given its current location Ln(t)) and that minimizes Ukm(t) + Vcknm(t). Set rknm(t) = 0 for all m ≠ m∗. Note that
cknm(t) depends on the current user location (Ln(t)) as well as the indices of the application (k) and the edge-cloud (m). This
algorithm can be viewed as a more general version of the ‘‘Join the Shortest Queue’’ policy which uses only queue lengths.
In contrast, here a weighted sum of queue length and transmission cost is used to determine the ‘‘shortest’’ queue.

More generally, (16) can be mapped to variants of matching problems on bipartite graphs. For example, consider the
case where Amax

kn = 1 for all k, n, Rmax
km = 1 for all k,m, and N ≤ M . Then (16) becomes an instance of the minimum weight

matching problem on a bipartite graph formed between the N users and M edge-clouds. This can be solved in polynomial
time using well-known methods (such as in [19]). For more general cases, (16) becomes a generalized assignment problem
that is NP-hard. However, efficient constant factor approximation algorithms are known for such problems [20]. Aswe show
in Theorem 3, using any such approximation algorithm instead of the optimal solution to (16) ensures that the overall cost
of the online algorithm is within the same approximation factor of the optimal cost. It should be noted that the routing
component of the control algorithm considers only the current user location, request arrival, and queue backlog states to
make decisions and is therefore myopic. Further, it does not require any knowledge of the mobility/arrival model. We also
note that it does not depend on the application configuration state.

5.2. Edge-cloud to back-end cloud request routing

The back-end routing decisions {υkm(t)} are obtained by solving the following optimization problem every slot.

Minimize

km

Vekm − Ukm(t) − Zkm(t)

υkm(t)

subject to 0 ≤ υkm(t) ≤ min[Ukm(t), υmax
km] ∀k,m. (17)

This problem is separable across (k,m) and has a simple solution given by υkm(t) = min[Ukm(t), υmax
km] when Ukm(t) +

Zkm(t) > Vekm and υkm(t) = 0 else. Similar to request routing, the back-end routing algorithm considers only current queue
backlogs (as ekm is a constant) and does not require any knowledge of the user mobility or request arrival model. Further,
it does not depend on the application configuration state. The structure of the back-end routing decisions results in the
following bounds on Ukm(t) and Zkm(t).

Lemma 1. Suppose υmax
km ≥ Rmax

km for all k,m. Then, under the back-end routing decisions resulting from (17), the following hold
for all t.

Ukm(t) ≤ Umax
km = Vekm + Rmax

km (18)

Zkm(t) ≤ Zmax
km = Vekm + σkm. (19)

Proof. We show that (18) holds using induction. First, (18) holds for t = 0 since all queues are initialized to 0. Now
suppose Ukm(t) ≤ Umax

km for some t > 0. Then, we show that Ukm(t + 1) ≤ Umax
km . We have two cases. First, suppose

Ukm(t) ≤ Vekm. Then, from queueing equation (5), it follows that the maximum value that Ukm(t + 1) can have is
Ukm(t) + Rmax

km ≤ Vekm + Rmax
km = Umax

km . Next, suppose Vekm < Ukm(t) ≤ Umax
km . Then, we have that Ukm(t) + Zkm(t) > Vekm

and the solution to (17) chooses υkm(t) = min[Ukm(t), υmax
km]. Since υmax

km ≥ Rmax
km , from queueing equation (5) it follows that

Ukm(t + 1) ≤ Ukm(t) ≤ Umax
km . The bound (19) follows similarly and its proof is omitted for brevity. �

In Theorem 3, we show that for any σkm > 0, the above bounds result in deterministic worst case delay bounds for any
request that gets routed to Ukm(t).

R. Urgaonkar et al. / Performance Evaluation () – 9

Fig. 2. Illustration of the directed acyclic graph on the application configuration states over a renewal frame. Frame f starts at slot tf with the configuration
changing from h0 to one of h1, h2, h3 and ends at slot tf + 4 when the configuration becomes h0 again.

5.3. Application reconfiguration

The third component of the online algorithm performs application reconfigurations over time. We first define the notion
of a renewal state under this reconfiguration algorithm. Consider any specific state h0 ∈ H ′ and designate it as the renewal
state. The application reconfiguration algorithmpresented in this section is designed to operate over variable length renewal
frameswhere each frame starts with the initial configuration h0 (excluded from the current frame) and endswhen it returns
to the state h0 (included in the current frame). All application configuration decisions for a frame aremade at the start of the
frame and are recalculated for each new frame as a function of the queue backlogs at the start of the frame. Note that the
system configuration in the last slot of each frame is h0. Each visit to h0 defines a renewal event and initiates a new frame
that starts from the next slot and lasts until (and including) the slot when the next renewal event happens as illustrated by
an example in Fig. 2. The renewal event and the resulting frame length are fully determined by the configuration decisions of
the reconfiguration algorithm, i.e., they are deterministic functions of the configuration decisions. In the following, we denote
the length of the f th renewal frame by Tf and the starting slot of the f th renewal frame by tf . Note that Tf = tf+1 − tf . For
simplicity, we assume t0 = 0.

Recall that H ′ is the set of all configuration states h′ for which

l′a′ π
xdp
φ′ > 0. In principle, any state in H ′ can be chosen

to be the renewal state h0. However, H ′ itself may not be known a priori. Further, in practice, h0 should be chosen as the
configuration that is likely to be used frequently by the optimal policy for the relaxed MDP presented in Section 4. Here,
we assume that the reconfiguration algorithm can select a renewal state h0 ∈ H ′ and leave the determination of optimal
selection of h0 for future work.

Let the collection of queue backlogs at the start of renewal frame f be denoted by {Ukm(tf)} and {Zkm(tf)}. Then
the reconfiguration algorithm makes decisions on the frame length Tf and the application configurations [h(tf), h(tf +

1), . . . , h(tf + Tf − 1)] by solving the following optimization at tf .

Minimize
1
Tf

Tf −1
τ=0

Jτ + VW (tf + τ) −

km

Gkm(tf , τ)

subject to h(tf + Tf − 1) = h0

h(tf + τ) ∈ H \ h0 ∀τ ∈ {0, . . . , Tf − 2}

Tf ≥ 1 (20)

where Gkm(τ , tf) =

Ukm(tf) + Zkm(tf)

µkm(tf + τ) denotes the queue-length weighted service rate,W (tf + τ) denotes the

reconfiguration cost incurred in slot (tf + τ), and J =

km Jkm where Jkm is a constant defined as Jkm , 2(µmax
km + υmax

km)2 +

σ 2
km + (Rmax

km)2. Note that the constraint h(tf + Tf − 1) = h0 enforces the renewal condition. Note also that when the frame
starts (τ = 0), the configuration in the previous slot tf − 1 was h0. The problem above minimizes the ratio of the sum total
‘‘penalty’’ earned in the frame (given by the summationmultiplying 1/Tf above) to the length of the frame. The penalty term
is a sum of V times the reconfiguration costs (VW (tf + τ)) and the Jτ terms minus the queue-length weighted service rates
(

km Gkm(tf , τ)).
Since the sum of the Jτ terms grows quadratically with frame size, this discourages the use of longer frames. Note also

that since the overall objective only uses the queue backlog values at the start of the frame and since all the other terms are
deterministic functions of the sequence of configurations [h(tf), . . . , h(tf + Tf − 1)], the optimization problem (20) can be
mapped to a deterministic shortest path problem involving Tf stages. Specifically, as illustrated in Fig. 2, consider a directed
acyclic graphwith Tf +1 stages, one node each in the first and the last stage (corresponding to configuration h0), and |H |−1
nodes per stage in all other stages. For a fixed Tf , the objective in (20) corresponds to finding the minimum cost path from
the first to the last node, where the weight of each directed edge (hi, hj) that is τ + 1 hops away from the first node is
equal to the terms Jτ + VW (tf + τ) −

km Gkm(tf , τ). Here,W (tf + τ) is the switching cost between the configurations hi

and hj while

km Gkm(tf , τ) corresponds to the queue-length weighted service rate achieved using configuration hj. Given
a Tf , this has a complexity O(|H |

2Tf) and optimally solving (20) would require searching over all Tf ≥ 1 since Tf itself is

10 R. Urgaonkar et al. / Performance Evaluation () –

an optimization variable in this problem. We next characterize an important property of the optimal solution to (20) that
results in a significantly lower complexity.

5.3.1. Complexity reduction
Consider any solution to (20) that results in a frame length of Tf and a configuration sequence given by [h(tf), . . . , h(tf +

Tf − 2), h0]. Then we have the following.

Theorem 2. An optimal solution to (20) can be obtained by restricting to the class of policies that perform either two or no
reconfigurations per frame. Further, the reconfigurations (if any) happen only in the first slot and the last slot of the frame.

Proof. First consider the case 1 ≤ Tf ≤ 2. By definition the last configuration in the frame must be h0. Similarly, the
configuration in the previous slot before the start of the frame is h0. There can be at most one more configuration between
these. Thus, there can be at most two reconfigurations in the frame.

Next, consider the case Tf > 2. Let the queue backlogs at the start of frame be U(tf), Z(tf) and suppose the optimal
configuration sequence is given by [h(tf), . . . , h(tf + Tf − 2), h0]. Denote the set of configurations in this sequence by
Ω(U(tf), Z(tf)) and define hopt(U(tf), Z(tf)) as the configuration from this sequence that minimizes the following:

hopt(U(tf), Z(tf)) = argmin
h∈Ω(U(tf),Z(tf))

km

Ukm(tf) + Zkm(tf)

µkm(tf + τ). (21)

Now consider an alternate configuration sequence given by [hopt(uf), . . . , hopt(uf), h0]. The value of the summation in
the objective of (20) under this sequence cannot be larger than that under the sequence [h(tf), . . . , h(tf + Tf − 2), h0].
This is because hopt(U(tf), Z(tf)) minimizes the terms −

km Gkm(tf , τ) by (21) while the total reconfiguration costTf −1

τ=0 VW (tf +τ) in the alternate sequence cannot exceed the total reconfiguration cost under [h(tf), . . . , h(tf +Tf −2), h0]

by property (4). The theorem follows by noting that at most two reconfigurations are needed in the alternate sequence, one
at the beginning and one at the end of the frame. �

For a given frame length Tf , Theorem 2 reduces the complexity of solving (20) from O(|H |
2Tf) to O(|H |) since we only

need to search for one configuration per frame. In Section 5.3.2, we show that the reconfiguration algorithm can be further
simplified by finding a closed-form expression for the optimal frame length given a configuration h. This frame length is
O

km Ukm(tf) + Zkm(tf)

which shows that the frame length is always bounded, given that {Ukm(tf)} and {Zkm(tf)} are

bounded (see Lemma 1). We also discuss special cases where (20) can be mapped to bipartite graph matching problems.
We will show that similar to the routing component, using any approximation algorithm instead of the optimal solution to
(20) still ensures that the overall cost of the reconfiguration algorithm is within the same constant factor of the optimal cost
(Theorem 3, part 3).

We analyze the performance of the overall control algorithm, including the components for request routing (Sections 5.1
and 5.2) and the component for application reconfiguration in Section 6. Before proceeding, we note that similar to the
routing components, the reconfiguration algorithm does not require any statistical knowledge of the request arrival or user
mobility processes. Further, it depends only on the queue backlog at the start of the frame, thereby decoupling it from the
routing decisions in that frame. However, unlike the routing components that make decisions on a per slot basis (using
current system states), the reconfiguration algorithm computes the sequence of configurations once per frame (at the start
of the frame) and implements it over the course of the frame.

5.3.2. Calculating the optimal frame length
Given that a configuration state h is used in a frame, we show that the optimal frame length Topt(h) can be easily

calculated, thereby further reducing complexity. Specifically, let us denote the values of various terms in the objective of
(20) when configuration h0 or h is used as follows: Θ(h0) = −

km Gh0

km(tf , τ) = −

km(Ukm(tf) + Zkm(tf))µ
h0
km, Θ(h) =

−

km Gh
km(tf , τ) = −

km(Ukm(tf)+Zkm(tf))µh

km,Wsum = Wh0h+Whh0 , whereµ
h0
km, µh

km denote the service rateµkm when
configurations h0 and h are used. Also, let B̂ =

km Jkm/2. Then, in order to calculate the optimal frame length, we have two

cases. If no reconfiguration is done, then frame length is 1 and the objective of (20) becomesΘ(h0). Else, if a reconfiguration
is done, the frame length is at least 2 and the objective of (20) can rewritten as

min
Tf ≥2

Θ(h0) + Θ(h)(Tf − 1) + B̂Tf (Tf − 1) + VWsum

Tf
.

Ignoring the constant terms, the above can be simplified to

min
Tf ≥2

B̂Tf +
VWsum + Θ(h0) − Θ(h)

Tf
.

If VWsum + Θ(h0) − Θ(h) ≤ 0, then the optimal frame length is Tf = 2. Else, by taking derivative, we get that the optimal

Tf is one of the two integers closest to

VWsum+Θ(h0)−Θ(h)
B̂

. Define T ∗

f (h) as the optimal frame length given that a switching

R. Urgaonkar et al. / Performance Evaluation () – 11

to configuration h is done. Then, to calculate the overall optimal frame length Topt(h), we compare the value of the objective
of (20) under T ∗

f (h) with that under frame length one (i.e., Θ(h0)) and select the one that results in a smaller objective.

5.3.3. Bipartite matching
Note that a complexity of O(|H |) can still be high if there are a large number of possible configurations. For example,

consider the case where at most one application can be hosted by any edge-cloud and where exactly one instance of each
application is allowed per slot across the edge-clouds. Assume M ≥ K . In this case, |H | =

M!

(M−K)!
which is exponential in

M, K . Now assume that the total reconfiguration cost is separable across applications, the service rate of each edge-cloud
is independent of configurations at the other edge-clouds, and the other settings are the same as in the above example.
Then (20) can be reduced to a maximum weight matching problem on a bipartite graph formed between K applications
andM edge-clouds. Letm′

k denote the edge-cloud hosting application k in the renewal state h0. Then in the bipartite graph,
the weight for any edge (k,m) (when m ≠ m′

k) for a given frame length Tf becomes (Ukm′
k
(tf) + Zkm′

k
(tf))µkm′

k
+ (Tf −

1)(Ukm(tf) + Zkm(tf))µkm − V (Wk,m′
k,m

+ Wk,m,m′
k
) −

JkmTf (Tf −1)
2 where Wk,m′

k,m
(Wk,m,m′

k
) denotes the reconfiguration cost

associated withmoving application k from edge-cloudm′

k (m) to edge-cloudm (m′

k). Whenm = m′

k, the weight for the edge
(k,m) is simply (Ukm′

k
(tf) + Zkm′

k
(tf))µkm′

k
.

For a given Tf , the optimal configuration that solves (20) can be obtained by finding the maximum weight matching on
this bipartite graph and this is polynomial inM, K [19]. This is in contrast to simply searching over all H that is exponential
in M, K . For more general cases where each application can have multiple instances and multiple application instances are
allowed on each edge-cloud, the problem becomes a generalized assignment problem and constant factor approximation
algorithms exist [20], as long as different application instances can be considered separately.

6. Performance analysis

Wenow analyze the performance of the online control algorithmpresented in Section 5. This is based on the technique of
Lyapunov optimization over renewal periods [8,17] wherewe compare the ratio of a weighted combination of the Lyapunov
drift and costs over a renewal period and the length of the period under the online algorithm with the same ratio under a
stationary algorithm that is queue backlog independent. This stationary algorithm is defined similarly to the decoupled
control algorithm given by (11)–(13) and we use the subscript ‘‘stat’’ to denote its control actions and the resulting service
rates and costs. Then the reconfiguration and routing decisions are defined by probabilities θ stat

hh′ , ζ stat
la (r), and ϑ stat(υ) that

are chosen to be equal to θdec
hh′ , ζ

dec
la (r), and ϑdec(υ) respectively. If the resulting expected total service rate of any delay-

aware queue Zkm(t) is less than σkm, then its back-end request routing is augmented by choosing additional υkm(t) in an
i.i.d. manner such that the expected total service rate becomes σkm. It can be shown that the resulting time-average back-
end routing cost under this algorithm is at most e∗

+φ(σ) where φ(σ) =

km max[σkm −µdec
km −υdec

km , 0]ekm. By comparing
the Lyapunov drift plus cost of the online control algorithm over renewal frames with this stationary algorithm, we have
the following.

Theorem 3. Suppose the online control algorithm defined by (16), (17), and (20) is implemented with a renewal state h0 ∈ H ′

using control parameters V > 0 and 0 ≤ σkm ≤ υmax
km for all k,m. Denote the resulting sequence of renewal times by tf where

f ∈ {0, 1, 2, . . .} and let Tf = tf+1 − tf denote the length of frame f . Assume t0 = 0 and that Ukm(t0) = 0, Zkm(t0) = 0 for all
k,m. Then the following bounds hold.

(1) The time-average expected transmission plus reconfiguration costs satisfy

lim
F→∞

F−1
f=0

E

tf+1−1
τ=tf

C(τ) + W (τ) + E(τ)

F−1
f=0

E

Tf

 ≤ c∗
+ w∗

+ e∗
+ φ(σ) +

1 +

km

Bkm

V
(22)

where Bkm = (1 + Υ dec
h0

)Jkm/2 + δ(Rmax
km)2, Υ dec

h0
=

E

Tdech0

(Tdech0
−1)

E

Tdech0

 , φ(σ) =

km max[σkm − µdec
km − υdec

km , 0]ekm and δ is an

O(log V) parameter that is a function of the mixing time of the Markov chain defined by the user location and request arrival
processes while all other terms are constants (independent of V).

(2) For all k,m, the worst-case delay dmax
km for any request routed to queue Ukm(t) is upper bounded by

dmax
km ≤

Umax
km + Zmax

km

σkm
=

2Vekm + Rmax
km + σkm

σkm
. (23)

12 R. Urgaonkar et al. / Performance Evaluation () –

(3) Suppose we implement an algorithm that approximately solves (16) and (20) resulting in the following bound for all slots for
some ρ ≥ 1

km

n

Ukm(t) + Vcknm(t)

rapxknm(t) ≤ ρ

km

n

Ukm(t) + Vcknm(t)

roptknm(t) (24)

and the following bound for every renewal frame

1
T apx
f

Tapxf −1
τ=0

km

ρJkmτ −

Ukm(tf) + Zkm(tf)

µ

apx
km (tf + τ)

+ VW apx(tf + τ)

≤ B′
+

ρ

T opt
f

Toptf −1
τ=0

km

Jkmτ −

Ukm(tf) + Zkm(tf)

µ

opt
km (tf + τ)

+ VW opt(tf + τ) (25)

for some constant B′ where the subscripts ‘‘apx’’ and ‘‘opt’’ denote the control decisions and resulting costs under the
approximate algorithm and the optimal solution to (16) and (20) respectively. Then the time-average expected transmission
plus reconfiguration costs under this approximation algorithm is at most

ρ

c∗

+ w∗
+ e∗

+ φ(σ) +

1 +

km

Bkm + (Rmax
km + σkm)υmax

km

V

+

B′
−

km

(Rmax
km + σkm)υmax

km

V
(26)

while the delay bounds remain the same as (23).

Proof. See Appendix C. �

Discussion on performance tradeoffs: Our control algorithm offers tradeoffs between cost and delay performance
guarantees through the control parameters V and σ. For a given V and σ, the bound in (22) implies that the time-average
expected transmission plus reconfiguration costs are within an additive term φ(σ) + O(log V/V) term of the optimal cost
while (23) bounds the worst case delay by O(V/σkm). This shows that by increasing V and decreasing σ, the time-average
cost can be pushed arbitrarily close to optimal at the cost of an increase in delay. This cost-delay tradeoff is similar to the
results in [7,8] for non-MDP problems. Thus, it is noteworthy that we can achieve similar tradeoff in an MDP setting. Note
that if there exists σkm > 0 ∀k,m such that σkm ≤ µdec

km + υdec
km , then φ(σ) = 0 and the tradeoff can be expressed purely

in terms of V . Also note that since the average delay is upper bounded by the worst case delay, our algorithm provides an
additive approximationwith respect to the cost c∗

+w∗
+e∗ and amultiplicative approximationwith respect to the average

delay davg of the optimal solution to the original MDP defined in Section 3.2.
In practice, setting σkm = 0 ∀k,m should yield good delay performance even though (23) becomes unbounded. This is

because our control algorithm ensures that all queues remain bounded even when σkm = 0 (see Lemma 1). This hypothesis
is confirmed by the simulation results in the next section.

7. Evaluations

We evaluate the performance of our control algorithm using simulations. To show both the theoretical and real-world
behaviors of the algorithm, we consider two types of user mobility traces. The first is a set of synthetic traces obtained from
a random-walk user mobility model while the second is a set of real-world traces of San Francisco taxis [21]. We assume
that the edge-clouds are co-located with a subset of the basestations of a cellular network. A hexagonal symmetric cellular
structure is assumed with 91 cells in total as shown in Fig. 3. Out of the 91 basestations, 10 host edge-clouds and there are 5
applications in total. For simplicity, each edge-cloud can host at most one application in any slot in the simulation. Further,
there can be only one active instance of any application in a slot.

The transmission and reconfiguration costs are defined as a function of the distance (measured by the smallest number of
hops) between different cells. When a user n in cell l routes its request to the edge-cloud in cell l′, we define its transmission
cost as

transn(l, l′) =

1 + 0.1 · dist(l, l′), if l ≠ l′

0, if l = l′ (27)

where dist(l, l′) is the number of hops between cells l and l′. The reconfiguration cost of different applications is assumed
to be independent. For any application k that is moved from the edge-cloud in cell l to the edge-cloud in cell l′, the
reconfiguration cost for this specific application is defined as

reconk(l, l′) =

κ(1 + 0.1 · dist(l, l′)), if l ≠ l′

0, if l = l′ (28)

where κ is a weighting factor to compare the reconfiguration cost to the transmission cost. The total reconfiguration cost is
the sum of reconfiguration costs across all k. In the simulations, we consider two cases in which κ takes the values 0.5 and

R. Urgaonkar et al. / Performance Evaluation () – 13

Fig. 3. Illustration of the hexagonal cellular structure showing distance between 2 cells.

1.5 respectively, to represent cases where the reconfiguration cost is smaller/larger than the transmission cost. Both cases
can occur in practice depending on the amount of state information the application has to transfer during reconfiguration.
The back-end routing cost is fixed as a constant 2 for each request.

Each user generates requests for an application according to a fixed probability λ per slot. However, the number of active
users in the system can change over time. Thus, the aggregate request arrival rate across all users for an application varies
as a function of the number of active users in a slot. In our study of synthetic mobility traces, we assume that the number of
users is fixed to 10 and all of them are active. However, the real-world mobility trace has a time-varying number of active
users. In both cases, λ is the time-average (over the simulation duration) aggregate arrival rate per application per slot,
while the edge cloud service rate for an active application instance is 1 per slot, and the back-end cloud service rate for each
application is 2 per slot. The request arrivals are assumed to be independent and identically distributed among different
users, and they are also independent of the past arrivals and user locations.

We note that optimally solving the original or even relaxed MDP for this network is highly challenging. Therefore, we
compare the performance of our algorithm with three alternate approaches that include never/always migrate policies
and a myopic policy. In the never migrate policy, each application is initially placed at one particular edge-cloud and
reconfiguration never happens. User requests are always routed to the edge-cloud that hosts the corresponding application.
In the alwaysmigrate policy, user requests are always routed to the edge-cloud that is closest to the user and reconfiguration
is performed in such a way that the queues with the largest backlogs are served first (subject to the constraint that each
edge-cloud can only host one application). We also assume that the request arrival rate λ is known in the never and always
migrate policies. If λ > 1, the arrival rate exceeds the edge-cloud capacity, and the requests that are queued in edge-clouds
are probabilistically routed to the back-end cloud, where the probability is chosen such that the average arrival rate to edge-
clouds does not exceed the service rate at edge clouds. Finally, themyopic policy considers the transmission, reconfiguration,
and back-end routing costs jointly in every slot. Specifically, in each slot, it calculates a routing and configuration option that
minimizes the sum of these three types of costs in a single slot, where it is assumed that a user routes its request either to
the back-end cloud or to the edge-cloud that hosts the application after possible reconfiguration.

The online algorithm itself is implemented bymaking use of the structure of the optimal solution as discussed in Section 5.
Specifically, we implement the request routing part (16) by solving the bipartitemax-weightmatching problem as discussed
in Section 5.1 while the application reconfiguration part (20) uses the techniques in Sections 5.3.3 and 5.3.2. Because the
proposed online algorithm is obtained using a (loose) upper bound on the drift-plus-penalty terms, the actual drift-plus-
penalty value can be much smaller than the upper bound. We take into account this fact by adjusting the constant terms Jkm
in (20). We set Jkm = 0.2 in the simulation which is a reasonably good number that we found experimentally.

7.1. Synthetic traces

We first evaluate the performance of our algorithm along with the three alternate approaches on synthetic mobility
traces. The synthetic traces are obtained assuming random-walk user mobility. Specifically, at the beginning of each slot, a
usermoves to one of its neighboring cells with probability 1/7 for each cell, and it stays in the same cell with probability 1/7.
When the number of neighboring cells is less than six, the corresponding probability is added to the probability of staying
in the same cell. Such a mobility model can be described as a Markov chain and therefore our theoretical analysis applies.

There are 10 users in this simulation, and we simulate the system for 100,000 slots. The average queue length and the
average transmission plus reconfiguration plus back-end routing costs over the entire simulation duration are first studied
for different values of the control parameters V as well as {σkm}. Specifically, we set all σkm to the same value σ which is
chosen from σ ∈ {0, 0.1, 0.5}. The performance results for all four algorithms under these scenarios are shown in Fig. 4 for
both values of κ , where we set λ = 0.95.

We can see from the results that, for each fixed σ , the queue lengths and cost values under the Lyapunov algorithm follow
the O(V , log V/V) trend as suggested by the bounds (22) and (23). The impact of the value of σ is also as predicted by these
bounds. Namely, a smaller value of σ yields larger queue lengths and lower costs, while a larger value of σ yields smaller
queue lengths and higher costs. When comparing all four algorithms in Fig. 4(a), (b) where κ = 0.5, it can be seen that

14 R. Urgaonkar et al. / Performance Evaluation () –

a b c d

Fig. 4. Average queue lengths and costs for synthetic user mobility with different V and σ values. Subfigures (a) and (b) are results for κ = 0.5, and
subfigures (c) and (d) are results for κ = 1.5.

a b c d

Fig. 5. Average queue lengths and costs for synthetic user mobility with different λ values. Subfigures (a) and (b) are results for κ = 0.5, and subfigures
(c) and (d) are results for κ = 1.5.

while the never/always migrate policies have smaller queue backlogs, they incur more cost than the Lyapunov algorithm.
Note that, unlike the Lyapunov algorithm, none of the alternate approaches offer a mechanism to trade off queue backlog
(and hence average delay) performance for a reduction in cost. For the case κ = 1.5, similar behavior is seen as illustrated
by Fig. 4(c), (d).

We next study the queue lengths and costs under different values of the arrival rate λ, where we fix V = 100 and σ = 0.
Results are shown in Fig. 5. We can see that with the myopic policy, the queue lengths are very large and in fact become
unbounded. This is because the myopic policy does not try to match the edge-cloud arrival rate with its service rate, and
it is also independent of the queue backlog. Because the one-slot cost of routing to an edge-cloud is usually lower than
routing to the back-end cloud, an excessive amount of requests is routed to edge-clouds exceeding their service capacity.
The never and always migrate policies have low queue backlogs because we matched the request routing with the service
rate of edge-clouds, as explained earlier. However, they incur higher costs as shown in Fig. 5(b), (d). More importantly, they
require prior knowledge on the arrival rate, which it is usually difficult to obtain in practice.

7.2. Real-world mobility

To study the performance under more realistic user mobility, we use real-world traces of San Francisco taxis [21] that
is a collection of GPS coordinates of approximately 500 taxis collected over 24 days in the San Francisco Bay Area. In our
simulation, we select a subset of this data that corresponds to a period of 5 consecutive days. We set the distance between
basestations (center of cell) to 1000 m, and the hexagon structure is placed onto the geographical location. User locations
are then mapped to the cell location by considering which cell the user lies in. In this dataset, there are 536 unique users
in total, and not all of them are active at a given time. The number of active users at any time ranges from 0 to 409, and
278 users are active on average. We assume that only active users generate requests such that the average arrival rate over
the entire duration is λ = 0.95 for each application. With this model, when the number of active users is large (small), the
instantaneous arrival rate can be higher (lower) than the edge-cloud service rate. The underlying mobility pattern in this
scenario can be quite different from a stationary Markov model and exhibits non-stationary behavior.

We set the timeslot length as 1 s and fix V = 100, σ = 0 for the Lyapunov algorithm. The purpose of this simulation
is to study the temporal behavior of queue lengths and cost values under our algorithm and compare with the alternate
approaches. We find that while the queue lengths change relatively slowly, the per slot costs fluctuate rapidly. Therefore,
we measure the moving average of the costs over an interval of size 6000 s for all algorithms. Figs. 6 and 7 show the results
respectively for the case κ = 0.5 and κ = 1.5, and the average values across the entire time duration are given in Table 1.

There are several noteworthy observations. From Table 1, we can see that even though σ = 0, the average queue length
under the Lyapunov approach is significantly lower than all other approaches, while the cost of the Lyapunov approach is
lower than all other approaches when κ = 0.5 and only slightly higher than the never migrate and myopic policies when
κ = 1.5. This confirms that the proposed Lyapunov algorithm has promising performance with real-world user traces. As
shown in Figs. 6 and 7, the cost results show a noticeable diurnal behavior with 5 peaks and valleys that match with the

R. Urgaonkar et al. / Performance Evaluation () – 15

Table 1
Average values for trace-driven simulation.

Policy Queue lengths (κ = 0.5) Costs (κ = 0.5) Queue lengths (κ = 1.5) Costs (κ = 1.5)

Lyapunov 106.5 5.954 160.2 6.446
Never migrate 268.7 6.414 268.7 6.414
Always migrate 3117 7.983 3117 14.15
Myopic 437.4 6.228 851 6.268

a b

Fig. 6. Instantaneous queue lengths and moving average of costs for trace-driven simulation with κ = 0.5.

a b

Fig. 7. Instantaneous queue lengths and moving average of costs for trace-driven simulation with κ = 1.5.

5 day simulation period. The cost of the Lyapunov algorithm becomes higher than some other approaches at peaks, which
is mainly due to the presence of back-end routing. At the same time, however, the difference between the queue length of
the Lyapunov algorithm and the other approaches is also larger at such peaks. We see that the Lyapunov approach has the
lowest variation in its queue length, which is a consequence of our design goal of bounding the worst-case delay. The queue
lengths of the other approaches fluctuate more, and the always migrate policy appears to be unstable as the queue backlogs
grow unbounded.

8. Conclusions

In this paper, we have developed a new approach for solving a class of constrained MDPs that possess a decoupling
property.When this property holds, our approach enables the design of simple online control algorithms that do not require
any knowledge of the underlying statistics of theMDPs, yet are provably optimal. The resulting solution ismarkedly different
from classical dynamic programming based approaches and does not suffer from the associated ‘‘curse of dimensionality’’
or convergence issues. We applied this technique to the problem of dynamic service migration and workload scheduling in
the emerging area of edge-clouds and showed how it results in an efficient control algorithm for this problem. Our overall
approach is promising and could be useful in a variety of other contexts.

Acknowledgments

This research was sponsored in part by the US Army Research Laboratory and the UK Ministry of Defence and was
accomplished under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this document are

16 R. Urgaonkar et al. / Performance Evaluation () –

those of the author(s) and should not be interpreted as representing the official policies, either expressed or implied, of
the US Army Research Laboratory, the US Government, the UK Ministry of Defence or the UK Government. The US and UK
Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

Appendix A. Relaxed MDP formulation

An optimal stationary, randomized control algorithm for the relaxedMDP can be defined as follows. First, given last state
φ′

= (l(t − 1) = l′, a(t − 1) = a′, h(t − 1) = h′) and current states l(t) = l, a(t) = a, it chooses configuration h(t) = h
with probability zφ′φ where φ = (l(t) = l, a(t) = a, h(t) = h). The total expected reconfiguration cost incurred when
transitioning from state φ′ is given by

Wφ′ =

φ

pl′ lqa′azφ′φWh′h. (29)

Next, given current state φ = (l(t) = l, a(t) = a, h(t) = h), it chooses a routing vector r(t) = r with probability xφ(r)
subject to the constraint that r ∈ R(l, a) and incurs a total expected transmission cost of

Cφ =

r∈R(l,a)

xφ(r)

knm

rknmcknm. (30)

Finally, given current state φ = (l(t) = l, a(t) = a, h(t) = h), it chooses a back-end routing vector υ(t) = υ with
probability yφ(υ) subject to υ ∈ V and this incurs a total expected back-end transmission cost given by

Eφ =

υ∈V

yφ(υ)

km

υkmekm. (31)

Let us denote the steady state probability of being in state φ under this policy by πφ . Then, the overall time-average
expected transmission plus reconfiguration cost satisfies

C + E + W =

φ

πφCφ +

φ

πφEφ +

φ

πφWφ = c∗
+ e∗

+ w∗. (32)

Note that the relaxedMDP still has a high-dimensional state spacemaking it impractical to solve using standard techniques.
Further, we still need knowledge of all transition probabilities.

Appendix B. Cost optimality of decoupled MDP

Here we prove Theorem 1 through a series of lemmas. For notational convenience, we use φ and lah interchangeably
throughout this section. Recall thatH ′ is the set of all configuration states h′ forwhich

l′a′ π

xdp
φ′ > 0. Then for all h′, h ∈ H ′,

we define matrix F = (θdec
h′h) where θdec

h′h is given by (11).

Lemma 2. F is a stochastic matrix.

Proof. In order for F = (θdec
h′h) to be a stochastic matrix, we need

h∈H ′ θ

dec
h′h = 1 for all h′

∈ H ′. Fix an h′
∈ H ′. Using (11),

we have

h∈H ′

θdec
h′h =

h∈H

θdec
h′h =

h∈H

l′a′

π
xdp
φ′

la

pl′ lqa′az
xdp
φ′φ

l′a′

π
xdp
φ′

=

l′a′

π
xdp
φ′

φ

pl′ lqa′az
xdp
φ′φ

l′a′

π
xdp
φ′

=

la

π
xdp
φ

la
π

xdp
φ

= 1.

Since this holds for all h′
∈ H ′, the lemma follows. �

From Lemma 2, it follows that F can be thought of as the transition probability matrix for the Markov chain over the set
H ′ of configuration states that results from the reconfiguration policy (11) of the decoupled control algorithm.

Lemma 3. For all h ∈ H , the fraction of time spent in configuration h under the reconfiguration policy (11) of the decoupled
control algorithm is equal to the fraction of time in configuration h under the relaxed MDP.

Proof. First, consider any state h ∈ H ′. Let π F
h denote the steady state probability for state h in the Markov chain defined

by transition probability matrix F . This is well-defined and exists according to Lemma 2. It is well known that these steady
state probabilities can be obtained as the unique solution to the system of equations π F

h =

h′∈H ′ π
F
h′θ

dec
h′h for all h. We now

R. Urgaonkar et al. / Performance Evaluation () – 17

show that choosing π F
h′ =

l′a′ π

xdp
l′a′h′ for all h′

∈ H ′ satisfies this system of equations. Upon substituting π F
h′ =

l′a′ π

xdp
l′a′h′ ,

the RHS

h′∈H ′ π
F
h′θ

dec
h′h becomes

h′∈H ′

π F
h′θ

dec
h′h =

h′∈H ′

l′a′

π
xdp
l′a′h′

θdec
h′h =

h′∈H ′

l′a′

π
xdp
l′a′h′

l′a′

π
xdp
l′a′h′

la

pl′ lqa′az
xdp
l′a′h′,lah

l′a′

π
xdp
l′a′h′

=

h′∈H ′

l′a′

π
xdp
l′a′h′

la

pl′ lqa′az
xdp
l′a′h′,lah

=

la

l′a′

h′∈H ′

π
xdp
l′a′h′pl′ lqa′az

xdp
l′a′h′,lah =

la

π
xdp
lah

where we used (11) in the second step. Similarly, upon substituting π F
h′ =

l′a′ π

xdp
l′a′h′ , the LHS π F

h′ becomes: π F
h′ =

l′a′ π
xdp
l′a′h′ =

la π

xdp
lah . This implies that π F

h =

la π
xdp
lah for all h ∈ H ′. This shows that the fraction of time spent in

configuration h under the reconfiguration policy (11) of the decoupled control algorithm, i.e., π F
h is equal to

la π

xdp
lah which

is the fraction of time in configuration h under the relaxed MDP. For the case when h ∈ H \ H ′, Lemma 3 follows by noting
that the fraction of time spent in configuration h in both cases is 0. �

Lemma 4. The time-average expected reconfiguration cost under the decoupled control algorithm is equal to the time-average
expected reconfiguration cost of the relaxed MDP, i.e., w∗.

Proof. The time-average expected reconfiguration cost under policy (11) is

h∈H π F
h

h′∈H θdec

hh′ Whh′ . Substituting π F
h =

la π
xdp
lah (from Lemma 3) and using (11), we have:

h∈H

π F
h

h′∈H

θdec
hh′ Whh′ =

h∈H

la

π
xdp
lah

h′∈H

la

π
xdp
lah

l′a′

pll′qaa′z
xdp
lah,l′a′h′

la

π
xdp
lah

Whh′

=

h∈H

h′∈H

la

π
xdp
lah

l′a′

pll′qaa′z
xdp
lah,l′a′h′

Whh′

=

lah

π
xdp
lah

l′a′h′

pll′qaa′z
xdp
lah,l′a′h′Whh′

=

lah

π
xdp
lah W xdp

φ = w∗

where the last step follows from (29) and (32). �

Theorem 1 part 1 follows from Lemma 4.

Lemma 5. Under the routing policy defined by (12), the time-average transmission cost of the decoupled algorithm is equal to
that under the relaxed MDP, i.e., c∗.

Proof. Let πla denote the fraction of time the decoupledMDP is in state (l(t) = l, a(t) = a). The time-average transmission
cost under the routing policy defined by the probabilities in (12) is given by

la

πla

r∈R(l,a)

ζ dec
la (r)

knm

rknmcknm =

la

πla

r∈R(l,a)

h

π
xdp
φ xxdpφ (r)

knm

rknmcknm

h

π
xdp
φ

=

la

πla

h

π
xdp
φ

r∈R(l,a)

xxdpφ (r)

knm

rknmcknm

h

π
xdp
φ

=

la

πla

h

π
xdp
φ Cxdp

φ
h

π
xdp
φ

=

la

h

π
xdp
φ Cxdp

φ = c∗

where in the second step we sum over only those (l, a) for which πla > 0. In the second last step above, we used the fact
that πla =

h∈H π

xdp
φ , i.e., the fraction of time the relaxedMDP is in state (l(t) = l, a(t) = a) is equal to πla. This is because

these states evolve independent of the control actions of either control algorithms. �

This shows Theorem 1 part 2.

Lemma 6. Under the back-end routing policy defined by (13), the time-average back-end transmission cost of the decoupled
algorithm is equal to that under the relaxed MDP, i.e., e∗.

18 R. Urgaonkar et al. / Performance Evaluation () –

Proof. The time-average transmission cost under the back-end routing policy defined by (13) is given by
υ∈V

ϑdec(υ)

km

υkmekm =

υ∈V

φ

π
xdp
φ yxdpφ (υ)

km

υkmekm

=

φ

π
xdp
φ

υ∈V

yxdpφ (υ)

km

υkmekm =

φ

π
xdp
φ Exdp

φ = e∗

where we used (31) in the second last step. �

This shows Theorem 1 part 3.
Finally, we show that time-average arrival and service rates are equal to those under the relaxed MDP.

Lemma 7. The time-average arrival and service rates for each queue Ukm(t) under the decoupled MDP are equal to those under
the relaxed MDP.

Proof. The fraction of time a routing vector r ∈ R(l, a) is chosen under the relaxed MDP is given by

h π
xdp
φ xxdpφ (r). Under

the decoupled MDP, this becomes

πlaζ
dec
la (r) = πla ×

h

π
xdp
φ xxdpφ (r)
h

π
xdp
φ

=

h

π
xdp
φ xxdpφ (r).

This shows that the time-average arrival rate to any queue is the same under both algorithms. A similar result holds for
average local service rates since these are only a function of the fraction of time spent in any configuration h which is the
same under both MDPs. Finally, the fraction of time a back-end routing vector υ ∈ V is chosen under the relaxed MDP is
given by

φ π

xdp
φ yxdpφ (υ). Under the decoupled MDP, this is equal to ϑdec(υ) =

φ π

xdp
φ yxdpφ (υ) by definition (13). �

Theorem 1 part 4 follows by noting that the time-average arrival and service rates to each queueUkm(t) under the decoupled
MDP satisfy (10).

Appendix C. Proof of Theorem 3

Let Q (t) = (U(t), Z(t)) denote the collection of queue backlogs in slot t . Define L(Q (t)) , 1
2

km

U2
km(t) + Z2

km(t)

as

a Lyapunov function of Q (t). Using (5) and (15), we can bound the one-slot difference L(Q (t + 1)) − L(Q (t)) as

L(Q (t + 1)) − L(Q (t)) ≤

km

Bu
km + Bz

km − Ukm(t)

µkm(t) + υkm(t) − Rkm(t)

− Zkm(t)

µkm(t) + υkm(t) − σkm

where Bu

km = ((µmax
km + υmax

km)2 + (Rmax
km)2)/2 and Bz

km = ((µmax
km + υmax

km)2 + σ 2
km)/2. Note that at any renewal time

tf , the application configuration h(tf) = h0. For ease of notation, we denote the collection of all queue backlogs, user
locations, and arrival vectors at the start of renewal frame f by 9(tf). Define the frame-based conditional Lyapunov
drift ∆(tf) as the expected change in the value of L(Q (t)) over the f th frame given initial state 9(tf), i.e., ∆(tf) ,

E

L(Q (tf+1)) − L(Q (tf))|9(tf)

. In the following, we use the shorthand notation Ec {.} to represent the conditional

expectation E

.|9(tf)

.

Following themethodology in [8,17] and using the one-slot difference bound alongwith delayed queueing equations, we
can obtain the following upper bound on the frame-based conditional Lyapunov drift plus V times the conditional expected
transmission plus reconfiguration cost, i.e., ∆(tf) + VEc

tf+1−1
τ=tf C(τ) + W (τ) + E(τ)

in terms of the control decisions

under any algorithm (see Appendix D).

km

Ec

Xkm(Tf)

−

km

Ukm(tf) + Zkm(tf)

Ec

tf+1−1
τ=tf

µkm(τ)

−

km

Ec

tf+1−1
τ=tf

Ukm(τ) + Zkm(τ)

υkm(τ)

+

km

Ec

tf+1−1
τ=tf

Zkm(τ)σkm

+

km

Ec

tf+1−1
τ=tf

Ukm(τ)Rkm(τ)

+ VEc

tf+1−1
τ=tf

C(τ) + W (τ) + E(τ)

(33)

R. Urgaonkar et al. / Performance Evaluation () – 19

where Xkm(Tf) , (Bu
km + Bz

km)Tf + Tf (Tf − 1)(µmax
km + υmax

km)µmax
km . Given any location and arrival states and queue backlogs,

the routing decisions under the online control algorithm minimize VC(t) +

km Ukm(t)Rkm(t) in every slot over all other
algorithms, including the backlog independent stationary algorithm. Similarly, the back-end routing decisions under the
online control algorithm minimize VE(t) −

km(Ukm(t) + Zkm(t))υkm(t) in every slot over all other algorithms, including

the stationary algorithm. Denoting these decisions under the stationary algorithm by Rstat
km (t) and υstat

km (t) and the resulting

costs by C stat(t) and Estat(t), it follows that we can upper bound the value of ∆(tf) + VEc

tf+1−1
τ=tf C(τ) + W (τ) + E(τ)

under the online control algorithm by

km

Ec

Xkm(Tf)

−

km

Ukm(tf) + Zkm(tf)

Ec

tf+1−1
τ=tf

µkm(τ)

−

km

Ec

tf+1−1
τ=tf

Ukm(τ) + Zkm(τ)

υstat
km (τ)

+

km

Ec

tf+1−1
τ=tf

Zkm(τ)σkm

+

km

Ec

tf+1−1
τ=tf

Ukm(τ)Rstat
km (τ)

+ VEc

tf+1−1
τ=tf

C stat(τ) + W (τ) + Estat(τ)

. (34)

Next, we use the following bounds obtained using delayed queue equations (details in Appendix E):

−

km

Ec

tf+1−1
τ=tf

Ukm(τ)υstat
km (τ)

≤ −

km

Ukm(tf)υstat
km Ec

Tf

+

km

Ec

Tf (Tf − 1)

2
(µmax

km + υmax
km)υmax

km

(35)

−

km

Ec

tf+1−1
τ=tf

Zkm(τ)υstat
km (τ)

≤ −

km

Zkm(tf)υstat
km Ec

Tf

+

km

Ec

Tf (Tf − 1)

2
(µmax

km + υmax
km)υmax

km

(36)

km

Ec

tf+1−1
τ=tf

Zkm(τ)σkm

≤

km

Zkm(tf)σkmEc

Tf

+

km

Ec

Tf (Tf − 1)

2
σ 2
km

(37)

km

Ec

tf+1−1
τ=tf

Ukm(τ)Rstat
km (τ)

≤

km

Ukm(tf)(Rstat
km + αγ δ)Ec

Tf

+

km

Ec

δTf (Rmax

km)2 +
Tf (Tf − 1)

2
(Rmax

km)2

+

km

Ec

xkm(tf , tf+1)

(38)

Ec

tf+1−1
τ=tf

C stat(τ)

≤ (c∗

+ βγ δ)Ec

Tf

+ Ec

y(tf , tf+1)

(39)

Ec

tf+1−1
τ=tf

Estat(τ)

≤ (e∗

+ φ(σ))Ec

Tf

(40)

where xkm(tf , tf+1) and y(tf , tf+1) are defined as

xkm(tf , tf+1) =

tf +δ−1
τ=tf

Ukm(τ)Rstat
km (τ) −

tf+1+δ−1
τ=tf+1

Ukm(τ)Rstat
km (τ), y(tf , tf+1) =

tf +δ−1
τ=tf

C stat(τ) −

tf+1+δ−1
τ=tf+1

C stat(τ)

and α ≥ 0, β ≥ 0, 0 < γ < 1 are constants that characterize how fast the Markov chain defined by the user location and
request arrival processes mixes to its steady-state distribution and δ ≥ 0 is an integer whose value will be specified in the
following. Substituting these, we get

∆(tf) + VEc

tf+1−1
τ=tf

C(τ) + W (τ) + E(τ)

≤

km

Ec

X ′

km(Tf)

−

km

Ukm(tf) + Zkm(tf)

Ec

tf+1−1
τ=tf

µkm(τ)

−

km

Ukm(tf) + Zkm(tf)

υstat
km Ec

Tf

+

km

Zkm(tf)σkmEc

Tf

20 R. Urgaonkar et al. / Performance Evaluation () –

+

km

Ukm(tf)(Rstat
km + αγ δ)Ec

Tf

+ V (c∗

+ e∗
+ βγ δ

+ φ(σ))Ec

Tf

+ VEc

tf+1−1
τ=tf

W (τ)

+

km

Ec

xkm(tf , tf+1)

+ VEc

y(tf , tf+1)

(41)

where X ′

km(Tf) =

Tf + Tf (Tf − 1)

Jkm/2 + δTf (Rmax

km)2. Next, note that under the application reconfiguration and servicing
decisions of the online control algorithm (20), the following holds for any 9(tf).

km

Ec

X ′

km(Tf)

−

km

Ukm(tf) + Zkm(tf)

Ec

tf+1−1
τ=tf

µkm(τ)

+ VEc

tf+1−1
τ=tf

W (τ)

≤ η

km

Ec

X ′

km(T stat
f)

− η

km

Ukm(tf) + Zkm(tf)

Ec

tf +T statf −1

τ=tf

µstat
km (τ)

 + ηVEc

tf +T statf −1

τ=tf

W stat(τ)

 (42)

where η =
Ec{Tf }

Ec

T statf

 . Here, µstat
km (τ),W stat(τ), T stat

f represent the control decisions and the resulting reconfiguration cost and

frame length under the backlog independent stationary algorithm defined earlier. This follows by noting that the online
control algorithm is designed to minimize the ratio of the left hand side to the frame length over all possible algorithms.
Next, note that the reconfiguration policy of the stationary algorithm is dependent only on the configuration state and
is independent of all states in 9(tf). Thus, the conditional expectation can be replaced by regular expectation and the
relationships in (14) can be used since the reconfiguration policies of the decoupled control algorithm and the stationary
algorithm are identical. Plugging these, the above can be rewritten as

km

Ec

X ′

km(Tf)

−

km

Ukm(tf) + Zkm(tf)

Ec

tf+1−1
τ=tf

µkm(τ)

+ VEc

tf+1−1
τ=tf

W (τ)

≤ η

km

Ec

X ′

km(T stat
f)

−

km

Ukm(tf) + Zkm(tf)

µstat

km Ec

Tf

+ Vw∗Ec

Tf

. (43)

Using this, the right hand side of (41) can be bounded as

η

km

Ec

X ′

km(T stat
f)

−

km

Ukm(tf)(µstat
km + υstat

km − Rstat
km − αγ δ)Ec

Tf

−

km

Zkm(tf)(µstat
km + υstat

km − σkm)Ec

Tf

+ V (c∗

+ e∗
+ w∗

+ βγ δ
+ φ(σ))Ec

Tf

+

km

Ec

xkm(tf , tf+1)

+ VEc

y(tf , tf+1)

. (44)

Note that the frame length T stat
f under the stationary algorithm is independent of the initial state 9(tf). Further, the

reconfiguration policy for the stationary algorithm and the decoupled algorithm is identical. Thus, the conditional
expectation can been removed and the first term can be rewritten as

η

km

Ec

X ′

km(T stat
f)

=

km

E

X ′

km(T stat
f)

E

T stat
f

 Ec

Tf

=

km

E

X ′

km(T dec
h0

)

E

T dec
h0

 Ec

Tf

=

km

(1 + Υ dec

h0)Jkm/2 + δ(Rmax
km)2

Ec

Tf

(45)

where Υ dec
h0

=
E

Tdech0

(Tdech0
−1)

E

Tdech0

 . Denoting Bkm = (1 + Υ dec
h0

)Jkm/2 + δ(Rmax
km)2, (44) can be rewritten as

km

BkmEc

Tf

−

km

Ukm(tf)(µstat
km + υstat

km − Rstat
km − αγ δ)Ec

Tf

−

km

Zkm(tf)(µstat
km + υstat

km − σkm)Ec

Tf

+ V (c∗

+ e∗
+ w∗

+ βγ δ
+ φ(σ))Ec

Tf

+

km

Ec

xkm(tf , tf+1)

+ VEc

y(tf , tf+1)

. (46)

R. Urgaonkar et al. / Performance Evaluation () – 21

Note that under the stationary algorithm, if Rstat
km > 0, then µstat

km + υstat
km − Rstat

km ≥ µdec
km + υdec

km − Rdec
km ≥ ϵ > 0. This follows

from Theorem 1 part 4 and the fact that υstat
km ≥ υdec

km . Thus, by choosing δ ≥ log 2α/ϵ

1/γ , we have that µstat
km − Rstat

km −αγ δ
≥ ϵ/2

if Rstat
km > 0. For those k,m for which µstat

km = Rstat
km = 0, the α can be set to 0. Also, the stationary algorithm is designed such

that µstat
km + υstat

km ≥ σkm. Thus, we have

∆(tf) + VEc

tf+1−1
τ=tf

C(τ) + W (τ) + E(τ)

≤

km

BkmEc

Tf

+ V (c∗

+ e∗
+ w∗

+ βγ δ
+ φ(σ))Ec

Tf

+

km

Ec

xkm(tf , tf+1)

+ VEc

y(tf , tf+1)

. (47)

Taking the expectation of both sides and summing over f ∈ {0, 1, 2, . . . , F − 1} yields

E {Φ(U(tF))} + V
F−1
f=0

E

tf+1−1
τ=tf

C(τ) + W (τ) + E(τ)

≤

km

F−1
f=0

BkmE

Tf

+ V (c∗

+ e∗
+ w∗

+ βγ δ
+ φ(σ))

F−1
f=0

E

Tf

+

km

F−1
f=0

E

xkm(tf , tf+1)

+ V

F−1
f=0

E

y(tf , tf+1)

. (48)

This can be rearranged to get

F−1
f=0

E

tf+1−1
τ=tf

C(τ) + W (τ) + E(τ)

≤ (c∗

+ e∗
+ w∗

+ βγ δ
+ φ(σ))

F−1
f=0

E

Tf

+

km

Bkm

V

F−1
f=0

E

Tf

+

km

F−1
f=0

E

xkm(tf , tf+1)

V

+

F−1
f=0

E

y(tf , tf+1)

.

The last two terms vanish when we divide both sides by
F−1

f=0 E

Tf

and take limit F → ∞. The bound in Theorem 3 part

1 follows by choosing δ ≥
log Vβ

log 1/γ . It can be seen that this term is O(log V).
Part 2 of Theorem 3 follows by a direct application of Lemma 5.5 from [8].
Finally, part 3 of Theorem 3 is obtained by performing a frame-based conditional Lyapunov drift analysis for the

approximate algorithm similar to the analysis above while using the relations (24), (25) and is omitted for brevity.

Appendix D. Frame-based Lyapunov drift bound

The one-slot difference L(Q (τ + 1)) − L(Q (τ)) is upper bounded by
km

Bu
km + Bz

km − Ukm(t)

µkm(t) + υkm(t) − Rkm(t)

− Zkm(t)

µkm(t) + υkm(t) − σkm

.

Summing over t ∈ {tf , . . . , tf+1 − 1} yields the following bound on the frame-level difference L(Q (tf+1)) − L(Q (tf)):
km

(Bu

km + Bz
km)Tf −

tf+1−1
τ=tf

(Ukm(τ) + Zkm(τ))µkm(τ) +

tf+1−1
τ=tf

Ukm(τ)Rkm(τ)

−

tf+1−1
τ=tf

(Ukm(τ) + Zkm(τ))υkm(τ) +

tf+1−1
τ=tf

Zkm(τ)σkm

. (49)

From (5), it follows that Ukm(τ) ≥ Ukm(tf) − (τ − tf)(µmax
km + υmax

km) for all τ ≥ tf . Similarly from (15), it follows that
Zkm(τ) ≥ Zkm(tf) − (τ − tf)(µmax

km + υmax
km) for all τ ≥ tf . Using this, the second term above can be lower bounded as

tf+1−1
τ=tf

(Ukm(τ) + Zkm(τ))µkm(τ) ≥

tf+1−1
τ=tf

(Ukm(tf) + Zkm(tf))µkm(τ) −

tf+1−1
τ=tf

(τ − tf)(µmax
km + υmax

km)µkm(τ)

≥

tf+1−1
τ=tf

(Ukm(tf) + Zkm(tf))µkm(τ) − Tf (Tf − 1)(µmax
km + υmax

km)µmax
km

(33) follows by using the above in (49), adding the V
tf+1−1

τ=tf (C(τ)+W (τ)+E(τ)) term to both sides, and taking conditional
expectation given 9(tf).

22 R. Urgaonkar et al. / Performance Evaluation () –

Appendix E. Delayed backlog bounds

We first show (35). From (5), it follows that Ukm(τ) ≥ Ukm(tf) − (τ − tf)(µmax
km + υmax

km) for all τ ≥ tf . Using this,

−

tf+1−1
τ=tf

Ukm(τ)υstat
km (τ) ≤ −

tf+1−1
τ=tf

Ukm(tf)υstat
km (τ) +

tf+1−1
τ=tf

(τ − tf)(µmax
km + υmax

km)υstat
km (τ)

≤ −

tf+1−1
τ=tf

Ukm(tf)υstat
km (τ) +

Tf (Tf − 1)
2

(µmax
km + υmax

km)υmax
km . (50)

The bound in (35) is obtained by summing (50) over all k,m, taking the conditional expectation of both sides and using the
fact that the back-end routing decisions under the stationary algorithm are i.i.d. every slot. The bounds (36) and (37) can be
shown using a similar procedure and we omit the details for brevity.

Next, we show (38). For any integer δ ≥ 0, we can express
tf+1−1

τ=tf Ukm(τ)Rstat
km (τ) in terms of δ-shifted terms as

tf+1−1
τ=tf

Ukm(τ)Rstat
km (τ) =

tf +δ−1
τ=tf

Ukm(τ)Rstat
km (τ) +

tf+1+δ−1
τ=tf +δ

Ukm(τ)Rstat
km (τ) −

tf+1+δ−1
τ=tf+1

Ukm(τ)Rstat
km (τ)

= xkm(tf , tf+1) +

tf+1+δ−1
τ=tf +δ

Ukm(τ)Rstat
km (τ). (51)

From (5), it follows that Ukm(τ) ≤ Ukm(tf) + (τ − tf)Rmax
km for all τ ≥ tf . Using this, the second term above can be upper

bounded as
tf+1+δ−1
τ=tf +δ

Ukm(tf)Rstat
km (τ) +

tf+1+δ−1
τ=tf +δ

(τ − tf)Rmax
km Rstat

km (τ) ≤

tf+1+δ−1
τ=tf +δ

Ukm(tf)Rstat
km (τ) +

δTf +

Tf (Tf − 1)
2

(Rmax

km)2.

Now consider the conditional expectation of the first term on the RHS above, i.e.,
tf+1+δ−1

τ=tf +δ Ukm(tf)Rstat
km (τ). We have for any

integer δ ≥ 0

Ec

tf+1+δ−1
τ=tf +δ

Ukm(tf)Rstat
km (τ)

 = Ukm(tf)Ec

tf+1+δ−1
τ=tf +δ

Rstat
km (τ)

 ≤ Ukm(tf)(Rstat
km + αγ δ)Ec

Tf

(52)

where the last step follows from the application of Lemma 8 and using the fact that the control decisions Rstat
km (τ) under

the routing policy of the stationary algorithm are functions purely of the Markov chain defined by the user location and
request arrival processes. (38) is obtained by summing (51) over all k,m, taking the conditional expectation, and applying
the bound in (52). A similar approach can be used to show (39). Finally, (40) follows by noting that the back-end routing
decisions under the stationary algorithm are taken in an i.i.d. manner every slot and the resulting time-average back-end
routing cost is at most e∗

+ φ(σ).

Lemma 8 (Markov Chain Convergence [22]). Let Z(t) be a finite state, discrete time ergodic Markov chain. Let S denote its
state space and let {πs}s∈S be the steady state probability distribution. Let f (Z(t)) be a positive random function of Z(t). Define
f =

j∈S πjmj where mj , E {f (Z(t))|Z(t) = j}. Then there exist constants α, γ such that for all integers d ≥ 0, we have

E {f (Z(t))|Z(t − d) = i} ≤ f + smmaxαγ d

where mmax , maxj∈S mj and s = card{S}.

References

[1] M. Satyanarayanan, Cloudlets: At the leading edge of cloud-mobile convergence, in: Proceedings of the 9th International ACM Sigsoft Conference on
Quality of Software Architectures, Ser. QoSA’13, ACM, New York, NY, USA, 2013, pp. 1–2.

[2] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the Internet of things, in: Proceedings of the First Edition of the MCCWorkshop
on Mobile Cloud Computing, ACM, 2012, pp. 13–16.

[3] S. Davy, J. Famaey, J. Serrat-Fernandez, J. Gorricho, A. Miron, M. Dramitinos, P. Neves, S. Latre, E. Goshen, Challenges to support edge-as-a-service, IEEE
Commun. Mag. 52 (1) (2014) 132–139.

[4] T. Taleb, A. Ksentini, Follow me cloud: interworking federated clouds and distributed mobile networks, IEEE Netw. 27 (5) (2013) 12–19.
[5] D.P. Bertsekas, Dynamic Programming and Optimal Control, second ed., Athena Scientific, 2000.
[6] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, first ed., John Wiley & Sons, Inc., 1994.
[7] L. Georgiadis, M.J. Neely, L. Tassiulas, Resource allocation and cross-layer control in wireless networks, Found. Trends Netw. 1 (1) (2006) 1–144.
[8] M.J. Neely, Stochastic Network Optimization with Application to Communication and Queueing Systems, Morgan and Claypool Publishers, 2010.

http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref1
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref2
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref3
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref4
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref5
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref6
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref7
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref8

R. Urgaonkar et al. / Performance Evaluation () – 23

[9] S. Maguluri, R. Srikant, L. Ying, Stochastic models of load balancing and scheduling in cloud computing clusters, in: INFOCOM, 2012 Proceedings IEEE,
March 2012, pp. 702–710.

[10] Y. Guo, A. Stolyar, A. Walid, Shadow-routing based dynamic algorithms for virtual machine placement in a network cloud, in: INFOCOM, 2013
Proceedings IEEE, April 2013, pp. 620–628.

[11] Y. Guo, A.L. Stolyar, A. Walid, Online algorithms for joint application-VM-physical-machine auto-scaling in a cloud, in: The 2014 ACM International
Conference on Measurement and Modeling of Computer Systems, Ser. SIGMETRICS’14, ACM, 2014, pp. 589–590.

[12] J.W. Jiang, T. Lan, S. Ha,M. Chen,M. Chiang, Joint VMplacement and routing for data center traffic engineering, in: INFOCOM, IEEE, 2012, pp. 2876–2880.
[13] M. Lin, A. Wierman, L.L.H. Andrew, E. Thereska, Dynamic right-sizing for power-proportional data centers, IEEE/ACM Trans. Netw. 21 (5) (2013)

1378–1391.
[14] M. Lin, Z. Liu, A.Wierman, L.L.H. Andrew,Online algorithms for geographical loadbalancing, in: Proceedings of the 2012 InternationalGreenComputing

Conference, IGCC, Ser. IGCC’12, Washington, DC, USA, 2012, pp. 1–10.
[15] G. Celik, E. Modiano, Scheduling in networks with time-varying channels and reconfiguration delay, IEEE/ACM Trans. Netw. 23 (1) (2015) 99–113.
[16] A. Gandhi, S. Doroudi, M. Harchol-Balter, A. Scheller-Wolf, Exact analysis of the M/M/K/setup class of Markov chains via recursive renewal reward,

SIGMETRICS Perform. Eval. Rev. 41 (1) (2013) 153–166.
[17] M. Neely, Dynamic optimization and learning for renewal systems, IEEE Trans. Automat. Control 58 (1) (2013) 32–46.
[18] S.M. Ross, Introduction to Probability Models, ninth ed., Academic Press, Inc., Orlando, FL, USA, 2006.
[19] T.H. Cormen, C. Stein, R.L. Rivest, C.E. Leiserson, Introduction to Algorithms, second ed., McGraw-Hill Higher Education, 2001.
[20] D.B. Shmoys, E. Tardos, An approximation algorithm for the generalized assignment problem, Math. Program. 62 (3) (1993) 461–474.
[21] M. Piorkowski, N. Sarafijanovic-Djukic, M. Grossglauser, A parsimonious model of mobile partitioned networks with clustering, in: Communication

Systems and Networks and Workshops, 2009. COMSNETS 2009. First International, Jan 2009, pp. 1–10.
[22] R. Urgaonkar, M.J. Neely, Opportunistic scheduling with reliability guarantees in cognitive radio networks, IEEE Trans. Mob. Comput. 8 (6) (2009)

766–777.

Rahul Urgaonkar is a Research Staff Member with the Cloud-Based Networks group at the IBM T.J. Watson Research Center. He
is currently a task lead on the US Army Research Laboratory (ARL) sponsored Network Science Collaborative Technology Alliance
(NS CTA) program. He is also a Primary Researcher in the US/UK International Technology Alliance (ITA) research programs. His
research is in the areas of stochastic optimization, algorithm design, and optimal control with applications to communication
networks and cloud-computing systems. Before joining IBM research, Dr. Urgaonkar was a Scientist with the Network Research
group at Raytheon BBN Technologies where he worked on several government funded projects, including the NS CTA and ITA
programs. He obtained his Masters and Ph.D. degrees from the University of Southern California in 2005 and 2011 respectively
and his Bachelor’s degree (all in Electrical Engineering) from the Indian Institute of Technology Bombay in 2002.

Shiqiang Wang received the B.Eng. and M.Eng. degrees from Northeastern University, China, respectively in 2009 and 2011.
He is currently working toward the Ph.D. degree at the Department of Electrical and Electronic Engineering, Imperial College
London, United Kingdom. In the summers of 2014 and 2013, he was at IBM T.J. Watson Research Center, Yorktown Heights,
NY, United States. In the autumn of 2012, he was at NEC Laboratories Europe, Heidelberg, Germany. His research interests
include dynamic controlmechanisms, optimization algorithms, protocol design andprototyping,with applications tomobile cloud
computing, hybrid and heterogeneous networks, ad-hoc networks, and cooperative communications. He has over 20 scholarly
publications, and has served as a technical program committee (TPC) member or reviewer for a number of international journals
and conferences.

Ting He received the B.S. degree in computer science from Peking University, China, in 2003 and the Ph.D. degree in electrical
and computer engineering from Cornell University, Ithaca, NY, in 2007. In 2007, Ting joined the IBM T.J. Watson Research Center,
where she is currently a Research Staff Member in the Network Analytics Research Group. At IBM, she has worked as a primary
researcher and task lead in several research programs including the International Technology Alliance (ITA) program funded by
US ARL and UK MoD, the ARRA program funded by NIST, and the Social Media in Strategic Communication (SMISC) program
funded by DARPA. Her work is in the broad areas of network modeling, statistical inference, and information theory. He is a
senior member of IEEE. She has served as the Membership co-chair of ACM N2Women and the TPC of a range of communications
and networking conferences, including IEEE INFOCOM, IEEE SECON, IEEE/ACM IWQoS, IEEE MILCOM, IEEE ICNC, IFIP Networking,
etc. She received the Outstanding Contributor Award from IBM Research in 2009 and 2013. She received the Best Paper Award
at the 2013 International Conference on Distributed Computing Systems (ICDCS), a Best Paper Nomination at the 2013 Internet
Measurement Conference (IMC), and the Best Student Paper Award at the 2005 International Conference on Acoustic, Speech and

Signal Processing (ICASSP). In school, she was an Outstanding College Graduate of Beijing Area and an Outstanding Graduate of Peking University in 2003,
and a winner of the Excellent Student Award of Peking University from 1999 to 2002.

Murtaza Zafer received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Madras, in 2001,
and the Ph.D. and S.M. degrees in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology in
2003 and 2007 respectively. He currently works at Nyansa Inc., where he leads the analytics portfolio of the company. Prior to this,
he was a Senior Research Engineer at Samsung Research America, where his research focused on machine learning, deep-neural
networks, big data and cloud computing. From 2007–2013 he was a Research Scientist at the IBM T.J. Watson Research Center,
New York, where his research focused on computer and communication networks, data-analytics and cloud computing. He was
a technical lead on several research projects in the US–UK funded multi-institutional International Technology Alliance program
with emphasis on fundamental research in mobile wireless networks. He has previously worked at the Corporate R&D center
of Qualcomm Inc. and at Bell Laboratories, Alcatel-Lucent Inc., during the summers of 2003 and 2004 respectively. Zafer serves
as an Associate Editor for the IEEE Network magazine. He is a co-recipient of the Best Student Paper award at the International
Symposium onModeling and Optimization in Mobile, Ad Hoc, andWireless Networks (WiOpt) in 2005, a recipient of the Siemens

and Philips Award in 2001 and a recipient of several invention achievement awards at IBM Research.

http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref11
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref12
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref13
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref15
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref16
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref17
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref18
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref19
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref20
http://refhub.elsevier.com/S0166-5316(15)00061-9/sbref22

24 R. Urgaonkar et al. / Performance Evaluation () –

Kevin Chan is research scientistwith the Computational and Information Sciences Directorate at theUSArmyResearch Laboratory
(Adelphi, MD). Previously, he was an ORAU postdoctoral research fellow at ARL (2008–10). His research interests are in network
science, with past work in dynamic networks, trust and distributed decision making and quality of information through ARL’s
Network Science Collaborative Technology Alliance and Network and Information Sciences International Technology Alliance.
Prior to ARL, he received a Ph.D. in Electrical and Computer Engineering (ECE) and MSECE from Georgia Institute of Technology
(Atlanta, GA) in 2003 and 2008, respectively. He also received a BS in ECE/EPP from Carnegie Mellon University (Pittsburgh, PA)
in 2001.

Kin K. Leung received his B.S. degree from the Chinese University of Hong Kong in 1980, and his M.S. and Ph.D. degrees from
University of California, Los Angeles, in 1982 and 1985, respectively. He joined AT&T Bell Labs in New Jersey in 1986 and worked
at its successors, AT&T Labs and Lucent Technologies Bell Labs, until 2004. Since then, he has been the Tanaka Chair Professor
in the Electrical and Electronic Engineering (EEE), and Computing Departments at Imperial College in London. He is the Head of
Communications and Signal Processing Group in the EEE Department. His current research focuses on protocols, optimization and
modeling of various wireless networks. He also works on multi-antenna and cross-layer designs for these networks. He received
the Distinguished Member of Technical Staff Award from AT&T Bell Labs (1994), and was a co-recipient of the Lanchester Prize
Honorable Mention Award (1997). He was elected an IEEE Fellow (2001), received the Royal Society Wolfson Research Merits
Award (2004–09) and became a member of Academia Europaea (2012). He also received several best paper awards, including the
IEEE PIMRC 2012 and ICDCS 2013. He has actively served on conference committees. He serves as a member (2009–11) and the
chairman (2012–15) of the IEEE Fellow Evaluation Committee for Communications Society. Hewas a guest editor for the IEEE JSAC,

IEEEWireless Communications and the MONET journal, and as an editor for the JSAC: Wireless Series, IEEE Transactions onWireless Communications and
IEEE Transactions on Communications. Currently, he is an editor for the ACM Computing Survey and International Journal on Sensor Networks.

	Dynamic service migration and workload scheduling in edge-clouds
	Introduction
	Related work
	Problem formulation
	System model
	MDP formulation

	MDP relaxation and decoupling
	Decoupling the relaxed MDP

	Online control algorithm
	User-to-edge-cloud request routing
	Edge-cloud to back-end cloud request routing
	Application reconfiguration
	Complexity reduction
	Calculating the optimal frame length
	Bipartite matching

	Performance analysis
	Evaluations
	Synthetic traces
	Real-world mobility

	Conclusions
	Acknowledgments
	Relaxed MDP formulation
	Cost optimality of decoupled MDP
	Proof of Theorem 3
	Frame-based Lyapunov drift bound
	Delayed backlog bounds
	References

