
Performance Evaluation () –

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

On optimal monitor placement for localizing node failures via
network tomography✩

Liang Ma a,∗, Ting He a, Ananthram Swami b, Don Towsley c, Kin K. Leung d

a IBM T. J. Watson Research Center, Yorktown, NY, USA
b Army Research Laboratory, Adelphi, MD, USA
c University of Massachusetts, Amherst, MA, USA
d Imperial College, London, UK

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Network tomography
Failure localization
Maximum node identifiability
Optimal monitor placement algorithm

a b s t r a c t

We investigate the problem of placing monitors to localize node failures in a communica-
tion network from binary states (normal/failed) of end-to-end paths, under the assump-
tion that a path is in normal state if and only if it contains no failed nodes. To uniquely
localize failed nodes, the measurement paths must show different symptoms (path states)
under different failure events. Our goal is to deploy the minimum set of monitors to sat-
isfy this condition for a given probing mechanism. We consider three families of prob-
ing mechanisms, according to whether measurement paths are (i) arbitrarily controllable,
(ii) controllable but cycle-free, or (iii) uncontrollable (i.e., determined by the default routing
protocol). We first establish theoretical conditions that characterize network-wide failure
identifiability through a per-node identifiability measure that can be efficiently evaluated
for the above three probing mechanisms. Leveraging these results, we develop a generic
monitor placement algorithm, applicable under any probing mechanism, that incremen-
tally selects monitors to optimize the per-nodemeasure. The proposed algorithm is shown
to be optimal for probing mechanism (i), and provides upper and lower bounds on the
minimum number of monitors required by the other probing mechanisms. In the spe-
cial case of single-node failures, we develop an improved monitor placement algorithm
that is optimal for probing mechanism (ii) and has linear time complexity. Using these
algorithms, we study the impact of the probing mechanism on the number of monitors
required for uniquely localizing node failures. Our results based on real network topolo-
gies show that although more complicated to implement, probing mechanisms that al-
low monitors to control measurement paths substantially reduce the required number of
monitors.

© 2015 Elsevier B.V. All rights reserved.

✩ Research was sponsored by the US Army Research Laboratory and the UK Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the US Army Research Laboratory, the US Government, the UK Ministry of Defence or the UK Government.
The US andUKGovernments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.
∗ Corresponding author.

E-mail addresses:maliang@us.ibm.com (L. Ma), the@us.ibm.com (T. He), ananthram.swami.civ@mail.mil (A. Swami), towsley@cs.umass.edu
(D. Towsley), kin.leung@imperial.ac.uk (K.K. Leung).

http://dx.doi.org/10.1016/j.peva.2015.06.003
0166-5316/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.peva.2015.06.003
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
mailto:maliang@us.ibm.com
mailto:the@us.ibm.com
mailto:ananthram.swami.civ@mail.mil
mailto:towsley@cs.umass.edu
mailto:kin.leung@imperial.ac.uk
http://dx.doi.org/10.1016/j.peva.2015.06.003

2 L. Ma et al. / Performance Evaluation () –

1. Introduction

Effective monitoring of network performance is essential for network operators to build a reliable communication
network robust against service disruptions. In order to achieve this goal, the monitoring infrastructure must be able to
detect network misbehaviors (e.g., unusually high loss/latency, unreachability) and localize the sources (e.g., malfunction
of certain routers) of these misbehaviors in an accurate and timely manner. Knowledge of where problematic network
elements reside in the network is particularly useful for fast service recovery, e.g., migration of affected services and/or
rerouting of traffic. However, localizing network elements that cause a service disruption is challenging. The straightforward
approach of directly monitoring the health of individual network elements incurs a high traffic overhead and is not always
feasible due to access control or lack of protocol support at internal nodes. Moreover, built-in monitoring agents running on
network elements cannot detect problems caused by unanticipated interactions between network layers, where end-to-end
communication is disrupted but individual network elements along the path remain functioning (a.k.a. silent failures) [1].
These limitations call for a new approach to diagnose the health of network elements based on the health of end-to-end
communications perceived between measurement points.

This different approach is generally known as network tomography [2], where a canonical application infers internal
network characteristics bymeasuring end-to-end performance from a subset of nodeswithmonitoring capabilities, referred
to as monitors. Unlike the approach of direct measurements that employ control packets, network tomography only relies
on end-to-end performance (e.g., path connectivity) experienced by data packets, thus capable of reducing overhead,
minimizing dependence on protocols, and detecting silent failures. In cases where the network characteristic of interest
is binary (e.g., normal or failed), the problem is known as Boolean network tomography [3].

Given binary observations on paths (normal/failed), it is usually impossible to uniquely identify the states of individual
network elements (nodes/links). For example, if two elements always appear together in any measurement path that
contains one of them, then upon observing failures on these paths, we can at most infer that one (or both) of these elements
has failed but not which one. Most existing works [2,4,1] address this uncertainty by focusing on a most probable solution
that explains all path observations with the minimum number of failures. There is no guarantee, however, on howwell this
solution approximates the true failure locations.

Generally, to distinguish two possible sets of failures, there must exist a measurement path that traverses at least one
element in one set and none of the elements in the other set. It is highly nontrivial to placemonitors, such that this condition
is satisfied with minimum cost, due to the large solution space (all combinations of monitor locations) and large number of
constraints (all pairs of sets of failure locations). Several heuristics have been proposed to placemonitors to uniquely localize
a bounded number of link failures under specific probing mechanisms (e.g., traceroute) [5–7]. There is, however, a lack of
understanding on theminimumnumber of monitors required for a generic probingmechanism and how this number varies
for different probing mechanisms and different bounds on the number of failures.

In this paper, we apply Boolean network tomography to localize node failures. Node failures can be used tomodel failures
of both physical nodes and links, with the latter represented as logical ‘‘nodes’’ connected to endpoints of the corresponding
links.We consider the following problem:What is theminimum set of nodes that should be employed asmonitors, such that
any set of up to k node failures can be uniquely localized from the states of paths that are measurable under a given probing
mechanism? We study this problem in the context of three families of probing mechanisms: (i) Controllable Arbitrary-path
Probing (CAP), where monitors can measure arbitrary paths subject to connectivity, (ii) Controllable Simple-path Probing
(CSP), where measurements are limited to cycle-free paths between monitors, and (iii) Uncontrollable Probing (UP), where
only paths betweenmonitors selected by the default routing protocol can be measured. These probing mechanisms assume
different levels of control over the routing of probes and are feasible in different network scenarios (see Section 2.3). A
comparison of the minimum numbers of monitors required to uniquely localize the same number of failures in the same
topologyunder different probingmechanisms thus establishes a fundamental tradeoff between the controllability of probing
mechanism and the cost of monitor deployment.

1.1. Related work

Existing works on tomography-based failure localization mostly consider link failures. Given path measurements, the
standard approach is to find the minimum set of links whose failures explain all of the measurements, which gives the most
probable set of failure locations under the assumption that failures are low-probability events. Using this approach, [2,4]
propose solutions for networks with tree topologies, which are later extended to general topologies by [1]. In a Bayesian
formulation, [8] proposes a two-staged solution that first estimates the failure probabilities of different links and then infers
the most likely set of failed links using subsequent measurements. Augmenting path measurements with available control
plane information (e.g., routing messages), [9,10] propose a greedy heuristic for troubleshooting network unreachability
that has better accuracy than benchmarks using only path measurements.

Our work belongs to a complementary line of works that aim at uniquely localizing failures by strategically placing
monitors. The optimal solution is known to be hard whenmonitors cannot control the routing of probes. Specifically, under
round-trip probing (e.g., ping, traceroute) where only sources of probes need to be monitors, [5] shows that the optimal
monitor placement is NP-hard and proposes a greedy approximation algorithm. Under the same probing mechanism, [6]

L. Ma et al. / Performance Evaluation () – 3

shows that path selection can be solved in polynomial time, but monitor placement remains NP-hard. In the context of all-
optical networks, [7] studies a similar problem of deactivating redundant monitors such that all failures remain uniquely
identifiable by the remaining monitors, which again can be shown to be NP-hard. The probing mechanisms considered in
these papers are most similar to UP, although UP requires both endpoints of measurement paths to be monitors (one-way
probing) to avoid the inaccuracy of round-trip probing caused by route asymmetry. This introduces an additional challenge
in monitor placement as paths measurable by one monitor under UP depend on locations of other monitors.

Interestingly,whenmeasurement paths can be controlled (subject to certain constraints), the optimalmonitor placement
becomes computable in polynomial time. In the context of all-optical networks, where monitors can measure the states of
arbitrary paths/cycles (a.k.a. ‘‘m-trail’’), [11] proves that the networkmust be (k+2)-edge-connected to identify any failures
of up to k links using onemonitor, which is then used to develop a polynomial-time algorithm to place theminimumnumber
of monitors for general topologies. When monitors can measure arbitrary paths with repeated links (a.k.a. ‘‘m-tour’’), [12]
shows that the requirement for identifying up to k link failures using one monitor is relaxed to k-edge connectivity, based
on which a heuristic algorithm is proposed to place monitors for general topologies. The algorithm is then used to compare
the numbers of monitors required under m-tour and m-trail probing. Our work shares a similar goal of [12] in that we are
also interested in comparing monitor requirements under different probing mechanisms, but we study the problem in a
different context of computer communication networks and for a different objective of localizing node failures. The first
difference leads to different probing mechanisms, for which we adopt models proposed in [13] (CAP, CSP, and UP); see
detailed discussions in Section 2.3. The second difference leads to a critically different requirement that the solution should
be robust to the failures of monitors themselves. Note that although one can represent each node failure by the failures of
all its neighboring links and apply the results for link failure localization to localize node failures, the result will generally
be suboptimal (i.e., placing more monitors than necessary), as we may be able to determine the state of a node without
determining the states of all its neighboring links.

Necessary/sufficient conditions are established in [13] to uniquely localize a given number of node failures under
CAP, CSP, and UP, respectively, which can be used to test whether a given monitor placement satisfies a desired level of
identifiability. It is, however, highly nontrivial to compute the minimummonitor placement that satisfies these conditions,
as there are exponentiallymany possiblemonitor placements to test. In this paper,we adopt themodels in [13] to investigate
efficient monitor placement algorithms under the above probing mechanisms.

A related but fundamentally different line of work is to study the minimum number of measurement paths needed to
uniquely localize a given number of (node/link) metrics, using a CAP-like probing mechanism. Regarding this issue, [14]
proposes a graph-constrained group testing solution, while [15] employs compressed sensing techniques to recover additive
metrics (e.g., delay) in up to k nodes. In contrast, we only consider binary node/path states and seek to optimally deploy
monitors such that node states can be uniquely localized using pathmeasurements under a variety of probingmechanisms. A
followup problem tomonitor placement is how to select/constructmeasurement paths, forwhich various heuristic [5,11,12]
and optimal [6] algorithms have been proposed. We leave the problem of constructing paths for localizing node failures
under CAP/CSP/UP to future work.

1.2. Summary of contributions

We study minimummonitor placement to uniquely localize node failures from binary end-to-end measurements under
probing constraints. Our contributions are:

(1) We establish a fine-grainedmeasure of a network’s capability to uniquely localize node failures as a function of network
topology, monitor placement, and probing constraints.

(2) Using the proposedmeasure, we develop a generic algorithm that incrementally placesmonitors such that all failures up
to a given bound can be uniquely identified using an arbitrary probing mechanism. We then provide polynomial-time
implementations of this algorithm for specific probing mechanisms (CAP, CSP, and UP). We prove that the proposed
algorithm is optimal under CAP, and provides upper and lower bounds on the minimum number of monitors under CSP
and UP.

(3) For CSP, we further develop a linear-time algorithm that selects the minimum number of monitors to uniquely identify
any single-node failure.

(4) We compare the monitor requirements under different probing mechanisms on real topologies. Our study shows that
although controllable probing, especially CAP, is more difficult to implement, it significantly reduces the number of
monitors compared to more restrictive probing mechanisms.

Note that we have limited our observations to binary states (normal/failed) of measurement paths. It is possible in some
networks to obtain extra information, e.g., rerouted paths or correlation of failures, in which case our solution provides
upper bounds on the minimummonitor requirement.

The rest of the paper is organized as follows. Section 2 formulates the problem. Section 3 proposes a fine-grainedmeasure
of identifiability, based onwhich Section 4 presents an efficientmonitor placement algorithm that is provably optimal under
CAP and provides bounds for other probingmechanisms. In Section 5, we further investigate the case of single-node failures
and develop an optimal monitor placement algorithm for CSP. All proposed algorithms are evaluated on real topologies in
Section 6 to compare monitor requirements under different probing mechanisms. Finally, Section 7 concludes the paper.

4 L. Ma et al. / Performance Evaluation () –

2. Problem formulation

2.1. Models and assumptions

We assume that the network topology is known and can be modeled as an undirected graph1 G = (V , L), where V and L
are the sets of nodes and links. In G, the number of neighbors of node v is called the degree of v. Without loss of generality,
we assume that G is connected, as different connected components have to be monitored separately.

A subset of nodes M ⊆ V (determined by monitor placement) is monitors that can initiate and collect measurements.
The rest of the nodes, denoted by N := V \ M , are non-monitors. All nodes (monitors and non-monitors) in V may fail
unexpectedly, and a failure event may involve multiple nodes. We use node state (path state) to refer to the state, failed or
normal, of nodes (paths), where a path fails if and only if at least one node on the path fails. We assume that monitors
in normal states report measured path states to a monitoring center via uninterrupted control plane messaging (even
if the paths in data plane may be disrupted by failures).2 Consequently, the states of monitors can always be uniquely
determined. Depending on the adopted probingmechanism,we canmeasure and infer the states of non-monitors by sending
probes along selected measurement paths using the normal monitors. Let P denote the set of all possible measurement paths
under a given probing mechanism. This includes both paths for sending probes between monitors and degenerate paths
corresponding to individual monitors (since monitors can be measured directly), i.e., P = {m : m ∈ M} ∪ {Pmimj : mi ∈

M,mj ∈ M}, where Pmimj is a measurement path between monitorsmi andmj allowed by the probing mechanism. Given G
andM , different probing mechanisms can lead to different measurement paths, which will be discussed in Section 2.3.

2.2. Definitions

Let a failure set be a set of nodes (monitors or non-monitors) that can fail simultaneously. Two failure sets may overlap.
The goal of failure localization is therefore to determine the failure set from the states of measurement paths. The challenge
is that there may exist multiple failure sets leading to the same path states, causing an ambiguity. Let PF ⊆ P denote the set
of all measurement paths affected by a given failure set F , i.e., traversing at least one node in F . We borrow the following
definition from [13] to formalize the requirement for unique failure localization.

Definition 1 ([13]). Given a network G, a set of measurement paths P , and a collection Ψ of potential failure sets in G:

(1) Two failure sets F1 and F2 are distinguishable using monitors inM if and only if PF1 ≠ PF2 , i.e., ∃ a measurement path that
traverses one and only one of F1 and F2.

(2) In Ψ , failure set F is identifiable if and only if F is distinguishable from every other failure set in Ψ .
(3) Ψ is identifiable if and only if every failure set in Ψ is identifiable.

It is clear from Definition 1 that whether a failure set is identifiable or not depends on the collection of potential failure
sets it is compared against. Under the assumption that failures are low-probability events, one can define Ψ to include
probable failure sets by bounding the cardinality of failure sets. Formally, we adopt the following definition from [13].

Definition 2 ([13]). Given a network G and a set of measurement paths P in G, we say that G is k-identifiable (0 ≤ k ≤ |V |)
if the collection Ψ of all node sets of size up to k is identifiable, i.e., any failure of up to k nodes (monitors or non-monitors)
can be uniquely localized.

The notion of k-identifiability is a worst-case guarantee. That is, as long as the total number of failures is bounded by
k, we can uniquely localize the failures from observed path states in a k-identifiable network no matter where the failures
occur. Note that there is a subtle but critical difference between our formulation and the formulation in [13] in that [13]
assumes monitors do not fail. Since failures of monitors can always be localized, an equivalent definition of k-identifiability
is that under any set of failed monitors FM ⊆ M with |FM | ≤ k, failures of up to k − |FM | non-monitors can be uniquely
localized using path measurements from the remaining monitors.

2.3. Classification of probing mechanisms

Given topology G and the monitor locations M , the probing mechanism plays a crucial role in determining the set of
measurement paths P . To study the impact of probing mechanisms on monitor placement, we consider the following three
families of probing mechanisms defined in [13]:

(1) Controllable Arbitrary-path Probing (CAP): P includes any path/cycle, allowing repeated nodes/links, as long as each
path/cycle starts and ends at monitors.

1 We use the terms network and graph interchangeably.
2 This is feasible for soft failures caused by congestion and busy CPU, as each report only contains a few bits of information.

L. Ma et al. / Performance Evaluation () – 5

Fig. 1. Monitor placement in a sample network. (i) For 1-identifiability:M = {v1} under CAP,M = {v1, v8} under CSP, andM = {v1, v2, v5, v8} under UP.
(ii) For 2-identifiability:M = {v1, v4} under CAP,M = {v1, v2, v4, v8} under CSP, andM = {v1, v2, v5, v6, v8} under UP.

(2) Controllable Simple-path Probing (CSP): P includes any degenerate path of a singlemonitor, and any simple (i.e., cycle-free)
path between distinct monitors.

(3) Uncontrollable Probing (UP): P includes each degenerate single-monitor path and a path between each pair of monitors
specified by the routing protocol for data flows.

These probingmechanisms provide different controllability of probes and are feasible in different network environments.
For example, CAP is feasible under source routing or in software-defined networks (SDN), CSP is feasible under MPLS
(MultiProtocol Label Switching) routing, and UP is feasible in any communication network employing stable single-path
routing; see detailed discussions in [13].

Discussion: Although CAP allows probes to traverse each link an arbitrary number of times, it suffices to consider paths
that traverse each link atmost once in each direction for the sake of localizing failures, and thus CAP is equivalent to ‘‘m-tour’’
probing in [12]. In all-optical networks, [11] considers another probing mechanism called ‘‘m-trail’’, where measurement
paths can contain repeated nodes but not repeated links. It is unclear what routing protocols in general communication
networks select paths according to ‘‘m-trails’’; we therefore do not consider such probing mechanism in this paper.

2.4. Objective

Given a network topology G, a probing mechanism (CAP, CSP, or UP), and a maximum number of failures k, we want to
select the minimum set of nodes in G as monitors (i.e., selecting M ⊆ V) such that G is k-identifiable. Here k is an input
parameter capturing the scale of failures the system is designed to handle. Clearly, a more restrictive probing mechanism
(UP vs. CSP, CSP vs. CAP) requires more monitors to be placed. It is, however, non-trivial to quantify the gap in the required
number of monitors and how it depends on other parameters including the maximum number of failures and the network
topology. Our goal is to quantify this gap by developing and evaluating efficient monitor placement algorithms.

2.5. Illustrative example

Consider the problems of placingmonitors in the sample network in Fig. 1 to achieve 1-identifiability and 2-identifiability
(k = 1, 2), respectively. Under UP, suppose that the default routing protocol allows the following paths: P1 = v1v3v4v6v8,
P2 = v2v3v5v7v8, P3 = v1v3v4v5, P4 = v1v3v2, P5 = v2v3v5, and P6 = v5v4v6. By selecting M = {v1, v2, v5, v8} as
monitors, we can verify that the network is 1-identifiable (i.e., for every two nodes, there is a measurement path traversing
one and only one of them), and no placement can achieve 1-identifiability with fewer monitors. For 2-identifiability,
additional monitors must be selected, e.g., selecting v6 as an additional monitor achieves 2-identifiability. The required
number of monitors can be reduced under a more flexible probing mechanism. For example, under CSP, selecting M =
{v1, v8} asmonitors suffices to achieve 1-identifiability, saving twomonitors comparedwith UP. To achieve 2-identifiability
under CSP, we can select v2 and v4 as additional monitors, again saving a monitor compared with UP. If CAP is supported,
then we can further reduce the number of monitors: selecting v1 (or any other node) as the only monitor, we can localize
any single-node failure by constructing nestedmeasurement paths starting and terminating at v1, whereby 1-identifiability
is achieved; it can also be verified that only two monitors, e.g.,M = {v1, v4}, are sufficient to achieve 2-identifiability.

This example shows that in addition to the network topology and the maximum number of failures, the probing
mechanism also significantly affects the required number of monitors. In the rest of the paper, we will study this impact
both theoretically and algorithmically.

3. Objective of monitor placement

Conceptually, our monitor placement algorithms try to solve the optimization problem of placing the minimum number
of monitors subject to the constraint of satisfying k-identifiability. The definition of k-identifiability in Definition 2 is based
on the enumeration of all possible failure scenarios and does not directly allow efficient testing. To address this issue, [13]
establishes explicit conditions for k-identifiability that can be verified efficiently (in polynomial time) for each of the three
probingmechanisms (CAP, CSP, UP). This result, however, still does not allow efficient optimization ofmonitor placement as
there are exponentially many possible placements to test. We address this challenge by proposing a fine-grained measure

6 L. Ma et al. / Performance Evaluation () –

Fig. 2. Extended graph G′ , where mi ’s are real monitors and m′ is a virtual monitor.

of identifiability that can differentiate intermediate monitor placements and is thus suitable for an incremental algorithm
that iteratively selects monitors to achieve k-identifiability.

3.1. Fine-grained measure of identifiability

We start by noticing that even if a network is not k-identifiable under a given monitor placement, we may still be able
to uniquely determine the states of some nodes (e.g., monitors and immediate neighbors of normal monitors) no matter
where the failures occur. This observation motivates us to establish fine-grained measures that can characterize the extent
to which node states can be identified under failures. To this end, we adapt the (network-wide) k-identifiability definition
in Definition 2 to the following per-node property.

Definition 3. Given a network G and a set of measurement paths P:

(1) Node v is k-identifiable if for any two failure sets F1 and F2 satisfying (1) |Fi| ≤ k (i = 1, 2), (2) F1 ∩ {v} ≠ F2 ∩ {v}, F1
and F2 are distinguishable.

(2) Themaximum identifiability of v, denoted by Ω(v), is the maximum value of k such that v is k-identifiable.

If v is a monitor, the degenerate path (v) can always distinguish between F1 and F2 for v ∈ F1 and v ∉ F2; hence
we define Ω(v) := |V | for monitors. In other words, the maximum identifiability of node v is the maximum number of
failures that may happen anywhere in the network such that the state of node v can be uniquely determined from states
of measurement paths. One should not confuse Ω(v) with the overall maximum identifiability of a network G, denoted by
Ω(G), which represents the maximum number of failures anywhere in the network such that the states of all nodes can be
uniquely determined [13]. We will refer to Ω(v) as the node maximum identifiability and Ω(G) as the network maximum
identifiability. The significance of maximum node identifiability is that we can express the k-identifiability of a network
(Definition 2) in terms of conditions on the maximum identifiability of nodes.

Theorem 4. A network G is k-identifiable if and only if Ω(v) ≥ k for each v ∈ V .

Proof. Necessity. Suppose ∃ node v ∈ V that is not k-identifiable (i.e., Ω(v) < k), then ∃ at least two failure sets F1 and
F2 with |Fi| ≤ k (i = {1, 2}) and F1 ∩ {v} ≠ F2 ∩ {v} such that F1 and F2 are not distinguishable. By Definition 2, G is not
k-identifiable.

Sufficiency. For any two failure sets F1 and F2 with F1 ≠ F2 and |Fi| ≤ k (i = {1, 2}), ∃ a node v that is in one and only
one of F1 and F2. Since node v is k-identifiable (Ω(v) ≥ k), F1 and F2 must be distinguishable by Definition 3. Therefore, G is
k-identifiable. �

Theorem 4 implies that an equivalent formulation for monitor placement is to select the minimum number of monitors
such that each node has a maximum identifiability of at least k; we will use this observation to develop an efficient monitor
placement algorithm (see Section 4.1). Note that by this theorem,we can relate node and networkmaximum identifiabilities
by Ω(G) = minv∈V Ω(v).

Definition 3 still relies on the enumeration of all possible failure sets and therefore cannot be used to evaluate Ω(v)
efficiently. In the rest of this section, we explore how to efficiently compute Ω(v) for each of the three probing mechanisms
considered in this paper.

3.2. Maximum node identifiability under CAP

Our idea for computingΩ(v) under CAP, denoted byΩCAP(v), is based on the following observation. Consider an extended
graph G′ constructed by adding a virtual monitor m′ that is connected to each real monitor via a virtual link; see Fig. 2. For
a non-monitor v, let CG′(v,m′) denote theminimum vertex cut between v andm′, i.e., the minimum node set that separates
v and m′ in G′; if v is a monitor, define CG′(v,m′) := V . Then we must have Ω(v) ≤ |CG′(v,m′)| because node v cannot be
probed if all nodes in CG′(v,m′) fail. Below we show a stronger result that the bound is actually tight and characterizes the
exact value of ΩCAP(v).

L. Ma et al. / Performance Evaluation () – 7

Theorem 5. The maximum identifiability of node v under CAP is ΩCAP(v) = |CG′(v,m′)|.

Proof. It suffices to show that non-monitor v is |CG′(v,m′)|-identifiable. Consider any two failure sets F1 and F2 with
|Fi| ≤ |CG′(v,m′)| (i = 1, 2), v ∈ F1, and v ∉ F2. Let I := F1 ∩ F2. Since |I| ≤ |CG′(v,m′)| − 1, ∃ a path P connecting
v to m′ in G′ − I . Let m be the first real monitor on P (starting from m′) and w be the first node on P that is in either F1 \ I
or F2 \ I . Let P ′ denote the segment of P betweenm and w. Then P ′ and its reverse path form a measurement path fromm
to w and back to m that only traverses nodes in one of F1 and F2, thus distinguishing between F1 and F2. �

Complexity: The problem of finding vertex-cut between v andm′ in an undirected graphG′, i.e., CG′(v,m′), can be reduced
to an edge-cut problem between v and m′ in a directed graph in linear time [16]. The v-to-m′ edge-cut problem is solvable
by the Ford–Fulkerson algorithm [17] in O(|L| · |M|) time. Therefore, the complexity for computing ΩCAP(v) is O(|L| · |M|).

3.3. Maximum node identifiability under CSP

Under CSP, measurement paths have to start/end at different monitors and not contain repeated nodes. Nevertheless, we
can apply similar observations as above to derive tight upper/lower bounds on ΩCSP(v) as follows.

Theorem 6. The maximum identifiability of node v under CSP satisfies

(a) |CG′(v,m′)| − 2 ≤ ΩCSP(v) ≤ |CG′(v,m′)| − 1, if 2 ≤ |CG′(v,m′)| < |V |,
(b) ΩCSP(v) = 0, if |CG′(v,m′)| ≤ 1, and
(c) ΩCSP(v) = |V |, if |CG′(v,m′)| = |V |.

Proof. For any two failure sets F1 and F2 with |Fi| ≤ k (i = {1, 2}), v ∈ F1, and v ∉ F2, if |CG′(v,m′)| ≥ k+ 2, then ∃ vertex
disjoint (except at v) paths from v to monitors in G− F2; concatenating these two paths generates a measurement path that
can distinguish between F1 and F2. However, if |CG′(v,m′)| ≤ k, then ∃ a nodew and a node set F ′ inGwith |F ′| ≤ k−1, such
that the removal of F ′ results in all paths from v tomonitors going throughw. Therefore,@ cycle-free path that can distinguish
between failure sets F ′ and F ′∪{v} (|F ′∪{v}| ≤ k). Thus, v is k-identifiable under CSP (i) if |CG′(v,m′)| ≥ k+2, and (ii) only if
|CG′(v,m′)| ≥ k+1. Since k = |CG′(v,m′)|−2 is the largest number that satisfies sufficient condition (i), and k = |CG′(v,m′)|
is the smallest number that violates necessary condition (ii), we have |CG′(v,m′)| − 2 ≤ ΩCSP(v) ≤ |CG′(v,m′)| − 1 for
2 ≤ |CG′(v,m′)| < |V |. Finally, if |CG′(v,m′)| ≤ 1, then @ cycle-free path traversing v, and thus ΩCSP(v) = 0; ΩCSP(v) = |V |
if v is a monitor, i.e., |CG′(v,m′)| = |V |, according to Definition 3. �

Theorem 6 states that although the exact value of ΩCSP(v) cannot be directly determined in most cases, we can obtain
upper and lower bounds that only differ by 1, thus limiting ΩCSP(v) to one of two consecutive integers.

Complexity: Similar to CAP, computing CG′(v,m′) takes O(|L| · |M|) time. Therefore, the complexity for determining the
lower and upper bounds for ΩCSP(v) using Theorem 6 is O(|L| · |M|).

3.4. Maximum node identifiability under UP

Similar to CSP,we can bound themaximum identifiabilityΩ(v)underUP, denoted byΩUP(v), fromboth sides. Let Pv ⊆ P
denote the set of measurement paths traversing a node v, and Sv := {Pw : w ∈ V , w ≠ v} denote the collection of path sets
traversing nodes in V \{v}. We useMSC(v) to denote the cardinality of theminimum set cover of Pv by Sv , i.e., MSC(v) := |V ′|
for the minimum set V ′ ⊆ V \ {v} such that Pv ⊆


w∈V ′ Pw . Note that this definition excludes the case that v itself is a

monitor; if v is a monitor, then we define MSC(v) := |V |. Intuitively, MSC(v) is the minimum number of failures at nodes
other than v that will hide the failure of v (by disrupting all paths traversing v), and thus determines the value of ΩUP(v).

Theorem 7. The maximum identifiability of node v under UP satisfies

(a) MSC(v)− 1 ≤ ΩUP(v) ≤ MSC(v) if 1 ≤ MSC(v) < |V |,
(b) ΩCSP(v) = 0 if MSC(v) = 0, and
(c) ΩCSP(v) = |V | if MSC(v) = |V |.

Proof. For any two failure sets F1 and F2 with |Fi| ≤ k (i = {1, 2}), v ∈ F1, and v ∉ F2, if MSC(v) ≥ k+ 1, then ∃ a measure-
ment path P ∈ Pv \


w∈F2

Pw , i.e., P goes through v but none of the nodes in F2. Thus, P distinguishes F1 and F2. However,
if MSC(v) ≤ k−1, then ∃ a node set F ′ with |F ′| ≤ k−1, such that the removal of F ′ disconnects all paths traversing v under
UP, and thus F ′ and F ′ ∪ {v} are not distinguishable. Thus, v is k-identifiable under UP (i) if MSC(v) ≥ k+ 1, and (ii) only if
MSC(v) ≥ k. Since k = MSC(v) − 1 is the largest number that satisfies sufficient condition (i), and k = MSC(v) + 1 is the
smallest number that violates necessary condition (ii), we have MSC(v)− 1 ≤ ΩUP(v) ≤ MSC(v) when 1 ≤ MSC(v) < |V |.
Finally, if v is a monitor, i.e., MSC(v) = |V |, then ΩUP(v) = |V | according to Definition 3; if v is not traversed by any
measurement path, i.e., MSC(v) = 0, then obviously ΩUP(v) = 0. �

8 L. Ma et al. / Performance Evaluation () –

Algorithm 1:Maximum Node-identifiability Monitor Placement (MNMP)
input : Network topology G, parameter k (1 ≤ k ≤ |V |)
output: Set of monitorsM ⊆ V

1 M ← ∅ ; // ←: assignment
2 U ← V ; // U: uncovered nodes
3 while U ≠ ∅ do
4 m = argmaxw∈V\M |U ∩ V(w, M)|;
5 U ← U \ V(w, M);
6 M ← M ∪ {m};
7 end
8 while ∃v ∈ V with Ω(v) < k do
9 m∗ ← argmaxw∈V\M


v∈V min


Ω(v|M ∪ {w}), k


;

10 M ← M ∪ {m∗};
11 end
12 for each m ∈ M do
13 M ← M \ {m} if Ω(v|M \ {m}) ≥ k for each v ∈ V ;
14 end

Complexity: Evaluating ΩUP(v) by Theorem 7 requires solving the set covering problem, which is NP-hard [18]. Neverthe-
less, we can use approximation algorithms to compute bounds on MSC(v). An algorithmwith the best approximation guar-
antee is the greedy algorithm, which iteratively selects the set in Sv that contains the largest number of uncovered paths in Pv

until all the paths in Pv are covered (for a non-monitor v). Let GSC(v) denote the number of sets selected by the greedy algo-
rithm. This immediately provides an upper bound: MSC(v) ≤ GSC(v). Moreover, since the greedy algorithm has an approx-
imation ratio of log(|Pv|)+ 1 [19], we can also bound MSC(v) from below: MSC(v) ≥ GSC(v)/(log(|Pv|)+ 1). Computation
of GSC(v) takes polynomial time: O(|Pv|

2
|V |) = O(|P|2|V |) (or O(|M|4|V |) if P contains paths between all pairs of monitors).

4. Monitor placement for multi-failure localization

By Theorem 4, an alternate monitor placement formulation with respect to (w.r.t.) a given maximum number of failures
k is to ensure sufficiently large (≥k) maximum identifiability Ω(v) for each node v by selecting a minimum set of nodes
as monitors. This alternate formulation allows one to evaluate intermediate solutions by defining an objective function
f ((Ω(v))v∈V |M) that maps (Ω(v))v∈V under monitor placement M to a scalar, such that a monitor placement M1 can
be considered preferable to another placement M2 if f ((Ω(v))v∈V |M1) ≥ f ((Ω(v))v∈V |M2) (even if neither placement
achieves k-identifiability). Based on this idea, we develop an efficient monitor placement algorithm that incrementally
selects monitors to optimize a particular objective function. We prove that the proposed algorithm is optimal for CAP and
provides upper and lower bounds on the minimum number of monitors for CSP and UP.

4.1. Monitor placement based on maximum node identifiability

The basic idea of the proposed monitor placement algorithm, called Maximum Node-identifiability Monitor Placement
(MNMP), is to select monitors iteratively, such that each selection maximizes the sum of min(Ω(v), k) over v ∈ V ; see
Algorithm 1. MNMP is applicable to any probing mechanism. More importantly, MNMP is optimal under a specific family of
probing mechanisms (see Theorem 9). MNMP has three steps:

Step (1) First, MNMP selects monitors to ensure that all non-monitors can be covered by measurement paths. Given
M ⊆ V and w ∈ V \M , define V(w,M) as the set of nodes covered by measurement paths starting from w, when selecting
w as amonitor on top of existingmonitorsM , i.e.,V(w,M) are all nodes onmeasurement paths betweenw and eachm ∈ M .
Based on this definition, lines 3–7 iteratively select a newmonitor whose paths to the existingmonitors cover themaximum
number of uncovered nodes, until all nodes are covered by at least one measurement path.

Step (2) Next, MNMP selects additional monitors if needed so that Ω(v) ≥ k for each v ∈ V . Let Ω(v|M) denote the
maximum identifiability of node v undermonitor placementM . Given a subroutine to evaluateΩ(v|M) (detailed later), lines
8–11 select newmonitors iteratively such that each selection maximizes the summaximum node identifiability, capped by
k, i.e.,


v∈V min


Ω(v|M ∪ {w}), k


. The iteration continues until Ω(v) ≥ k∀v ∈ V , i.e., G is k-identifiable.

Step (3) Finally, MNMP goes through selected monitors in an arbitrary order to check if a monitor can be removed from
M without violating k-identifiability, and removes it if so (lines 12–14).

In MNMP, the time complexity for computing V(w,M) (line 4) and Ω(v|M) (lines 9, 13) varies for different probing
mechanisms. In the following section, we discuss how to implement MNMP efficiently under three specific probing
mechanisms (CAP, CSP, and UP), and examine the associated properties of MNMP.

L. Ma et al. / Performance Evaluation () – 9

Fig. 3. Graph decomposition: (a) Sample network; (b) Biconnected components in (a); (c) Triconnected components in (a).

4.1.1. Implementation under CAP
Since the given network G is a connected graph, for any non-monitor v and monitor m in G, there exists a path P

connecting v and m; moreover, CAP allows each link to be traversed multiple times by the same probe, and thus a probe
starting fromm can be sent to v along path P and returned tom via the same path, i.e., a single monitor can probe any non-
monitor. Therefore, selecting any node as monitor ensures that the uncovered node set U in line 3 is empty (i.e., complexity
of lines 3–7 is reduced to O(1)). When selecting additional monitors (lines 8–11) or deselecting redundant monitors (lines
12–14), MNMP-CAP uses a subroutine that computes the size of minimum vertex cut to evaluate Ω(v|M) in polynomial
time based on the result in Theorem 5.

Complexity: Section 3.2 shows the complexity for computingΩCAP(v) isO(|L| · |M|). Thus, lines 8–11 takeO(|L| · |V | · |M|2)
time, and lines 12–14 take O(|L| · |M| · |V | · |M|) time. The overall complexity of MNMP-CAP is thus O(|L| · |V | · |M|2), or
O(|L| · |V |3) in the worst case.

4.1.2. Implementation under CSP
Unlike CAP, a single monitor cannot probe any node (except for the monitor itself) under CSP. Therefore, multiple

monitors are needed to ensure coverage (lines 3–7). Because there can be exponentially many paths between each pair of
nodes under CSP, we cannot compute V(w,M) by simply enumerating paths between a candidate monitor w and existing
monitors M . To efficiently compute V(w,M), we need to first understand how the network topology affects the coverage
of paths. We introduce the following definition.

Definition 8 ([20]).

(a) Graph G containing n vertices is k-connected if k ≤ n − 1 and deleting any subset of up to k − 1 vertices does not
disconnect G.

(b) A q-connected component of G is a maximal subgraph of G that is either q-connected, or a complete graph (i.e., a clique)
with up to q vertices. A 2-connected (3-connected) component is also called a biconnected (triconnected) component.

Based on Definition 8, a biconnected component is either a 2-connected subgraph or a bond (i.e., two nodes connected
by a single link). All biconnected components are connected by cut-vertices, each being a vertex whose removal disconnects
the graph. For instance, Fig. 3(b) shows the biconnected components of Fig. 3(a), separated by cut-vertices c and f .

Based on this concept, it is clear that each biconnected component with fewer than two cut-vertices must have at least
onemonitor; otherwise, non-cut-vertices in this component cannot be measured using cycle-free paths. Meanwhile, if each
biconnected component has at least two nodes that are cut-vertices or monitors, then it can be verified that every non-
monitor is traversed by a simple path between monitors. Motivated by this observation, lines 3–7 can be implemented
as follows: compute biconnected components of G [21], and randomly select a non-cut-vertex node as a monitor in
each biconnected component with fewer than two cut-vertices; if G contains only one biconnected component (i.e., G
is 2-connected), randomly select two nodes as monitors. The selected monitors ensure that all nodes are covered by
measurement paths allowed by CSP (degenerate paths or simple paths between monitors).

To implement lines 9 and 13, we resort to the result in Theorem 6. Since we only have lower/upper bounds for ΩCSP(v),
we use the lower bound in evaluating the value of ΩCSP(v|M) so that the constructed monitor setM is always sufficient for
achieving k-identifiability under CSP.

Complexity: Lines 3–7 take O(|V |) time, dominated by the time to find biconnected components [21]. Computing the
lower bound ofΩCSP(v) takes O(|L| · |M|) (shown in Section 3.3). Thus, similar to CAP, the overall complexity for MNMP-CSP
is O(|L| · |V | · |M|2) = O(|L| · |V |3).

4.1.3. Implementation under UP
To place monitors under UP, we need to know, besides the network topology G, the set of routable paths Q := (quv)u,v∈V

between all pairs of nodes (e.g., by knowing the routing protocol), where quv is a routable path between nodes u and v.
To cover all nodes by measurement paths under UP, we observe that: (i) all degree-one nodes must be monitors, and

(ii) at least one in every two consecutive degree-two nodesmust be amonitor (assuming routable paths are cycle-free). This
observation allows us to bootstrap MNMP-UP by initializing M with nodes satisfying the above conditions. If there are still

10 L. Ma et al. / Performance Evaluation () –

uncovered nodes, then we choose additional monitors according to lines 3–7, where V(w,M) :=


m∈M qwm (viewing qwm
as the set of nodes on path qwm).

We apply the result of Theorem 7 to evaluate ΩUP(v|M). Again, since we only have lower/upper bounds, we use the
lower bound to represent the value of ΩUP(v|M). The exact lower bound is NP-hard to evaluate, and a greedy heuristic can
be applied to evaluate a relaxed lower bound as discussed in Section 3.4. Although theoretically the relaxed bound differs
from the true value of ΩUP(v|M) by a logarithmic factor (i.e., 1/(log |Pv|+1)), empirical studies in [13] have shown that the
greedy heuristic gives near-optimal results that can be used to approximate the original, tight lower bound (differing from
ΩUP(v|M) by at most one).

Complexity: Lines 3–7 contain O(|M|) iterations, each taking O(|M| · |V |2) time dominated by line 4; lines 8–11 and lines
12–14 each have O(|M|) iterations, each iteration taking O(|P|2 · |V |2) time (using alternate greedy heuristic) dominated by
lines 9 and 13. Therefore, the overall complexity of MNMP-UP is O(|M| · |P|2 · |V |2) = O(|P|2 · |V |3).

Discussion: A similar problem of Redundant Monitor Deactivation Problem (RMDP) is investigated in [7] to remove
redundant monitors such that remaining monitors maintain the same failure localization capability, which is shown to
be NP-complete and solved by a greedy heuristic. RMDP is based on a different observation model where monitors observe
states of paths traversing them, and thus paths measured by a monitor are independent of other monitors. In contrast,
monitors in our problem measure states of paths starting/ending at them, and thus paths measured by a monitor depend
on which other nodes are monitors. Therefore, the solution to RMDP cannot be applied to our problem.

4.2. Performance analysis

MNMP is by design a greedy algorithm that incrementally places monitors and removes redundant monitors without
backtracking. Generally, this greedy approach leads to suboptimal solutions for an arbitrary probing mechanism. We show,
however, that for a probing mechanism of particular interest, CAP, MNMP provides the optimal solution.

Theorem 9. MNMP-CAP selects the minimum number of monitors for achieving k-identifiability under CAP.

Proof. See Appendix A.1. �

Besides proving the optimality of MNMP-CAP, Theorem 9 also helps to establish fundamental bounds for other probing
mechanisms. Since CAP is arguably the most powerful probing mechanism, the minimum number of monitors required by
CAP, computed by MNMP-CAP, is a lower bound on the number of monitors required by any other probing mechanism.
Specifically, let MCAP, MCSP, and MUP denote the sets of monitors selected by MNMP-CAP, MNMP-CSP, and MNMP-UP,
respectively, and µCAP, µCSP, and µUP be the minimum number of monitors under the corresponding probing mechanism.
Then µCAP

= |MCAP
|, |MCAP

| ≤ µCSP
≤ |MCSP

|, and |MCAP
| ≤ µUP

≤ |MUP
|.

5. Improved monitor placement for single-failure localization

An application of particular interest is localization of single-node failures. In practice, a monitor placement that uniquely
localizes single-node failures allows the network operator to effectively handle independent failures, as there is at most one
such failure (with high probability) at any point of time.

To localize single-node failures (i.e., achieve 1-identifiability), it suffices to ensure that any two failure sets, each contain-
ing a single non-monitor, are distinguishable (recall that monitor failure can be directly observed). We simplify Definition 2
into the following definition for 1-identifiability (Pv: set of measurement paths traversing node v, N: set of non-monitors).

Definition 10. A network G with measurement paths P is 1-identifiable if:
(1) Pv ≠ ∅ for any v ∈ N , and
(2) Pv ≠ Pw for any v, w ∈ N and v ≠ w.

In Definition 10, the first condition guarantees that the failure of each non-monitor v is detectable (i.e., v is traversed by
at least one measurement path), and the second condition guarantees that the observed path states uniquely localize the
failure (if any). Ensuring these conditions using the minimum number of monitors, however, requires different approaches
with highly different complexities under different probing mechanisms, as stated below.

Under CAP, Theorem 5 implies that as long as G has at least one monitor, we have ΩCAP(v) = |CG′(v,m′)| ≥ 1 for any
node v ∈ V . Therefore, to achieve 1-identifiability under CAP, it suffices to place a single monitor at a randomly selected
node. In contrast, UP complicates the problem by restricting paths to a predetermined set (i.e., routable paths). The problem
of monitor placement thus becomes a combinatorial optimization that is hard to solve even for k = 1. To see this, we
note that even if eachmonitor measures a predetermined set of paths that is independent of other monitors, the problem of
placing theminimumnumber ofmonitors to satisfy conditions (1–2) in Definition 10 is NP-complete [7]. Monitor placement
under UP is intuitively harder because the set of paths measured by a monitor depends on the locations of other monitors;
a formal proof of the hardness is left to future work.

What remains open is whether the optimal monitor placement under CSP can be computed in polynomial time. In the
rest of this section, we give a positive answer to this question by developing an algorithm that computes an optimalmonitor
placement for achieving 1-identifiability under CSP in linear time.

L. Ma et al. / Performance Evaluation () – 11

Fig. 4. Monitor placement in the sample network, where Bi (i = 1, . . . , 9) is a biconnected component ({u2, u1}, {u2, u4}, {u5, u1}, {u4, u5}, {u4, u1}, and
{u2, u5} are 2-vertex-cuts in B6).

5.1. Observations

The proposed optimal monitor placement algorithm under CSP is motivated by the following three observations.

Observation 1 (Necessary monitor placement in biconnected subgraphs). As discussed in Section 4.1.2, to satisfy Condition 1
in Definition 10, each biconnected component with only one cut-vertex must select a non-cut-vertex as a monitor.

Observation 2 (1-identifiable nodes after necessary monitor placement). Assuming necessary monitors have been placed
according to Observation 1, we prove that the network satisfies Condition 1 in Definition 10. Moreover, all nodes that are neither
cut-vertices nor nodes in 2-vertex-cuts are 1-identifiable. Intuitively, this is because for each such node v (suppose v is not a
monitor), ∃ a measurement path traversing any other non-monitor even if v is removed from the network. For instance, after
deploying monitors m1, m2, and m3 according to Observation 1 in Fig. 4, if biconnected component B7 does not contain any
internal 2-vertex-cuts, then all nodes in V (B7) \ {u1} are 1-identifiable (V (B) denotes the set of nodes in graph B), because for
any nodes z ∈ V (B7) \ {u1}, ∃ a path from m2 to u1 that does not traverse z.

Observation 3 (Additional monitor placement for achieving 1-identifiability).We notice that after necessary monitor placement
by Observation 1, cut-vertices and nodes in 2-vertex-cuts may or may not be 1-identifiable, in which case additional monitors
may be required. For instance, consider the sample network in Fig. 4. Cut-vertices u6, u7, . . . , u10 are 1-identifiable. However,
cut-vertex pairs {u3, u2}, {u3, u1}, {u1, u2}, and 2-vertex-cut node pair {u4, u5} are not distinguishable. This is because for each
of these node pairs, any simple path traversing one node also traverses the other. The optimal way to deploy additional monitor is
to select a node in Λ3 as a monitor, say w. Then measurement path P1 can be used to distinguish node pairs in {u3, u2}, {u3, u1},
and {u4, u5}; path w→ u5 → u1 → m2 can distinguish between failures of u1 and u2.

Based on the above three observations, we are ready to develop the optimal monitor placement under CSP in a given
network, for which we first sketch the basic idea as follows.

5.2. Algorithm overview

We propose Optimal Monitor Placement for 1-identifiability under CSP (OMP-CSP), which consists of the following three
basic steps:

(i) Ensure that all nodes that are neither cut-vertices nor nodes in 2-vertex-cuts are 1-identifiable by placing necessary
monitors in biconnected components according to Observation 1;

(ii) Ensure that all nodes which are not cut-vertices but in 2-vertex-cuts are 1-identifiable by determining all 1-identifiable
non-cut-vertices in each biconnected component according to Observation 2 and deploying additionalmonitors in each
biconnected component according to Observation 3, such that all non-cut-vertices are 1-identifiable;

(iii) Ensure that all remaining nodes are 1-identifiable by placing the minimum number of additional monitors to make all
cut-vertices 1-identifiable.

One special case for OMP-CSP is that the given network is already 2-connected, for which only step (ii) in OMP-CSP is
required. We point out that the selected monitors in step (iii) do not affect the necessity of previously deployed monitors;
see Theorem 17 for the proof. Overall, the monitors selected by OMP-CSP form an optimal solution (Theorem 17), i.e., any
single-node failure can be uniquely localized using the minimum number of monitors.

5.3. Sketch of algorithm

We now present a sketch of OMP-CSP and refer the reader to Appendix A.2 for full detail. A basic object used in OMP-
CSP is the biconnected/triconnected component defined in Definition 8. Intuitively, a triconnected component within a
biconnected component is connected to the rest of the biconnected component by 2-vertex-cuts. However, not all subgraphs
within a biconnected component separated by 2-vertex-cuts form triconnected components according to Definition 8. For
example, D1 in Fig. 3(b) has a 2-vertex-cut {b, c}; however, D1 is not 3-connected. To fix this issue, we add virtual links to

12 L. Ma et al. / Performance Evaluation () –

Fig. 5. PLC decomposition: (a) Sample 2-connected network (M = {a, b, c} is the optimal monitor placement for achieving 1-identifiability; see
Appendix A.2 for details); (b) Polygon in (a); (c) All PLCs in (a).

the graph as follows: For each 2-vertex-cut whose vertices are not neighbors, we connect the vertices by a virtual link; we
repeat this procedure for all 2-vertex-cuts. It can be verified that all subgraphs separated by cut-vertices and 2-vertex-cuts
in the processed graph are triconnected components. For instance, Fig. 3(c) shows the triconnected components, separated
by cut-vertices and 2-vertex-cuts {b, c}, {i, f }, {i, q}, and {f , l}.

One can compute all the triconnected components of a graph in linear time by the graph decomposition algorithm in [22].
According to Observation 2, placing necessary monitors by Observation 1 ensures that all internal nodes in triconnected
components (i.e., neither cut-vertices nor nodes in 2-vertex-cuts) are 1-identifiable. However, this observation does not
capture all 1-identifiable nodes, as there may be other nodes that are also 1-identifiable (see Theorem 15). To address this
issue, we introduce a new type of graph decomposition built upon the triconnected component decomposition as follows.

PLC decomposition: Our proposed decomposition divides a graph into certain subgraphs called polygon-less components
(PLCs), which are defined based on the concepts ofmerging and polygon given below.

Definition 11. If two components T1 = (V1, L1) and T2 = (V2, L2) share the same virtual link vw and no other component
shares vw, then T1 and T2 are mergeable. The merged component equals the union of the two components without the
virtual link, i.e., T = (V1 ∪ V2, L1 ∪ L2 \ vw).

Definition 12. After merging all mergeable triangles generated from triconnected component decomposition of G, each
merged component with at least four nodes is called a polygon of G.

For example, in Fig. 3(c), two triangles ({i, q, f }, {iq, if , qf }) and ({i, f , c}, {if , ic, cf }) can be merged to form a quadrilat-
eral. However, virtual link fl in Fig. 3(c) is the common link among three triangles; therefore, triangles ({f , g, l}, {fg, fl, gl}),
({f , k, l}, {fk, fl, kl}), and ({f , o, l}, {fo, fl, ol}) in Fig. 3(c) cannot be merged. For the example in Fig. 5, Fig. 5(b) is a polygon
in Fig. 5(a).

Intuitively, a graph containing a polygon can be decomposed into subgraphs separated by vertices of the polygon. We
refer to such subgraphs as PLCs, defined as follows.

Definition 13. A Polygon-Less Component (PLC) is amaximal subgraph ofG that is either (i) a 2-connected graph containing
at most two vertices in any polygon of G, or (ii) a complete graph with 2 vertices (i.e., bonds).

For instance, Fig. 5(c) shows all PLCs (including bonds) in Fig. 5(a). As the name suggests, PLCs donot contain anypolygons.
Moreover, Fig. 5 shows that, as opposed to triconnected components, PLCs do not contain any virtual links.

Note that the set of triconnected components found by the graph decomposition algorithm in [22] is not unique, as it
depends on the order in which virtual links are added. In contrast, PLC decomposition has a desirable property that its
outcome is unique, as stated in the following lemma, proved in Appendix A.3.

Lemma 14. Any network G can be uniquely decomposed into a set of PLCs.

The significance of PLC is that it makes it easy to determine all 1-identifiable nodes in a PLC, even if this PLC may contain
2-vertex-cuts; see Theorem 15 (proved in Appendix A.4).

Theorem 15. If a PLC contains at least two monitors, then all nodes in this PLC are 1-identifiable.

Moreover, we have Corollary 16, proved in Appendix A.5, for determining the identifiable nodes in a PLC without
monitors.

Corollary 16. Let Λ be a PLC in G. If Λ contains two cut-vertices of G, then all its non-cut-vertices are 1-identifiable; if Λ

contains three or more cut-vertices of G, then all its nodes are 1-identifiable.

Corollary 16 implies that cut-vertices can be considered as effectivemonitors for localizing node failures in PLCs.Moreover,
nodes on polygons can also assist in identifying failed nodes in PLCs (see the proof of Theorem 17). In this regard, we refer
to both cut-vertices and nodes on polygons as agents for localizing node failures in the sequel.

Algorithm OMP-CSP: With the above definitions, we now present OMP-CSP (Algorithm 2), which follows the three logical
steps outlined in Section 5.2.

L. Ma et al. / Performance Evaluation () – 13

Algorithm 2: Optimal Monitor Placement for 1-identifiability under CSP (OMP-CSP)
input : Connected network topology G which is not 2-connected
output: Set of monitors that achieves 1-identifiability in G under CSP

1 partition G into biconnected components {B1, B2, . . .} and then PLCs;
2 if G is 2-connected then
3 deploy monitors by the auxiliary algorithmMonitors-in-Biconneted-Network (see Appendix B);
4 return;
5 end
6 foreach biconnected component Bi do
7 if Bi is a PLC and Bi has only one cut-vertex then
8 randomly choose node v (v is not a cut-vertex in G) in Bi as a monitor;
9 else

10 find set A containing all PLCs with≥ 3 agents or≥ 4 neighboring PLCs within Bi, and set C containing all neighboring PLCs
of each PLC in set Awithin Bi;

11 within Bi, find set E containing all PLCs with only 2 agents and one agent is a cut-vertex (in G);
12 B ′i ← Bi ⊖ (A ∪ C ∪ E);
13 Monitors-in-Polygon-less-Network(B ′i , S

i
a), where S ia is the set of agents in Bi;

14 end
15 end
16 find set F containing all biconnected components with monitors;
17 find set I containing all biconnected components with 2 cut-vertices (in G) and 3 or more neighboring biconnected components in

G;
18 find set J containing all biconnected components with 3 or more cut-vertices, and set K containing all neighboring biconnected

components of each component in J;
19 G′ ← G⊖ (F ∪ I ∪ J ∪ K);
20 Monitors-in-Polygon-less-Network(G′, Sc), where Sc is the set of cut-vertices in G;

(1) First, we decompose G into biconnected components and then each biconnected component into PLCs (line 1). Based
on this decomposition, we place monitors according to Observation 1 in each biconnected component that is a PLC
with only one cut-vertex (line 8). In cases where the given network is already 2-connected (i.e., containing a single
biconnected component), Observation 1 cannot be applied; instead, we select monitors by an auxiliary algorithm
Monitors-in-Biconneted-Network, given in Algorithm A in Appendix A.2 (line 3). The basic idea of Algorithm A is to first
remove all nodes that are 1-identifiable (determined by the multiple-polygon structure (line 5 of Algorithm A) or the
necessary initial monitor placement (lines 10 and 21 of Algorithm A)), such that the remaining graph does not contain
any polygons. Then for this polygon-less graph, we use Algorithm 3 (see step (3)) for additional monitor placement. If
the input graph is not 2-connected, then the following two steps are executed.

(2) Next, we process the rest of the biconnected components. We prove in [23] that using the monitors placed by
Observation 1, if a biconnected component contains non-cut-vertices that are not 1-identifiable, then this biconnected
componentmust have at least one polygon and additionalmonitors are required to be inside this biconnected component
for achieving network 1-identifiability. Therefore, the goal of this step is to deploy additional necessary monitors to
ensure that each non-cut-vertex is 1-identifiable. We address this issue by finding all PLCs containing non-cut-vertices
that are not 1-identifiable in each biconnected component according to Observation 2 (lines 10–12) via a graphical
operation ‘‘⊖’’ (line 12) defined as follows: Let G2 be a subgraph of G1 and V ′ the set of common nodes between G1 and
G2. ThenG1⊖G2 denotes a subgraph ofG1 after removing all nodes inG2 except for nodes inV ′. To ensure 1-identifiability
in the remaining graph (B ′i in line 12), we use the auxiliary algorithm Monitors-in-Polygon-less-Network (Algorithm 3)
in line 13 to further deploy monitors according to Observation 3. The details of Algorithm 3will be explained in step (3).

(3) After placing monitors according to the above two steps, we now determine the biconnected components with cut-
vertices that are not 1-identifiable (lines 16–19). Unlike step (2) where we place monitors inside a biconnected
component to ensure that all its non-cut-vertices are 1-identifiable, the optimal monitor placement for identifying cut-
vertices in a biconnected component may be outside this biconnected component (see the proof of Theorem 17). To
place these monitors optimally, we propose a recursive algorithm in Algorithm 3. The idea of Algorithm 3 is to select
one monitor per recursion such that the number of 1-identifiable cut-vertices is maximized. We prove that, up to three
cut-vertices can become 1-identifiable by placing one additional monitor; moreover, these three cut-vertices belong to
three neighboring biconnected components and the monitor must be placed at an internal node (non-cut-vertex) of the
middle component (see the proof of Theorem 17). Therefore, lines 8–16 in Algorithm 3 examine if there exists such a
monitor placement for three neighboring biconnected components (B1, B2, and B3 in line 8). Note that if the middle
biconnected component (B2) is a bond (recall that a bond consists of two nodes connected by one link), then it does not
contain any internal node. This special case is handled by line 10.

Remark. In line 12 of Algorithm 2, the PLCs of B ′i essentially are also biconnected components of B ′i (i.e., similar to G′ in
line 19 of Algorithm 2, B ′i contains no polygons); therefore, Algorithm 3 can also be used for processing B ′i (in line 13 of

14 L. Ma et al. / Performance Evaluation () –

Algorithm 3:Monitors-in-Polygon-less-Network(G, S)
input : Network topology G, node set S
output: Subset of nodes in G as monitors

1 if |L| = 0 then
2 return;
3 end
4 foreach connected component Gi in G do
5 if Gi contains only one biconnected component then
6 randomly choose a node in Gi as a monitor;
7 else
8 in Gi, label one biconnected component with 0 or 1 cut-vertex as B1, one neighboring biconnected component of B1 as B2

(if any), and one neighboring biconnected component of B2 other than B1 as B3 (if any);
9 if B2 is a bond then

10 choose the common node between B1 and B2 as a monitor;
11 G′i ← Gi ⊖ (B1 +B2);
12 else //B2 is not a bond
13 randomly choose node v (v /∈ S) in B2 as a monitor;
14 G′i ← Gi ⊖ (B1 +B2 +B3) (if B3 exists);
15 end
16 Monitors-in-Polygon-less-Network(G′i , S);
17 end
18 end

Algorithm 2). As an example in Fig. 4, after placing monitors m1–m3 by line 8 in Algorithm 2, the input graph to Algorithm
3 is Λ3 (Λ3 is a PLC of B6). In this case, non-cut-vertex w is selected as a monitor by line 6 of Algorithm 3 whereby any two
nodes in {u1, u2, u3, u4, u5} are distinguishable.

Example. Fig. 3 illustrates one example. The optimal monitor placement for achieving 1-identifiability in Fig. 3 consists of
a, g , and h as monitors, where a and g are selected by line 8 in Algorithm 2, while h is selected by line 6 in Algorithm 3.

5.4. Performance analysis

Optimality: The correctness and the optimality of OMP-CSP are shown in Theorem 17; see [23] for the proof.

Theorem 17. OMP-CSP ensures that any single-node failure in a given network is uniquely identifiable under CSP using the
minimum number of monitors.

Complexity: In OMP-CSP, splitting G into biconnected and then triconnected components takes O(|V | + |L|) time [21,22].
Using these triconnected components, OMP-CSP further takes O(|T |) time to find all PLCs, where T is the set of triconnected
components. Processing all biconnected components in lines 6–19 takes O(|T |+ |B|) time, where B is the set of biconnected
components. In addition, Algorithm 3 exhibits O(|BI |) complexity, where BI is the set of biconnected components of the
input network for Algorithm 3. Moreover, the time complexity of Algorithm A (see Appendix A.2) is O(|T |). Therefore, the
entire algorithm of OMP-CSP has O(|V | + |L|) time complexity.

Discussion: A previous study [24] developed an optimal monitor placement algorithm for localizing single-link failures
under controllable ‘‘m-trail’’ probing (allowing repeated nodes but not repeated links in measurement paths), based
on a similar approach that decomposes the network into 2/3-edge-connected subgraphs and places monitors in each
subgraph sequentially. Although it is possible to cast node failures to link failures by transforming the network topology
G (e.g., representing each node by two logical nodes connected by a logical link), the transformation introduces links not of
interest (not representing nodes in G) and paths not measurable under CSP (e.g., 2-hop path from a monitor to its neighbor
and back). Thus, the solution in [24] cannot be applied to place monitors for localizing single-node failures under CSP.

6. Impact of probing mechanisms on monitor placement

Given the above results, we are now ready to quantify the impact of the probing mechanism on monitor placement. We
aim to quantify this impact by evaluating the minimum number of monitors required for achieving k-identifiability under
each of the three probing mechanisms (CAP, CSP, UP). In this study, we assume shortest (hop-count) path routing as the
default routing protocol under UP, with ties broken arbitrarily.

Topologies for Evaluation:We first evaluate themonitor requirement on real Autonomous System (AS) topologies collected
by the Rocketfuel [25] and the CAIDA [26] projects, which represents IP-level connections between backbone/gateway
routers of several ASes from major Internet Service Providers (ISPs) around the globe. The selected AS topologies for
evaluations are Rocketfuel AS1755 with 172 nodes and 381 links, and CAIDA AS28583 with 284 nodes and 415 links. We

L. Ma et al. / Performance Evaluation () – 15

(a) Rocketfuel AS1755 (|V | = 172, |L| = 381). (b) CAIDA AS28583 (|V | = 284, |L| = 415).

Fig. 6. Monitor placement in AS topologies (⋆: optimal value; MSC(v) is computed by enumeration in MNMP-UP; GSC(v) is used to approximate MSC(v)

in MNMP-UP-g).

then test the monitor requirement on a comprehensive set of randomly generated topologies without artifacts of specific
network deployments. We consider random Erdös–Rényi (ER) graphs [27], generated by independently connecting each
pair of nodes by a link with a fixed probability p. The result is a purely random topology where all graphs with an equal
number of links are equally likely to be selected (note that the number of nodes is an input parameter).

Tightness of Bounds: The computation of maximum node identifiability Ω(v) is at the core of our monitor placement
algorithm. Under CAP and CSP, we can accurately characterize ΩCAP(v) and ΩCSP(v) (see Sections 3.2, 3.3); under UP,
we only have a loose bound on ΩUP(v) due to the hardness in evaluating MSC(v) (Section 3.4). Nevertheless, [13] has
empirically verified that GSC(v) closely approximates MSC(v) in a variety of network topologies. We have also verified
in Fig. 6 that the number of monitors placed byMNMP-UP based on GSC(v) (‘MNMP-UP-g ’) closely approximates that based
on MSC(v) (‘MNMP-UP’). These results suggest that for monitor placement under UP, we can use GSC(v) in place of MSC(v)
for computing a tight lower bound on ΩUP(v).

Evaluation Results: The result of monitor placement in one Rocketfuel AS topology is reported3 in Fig. 6(a).4 The result
shows a clear difference in the monitor requirement under different probing mechanisms and different scales of failures
(i.e., different values of k). Specifically, while CAP can achieve 1-identifiability using a single monitor, CSP and UP require a
substantial fraction (0.13 for CSP, and 0.46 for UP) of nodes as monitors for achieving 1-identifiability in the same network
topology. This result demonstrates substantial resource saving in localizing node failures by leveraging controllable probing
mechanisms. When k increases, a considerable number of additional monitors is required, especially for UP, where most
nodes in the network should be monitors for localizing multi-node failures (i.e., k ≥ 2). In addition, when k = 1,
Fig. 6(a) shows that themonitor placement computed by the greedy algorithmMNMP-CSP closely approximates the optimal
placement obtained by OMP-CSP; note that OMP-CSP is still preferred in selectingmonitors for 1-identifiability, as OMP-CSP
is provably optimal and only has linear time complexity. Fig. 6(a) also demonstrates thatwith a fixed number ofmonitors, the
network capability in localizing multiple failures can be improved by relaxing probing constraints. Specifically, by selecting
80 monitors, we can only achieve 1-identifiability under UP; by contrast, 2-identifiability can be achieved under CSP, and
even 4-identifiability under CAP. Furthermore, asMNMP-CAP computes theminimummonitor requirement under themost
flexible routing mechanism that can possibly be allowed in communication networks, the number of monitors placed by
MNMP-CAP establishes a lower bound for any other probing mechanism. For instance, 58% of nodes are required to be
monitors under CAP for k = 5, which suggests that to uniquely localize failures of up to 5 nodes, we need at least 58% of
nodes to be monitors regardless of the probing mechanism.

Because ISP topologies have evolved since the Rocketfuel project, we repeat the above evaluation on a recent dataset
obtained by the CAIDA project; see results in Fig. 6(b). In Fig. 6(b), we first draw similar conclusions as those in Fig. 6(a). In
addition, compared with the Rocketfuel AS, we observe that the CAIDA AS requires more monitors under the same network
settings (except for 1-identifiability under CAP), e.g., over 95% of nodes are required to be monitors under CSP and UP for
k ≥ 2. Moreover, relaxing the probing mechanism from UP to CAP only slightly reduces the required number of monitors
for k ≥ 4. This is because the network used in Fig. 6(b) is sparser compared to the network in Fig. 6(a), as indicated by a
smaller average node degree (i.e., 2|L|/|V |).

To further examine how the network link density affects the monitor requirement under different probing mechanisms,
we tune the average node degree in random ER graphs and compare the corresponding number of selected monitors. In
this evaluation, we fix the number of nodes to 50, and randomly generate 20 graph realizations5 for each given average

3 For monitor placement under CSP and UP, if the computedmaximum node identifiability is 0 ≤ Ω(v) ≤ 1, then to reduce the total number of selected
monitors, exhaustive examination of the two conditions in Definition 10 is used to determine if Ω(v) is 0; if not, then Ω(v) = 1.
4 Similar results have been observed for other ASes in this Rocketfuel dataset, which are omitted in the paper due to space limitations.
5 All these realizations are checked before use to ensure they are connected.

16 L. Ma et al. / Performance Evaluation () –

(a) k = 1. (b) k = 2.

Fig. 7. Monitor placement in ER graphs (|V | = 50, d is the average node degree, E[|L|] = d|V |/2, 20 graph realizations for each d).

Table 1
Graph-related notations.

Symbol Meaning

V , L Set of nodes/links
M,N Set of monitors/non-monitors (M ∪ N = V)
V (G) Set of nodes in graph G
L(G) Set of links in graph G
|G| |G| = |V (G)|

G− L′ Delete links: G− L′ = (V , L \ L′), where ‘‘\’’ is setminus
G+ L′ Add links: G+ L′ = (V , L ∪ L′), where the end-points of links in L′ must be in V
G+ G′ Combine two graphs: G+ G′ = (V (G) ∪ V (G′), L(G) ∪ L(G′))
L(v) Set of links incident to node v

G− v Delete a node: G− v = (V (G) \ {v}, L(G) \ L(v)), where v ∈ V (G)

Gs + v Add a node: Gs + v = (V (Gs) ∪ {v}, L(Gs) ∪ Lv), where Gs is a subgraph of G, v ∈ V (G) \ V (Gs), and Lv is the set of links in L(G) \ L(Gs)

that connect v and nodes in V (Gs)

G− S Delete a node set: G− S = G−
|S|

i=1 si , where S ⊆ V (G) and S = {si}
|S|
i=1

Gs + S Add a node set: Gs + S = Gs +
|S|

i=1 si , where Gs is a subgraph of G, S ⊆ V (G) \ V (Gs) and S = {si}
|S|
i=1

node degree, which are then fed to monitor selection algorithms. The monitor requirement averaged over multiple graph
realizations are reported in Fig. 7. Clearly, Fig. 7 confirms the intuition that poorly-connected networks require more
monitors to localize failures due to their limited choices of probing paths. Note that CAP remains superior for achieving
k-identifiability in both real and synthetic network topologies for a small k, as it allows probes to be sent and received by
the same monitor.

7. Conclusion

We investigated the problemof localizing failed nodes frombinary states of end-to-endpaths betweenmonitors, focusing
on the problem of placing the minimum number of monitors to identify a given number of failures. We studied this
problem by first establishing a fine-grained measure of failure identifiability, based on which we propose a generic monitor
placement algorithm that is applicable under any probing mechanism. We then concretized the proposed algorithm for
three representative probing mechanisms, which offer different tradeoffs between the controllability of probe routing and
the complexity of implementation. We proved that the proposed algorithm achieves the minimum number of monitors for
a probing mechanism that allows monitors to measure arbitrary paths (subject to connectivity), and provides upper/lower
bounds for the other probing mechanisms. In the special case of single-node failures, we developed an improved algorithm
that minimizes the number of monitors when measurement paths must be cycle-free. Our evaluations on real network
topologies reveal that giving the monitors more control over the routing of probes can substantially reduce the number of
monitors required for localizing node failures, or improve the number of failures that can be simultaneously localized using
a given number of monitors, especially in well-connected networks.

Appendix

Table 1 summarizes all graph-theoretical notions used in this Appendix (following the convention in [20]).

A.1. Proof of Theorem 9

To prove the optimality of MNMP-CAP, we first introduce another monitor placement scheme, called Structural Monitor
Placement under CAP (SMP-CAP), which is provable to be optimal in reducing the total number of monitors under CAP.

L. Ma et al. / Performance Evaluation () – 17

Algorithm 4: Structural Monitor Placement under CAP (SMP-CAP)
input : Network topology G, parameter k (1 ≤ k ≤ |V |)
output: Set of monitorsM ⊆ V

1 for layer q = 1, 2, . . . , σ (σ : the total number of k-components in G) do
2 for each k-concatenated component D with q and only q k-components (size q) do
3 S ← {monitors or separation vertices in D};
4 if |S| < min(k, |D|) then
5 M ← M ∪ {min(k, |D|)− |S| randomly selected nodes in D outside S};
6 end
7 end
8 end

Our idea is to show that MNMP-CAP and SMP-CAP select the same number of monitors, thus proving the optimality of
MNMP-CAP. For SMP-CAP, it is based on the following definitions.

Definition 18. The split operation on a q-connected graphD (|D| ≥ q+2) with a q-vertex-cut C is to first get a collection of
connected components by removing C , and then add C back to each of the connected components in this collection, i.e., after
the split operation, D becomes {Di + C}ui=1, where {Di}

u
i=1 := D − C (Di is a connected component in D − C , and u is the

number of connected components in D − C).

Definition 19. Apply the split operation toG and all of its resulting connected graphs recursively, until each generated graph
is k-connected or a clique with up to k nodes. Such k-connected graph or clique is called a k-component.

For any set of k-components {D1, D2, . . . , Dz} (Di is a k-component), if its union D ′ :=
z

i=1 Di (see Table 1 for
notations) is a connected graph, then D ′ is called k-concatenated component, and the number of k-components involved
in D ′ is called the size of D ′. According to the definition, a k-concatenated component in G can be as small as a single
k-component, and as large as the entire G. In a k-concatenated component D (within G), the set of nodes separating D from
the rest of G are called separation verticesw.r.t. D . With these definitions, we can present SMP-CAP, shown in Algorithm 4.

SMP-CAP first groups k-components of G into σ layers (σ : the total number of k-components in G), with each layer
consisting of k-concatenated components with fixed size, and then selects monitors structurally following the order from a
lower layer to an upper layer, where a higher layer is indicated by a larger size of k-concatenated components it involves.
Specifically, SMP-CAP starts selecting monitors from layer 1 (which contains all k-components), then increases the layer
level (line 1 of SMP-CAP), and terminates at layer σ (which only contains the entire network G). In each layer, SMP-CAP
selects monitors as necessary to ensure that: (i) each involved k-concatenated component of size at least k has k nodes that
are monitors or separation vertices; (ii) each involved k-concatenated component of size smaller than k has all the nodes as
either monitors or separation vertices (line 5). We prove the optimality of SMP-CAP in Lemma 20.

Lemma 20. For any k (1 ≤ k ≤ |V |), SMP-CAP places a minimum set of monitors for achieving k-identifiability under CAP.

Proof. It is straightforward to verify that SMP-CAP places the minimum number of monitors to ensure that each
k-concatenated component D has at least min(k, |D|) nodes that are monitors or separation vertices, without which there
exist nodes that are disconnected to monitors after removing all separation nodes and monitors (together the total number
is less than min(k, |D|)) in D .

Next,we focus onproving that SMP-CAP can achieve k-identifiability.Weprove it by verifying the condition in Theorem4.
Suppose that we remove an arbitrary set of nodes S with |S| ≤ k − 1 (S may or may not contain monitors) from G. Then
we examine if a non-monitor v in G − S still connects to monitors. Let U denote the connected component that contains
v in G − S, U′ the connected component that contains v in U + S, and {Di}

σ
i=1 the set6 of all k-components in G. Since

|S| ≤ k− 1 and each Di in {Di}
σ
i=1 is either k-connected or a clique, S cannot separate any k-components. Therefore, U′ is a

k-concatenated component that involves v. Let S ′ := S∩V (D ′), i.e., nodes in S \ S ′ are in other k-concatenated components.
Then all separation vertices w.r.t. U′ are in S ′, because U is separated from the rest of the graph after removing S from G.
Since v ∉ S ′, v must be a non-separation vertex inU′. As v is a non-monitor, we know that |U′| > k according to themonitor
selection rule in line 5 of SMP-CAP. Let β be the number of separation vertices in U′. As U is separated from the rest of the
graph by removing node set S, we must have β ≤ |S ′| ≤ k− 1. Thus, at least k− β non-separation vertices in U′ (we have
shown that |U′| > k in a previous argument) should be selected as monitors. Suppose in addition to the separation vertices
in S ′, S ′ also involves all monitors in U′, i.e., v does not connect to any monitors in the connected graph U. Then we have
|S ′| − β ≥ k − β , and thus |S ′| ≥ k, contradicting the fact that |S ′| ≤ k − 1. Hence, S ′ cannot contain all monitors in U′.
Therefore, non-monitor v connects to at least one monitor in connected graph U, i.e., U′ − S ′. Consequently, for any node
set S with |S| ≤ k− 1, each connected component in G− S contains at least one monitor, i.e., ΩCAP(v) ≥ k for v ∈ V , thus
confirming that SMP-CAP achieves k-identifiability. �

6 Whether {Di}
σ
i=1 is unique or not does not affect the proof.

18 L. Ma et al. / Performance Evaluation () –

Algorithm 5:Monitor Categorization
input : Set of monitorsM selected by MNMP-CAP, and parameter k (1 ≤ k ≤ |V |)
output: Set of marked k-concatenated componentsA

1 M ← ∅;
2 for each m ∈ M do
3 for q = 1, . . . , σ do
4 for each k-concatenated component A with size q do
5 if |BA ∪ (V (A) ∩ M)| < k and m ∈ V (A) \ BA \

M (BA : set of separation vertices in A) then
6 mark A as requiring monitorm fromM;
7 M ← M ∪m;
8 go to line 3 to examine the next monitor inM;
9 end

10 end
11 end
12 end

With SMP-CAP, nowwecanprove the optimality ofMNMP-CAP.MNMP-CAPguarantees thatΩ(v) ≥ k for eachv ∈ V (G),
thus achieving k-identifiability. Therefore, it suffices to prove that the total number of monitors selected by MNMP-CAP
cannot be further reduced.

(1) We first prove that for any subsetM ′ in themonitor setM selected byMNMP-CAP,M\M ′ cannot achieve k-identifiability.
Line 13 of MNMP-CAP examines redundant monitors in M in an arbitrary order. Suppose m ∈ M is examined to be
unremovable from M . In this case, it implies that m is required in at least one k-concatenated component even though
some other nodes in the network may already be selected as monitors. Therefore, if we further remove some monitors
from M , then m is still required in that k-concatenated component. Hence, m is guaranteed to be non-redundant even
if later some other monitors in M are examined to be redundant, and thus there is no need to examine the redundancy
of m again after removing some other monitors in M . Therefore, after the examination of line 13, each monitor in M is
unremovable. Thus, as a subset ofM , M ′ cannot be removed fromM while maintaining k-identifiability.

(2) Next, we prove that for any subset M ′ ⊆ M (M ′ ≠ ∅, M is the monitor set selected by MNMP-CAP), we cannot select
another set M ′′ as monitors (M ′′ ∩ (M \ M ′) = ∅), such that |M ′′| < |M ′| and the given network is still k-identifiable
using the monitors in (M \ M ′) ∪ M ′′ (M ′′ ≠ ∅ as proved in (1)). Suppose the given network is decomposed into
a set of k-components ({Di}

σ
i=1), and the corresponding layer structure as that in SMP-CAP is constructed. Then we

categorize monitors in M into different k-concatenated components as follows: Similar to SMP-CAP, for each monitor
m ∈ M , following the order from layer 1 to layer σ , we find that the first k-concatenated component must contain
m for achieving k-identifiability based on the existing monitors and the necessary monitor requirement rule (line 4
of SMP-CAP); this procedure is detailed in Algorithm 5. Note that in Algorithm 5, within the same layer, there may
exist multiple k-concatenated components that involve the same monitor inM , for which Algorithm 5 randomly marks
one k-concatenated component; see line 6. Moreover, in Algorithm 5, if a monitor m′ ∈ M has been marked as being
involved in a k-concatenated component, then m′ is regarded as an existing monitor in future monitor categorization;
see line 7. In this way, a set of marked k-concatenated components is constructed, denoted byA = {A1, A2, . . .}, by
Algorithm 5. We claim that each monitor m ∈ M must be involved in one k-concatenated component after running
Algorithm 5 (i.e., M = M after the execution of Algorithm 5), because if some monitors M ⊆ M cannot be involved in
any k-concatenated component, then it implies that each k-concatenated component has involved a sufficient number
of monitors when onlyM \M aremonitors, and thusM \M can already achieve k-identifiability according to Lemma 20.
Therefore, removing every single monitor m ∈ M maintains k-identifiability, for which m should have been removed by
line 13 of MNMP-CAP. Since no monitors in M constructed by MNMP-CAP is removable, each monitor m ∈ M must be
involved in one k-concatenated component after running Algorithm 5. Accordingly, each monitor in M must be in one
and only one of the k-concatenated components in setA; however, a k-concatenated component in setA may involve
more than one monitor inM .

We next consider the following question: does there exist a smaller set ofmonitors that satisfies themonitor requirement
of any two k-concatenated components, say Ai and Aj, ofA? Let MAi and MAj be the sets of monitors that are marked by
Algorithm5 to be included inAi andAj. Note thatMAi∩MAj = ∅ according toAlgorithm5. There are four cases forAi andAj:

(2-i) V (Ai) ∩ V (Aj) = ∅. In this case, since Ai and Aj do not share any common nodes, the monitor requirement for
these two k-concatenated components cannot be satisfied by selecting some common nodes between Ai and Aj, i.e., the
number of monitors cannot be reduced. Thus, |MAi | and |MAj |monitors are required in Ai and Aj.

(2-ii) Ai and Aj only have common separation vertices. Note that the monitors in MAi and MAj cannot be separation
nodes in Ai and Aj according to the monitor selection rule in line 5 of SMP-CAP. Therefore, even if Ai and Aj have common
separation vertices, there does not exist valid common nodes for monitor selection such that the monitor requirement for
both Ai and Aj are satisfied, and the total number of monitors can be reduced. Therefore, it is necessary to have |MAi | and
|MAj |monitors in Ai and Aj.

L. Ma et al. / Performance Evaluation () – 19

Fig. 8. Overlapped k-concatenated components.

(2-iii) Ai and Aj have common k-components and one is not a subgraph of the other one. According to the construction
rule of k-concatenated components, if Ai and Aj have overlaps other than common separation vertices, then the common
vertices betweenAi andAj must formone ormore k-concatenated components. As illustrated in Fig. 8, let T be the common
k-concatenated components between Ai and Aj, i.e., Ai = A′i + T and Aj = A′j + T . Let BA denote the set of separation
vertices in k-concatenated component A. Fig. 8 shows that BA′i

= (B1 ∪ B4), BA′j
= (B2 ∪ B3), where B4 (B2) is the common

node set between A′i and Aj (Ai and A′j). Then we have BAi ⊇ (B1 ∪ B2), and BAj ⊇ (B3 ∪ B4). Note that B1 ∪ B2 (B3 ∪ B4)
may not include all separation vertices in Ai (Aj). To reduce the total number of monitors while satisfying the monitor
requirement for both Ai and Aj, the only possible way is to reselect monitors in the common k-concatenated components
T . Now we prove it is impossible to reselect a smaller set of monitors in T : According to the monitor categorization rule in
line 5 of Algorithm 5, we have |B1|+ |B2|+ |MAi | < k forAi and |B3|+ |B4|+ |MAj | < k forAj (asMAi ≠ ∅ andMAj ≠ ∅, the
total number of separation vertices in Ai and Aj cannot be greater than or equal to k). To reselect monitors for satisfying the
monitor requirement inAi andAj, wemust also satisfy themonitor requirement inA′i andA′j . Suppose the original monitor
placement MAi and MAj can satisfy the monitor requirement in A′i and A′j , then it implies that |B1| + |B4| + |MAi | ≥ k and
|B2| + |B3| + |MAj | ≥ k, which is impossible, because |B1| + |B2| + |B3| + |B4| + |MAi | + |MAj | < 2k. Therefore, under
the monitor placement MAi and MAj , either A′i must contain MAi and Aj must contain MAj , or Ai must contain MAi and A′j
must contain MAj . In either case, the two k-concatenated components only have common separation vertices (no common
k-components). According to (2-ii), all monitors in MAi and MAj are therefore necessary to achieve k-identifiability. Thus,
even if Ai and Aj have common k-components, we can replace Ai by A′i (or Aj by A′j) without common k-components, and
|MAi | and |MAj |monitors are still required in A′i and Aj (or Ai and A′j).

(2-iv) one of Ai and Aj is a subgraph of the other one. Without loss of generality, suppose V (Ai) ⊆ V (Aj). Then Aj must
be in a higher layer. In this case, monitors inMAi are necessary in Ai to achieve overall k-identifiability. Then effectively, all
monitors in MAi are also monitors in Aj. If there are redundant monitors in Aj, then these redundant monitors must be in
MAj , which should have been removed by line 13 of MNMP-CAP. Therefore, |MAi | and |MAj |monitors are required in Ai and
Aj.

In summary, inA, if two k-concatenated components fall into case (2-iii), then these two k-concatenated components
can be replaced by other k-concatenated components so that the replacement components fall into case (2-ii). This
updatedA can be further updated recursively until no case (2-iii) exists; let the final updatedA beA′. Then for any two
k-concatenated components in A′, they either do not have common k-components (the monitor requirement in one
component is independent of themonitor requirement in the other one) or one is a subgraph of the other (themonitors in the
subgraph are all usable to its parent super-graph; however, the super-graph still needs more necessary monitor placement
on top of themonitors already in its subgraph). In other words, each k-concatenated component inA′ independently requires
a minimum number of nodes to be monitors even if its subgraphs may already select necessary monitors. This minimum
monitor requirement can just be met by the set of monitors generated by MNMP-CAP. Therefore, MNMP-CAP only selects
monitors as necessary (without which, G is guaranteed to be not k-identifiable) as that in SMP-CAP, and thus setM ′′ cannot
be found, i.e., no fewer than |M|monitors can achieve k-identifiability. �

A.2. Auxiliary algorithm

Auxiliary algorithm, Algorithm A, of OMP-CSP is invoked when the input network is 2-connected.
For a given 2-connected network, if it is a PLC, then two randomly chosen monitors (line 2 of Algorithm A) can ensure

the identifiability of any single-node failure, which is proved in Theorem 15.
If G itself is not a PLC, we apply Observation 2 to find identifiable nodes by lines 4–5, and get the tailored graph G′

containing unidentifiable nodes by line 6, after which Observation 3 is applied in line 7 to place additional monitors. If no
identifiable nodes can be found, then it implies that G contains one and only one polygon, to which Observation 2 cannot be
applied. For such a case, nevertheless, we have two scenarios where necessary monitors can be deployed: (a) First, all PLCs
are non-bonds (line 9). In this scenario, there is no difference in selecting any non-agent node to be the first monitor. Hence,
line 10 randomly selects a non-agent node as a monitor. Then we apply Observation 3 to the remaining graph obtained by
line 11. (b) Second, ∃ at least one bond PLC, denoted by Λ′, in G (line 13). Let the two neighboring PLCs of Λ′ be Λ1 and Λ2.
Then either Λ1 or Λ2 should contain a monitor; otherwise, the two end-points of Λ′ are not distinguishable. For example,

20 L. Ma et al. / Performance Evaluation () –

Algorithm A:Monitors-in-Biconneted-Network
input : 2-connected network G and its PLCs
output: Set of monitors that achieves 1-identifiability in G under CSP

1 if G is a PLC then
2 randomly select two nodes as monitors; return;
3 end
4 if ∃ non-empty set A containing all PLCs with 4 or more neighboring PLCs within G then
5 find set C containing all neighboring PLCs of each PLC in set Awithin G;
6 G′ ← G⊖ (A ∪ C);
7 Monitors-in-Polygon-less-Network(G′, Sa), where Sa denotes the set of agents in G;
8 //In the following cases, G must contain only one polygon;
9 else if all PLCs in G are non-bonds then

10 randomly select a non-agent node in a PLC, denoted by Λ, as a monitor;
11 G′ ← G⊖ ({Λ} ∪ E), where E is the set containing all neighboring PLCs of Λ;
12 Monitors-in-Polygon-less-Network(G′, Sa);
13 else //∃ at least one bond PLC
14 randomly select a bond PLC Λ′ with two end-points v1 and v2 and two neighboring PLCs Λ1 (v1 ∈ Λ1) and Λ2 (v2 ∈ Λ2);
15 if Λ1 (Λ2) is a bond then
16 w1 ← v1 (w2 ← v2);
17 else
18 w1 (w2)← a (random) non-agent node in Λ1 (Λ2);
19 end
20 foreach i = 1, 2 do
21 select wi as a monitor;
22 G′i ← G⊖ Γwi , where Γwi is the set involving (i) PLCs that contain wi, and (ii) neighboring PLCs of the PLCs in (i) if wi is not

an agent;
23 Monitors-in-Polygon-less-Network(G′i , Sa);
24 end
25 in above two monitor placements, select the one with the minimum number of monitors as the final output;
26 end

to distinguish between v4 and v9 in Fig. 5, one of the neighboring PLCs should contain a monitor. In this regard, we select
two monitor candidates w1 and w2 by lines 15–19; however, we do not know whether selections of w1 or w2 will generate
the optimal solution. We address this issue by starting from wi (i = 1, 2) being a monitor, and then apply Observations 2–3
to get the monitor placement w.r.t. wi (lines 20–24). Then we select the placement with the minimum number of monitors
in line 25 as the final output of OMP-CSP.

Example. One example is illustrated in Fig. 5. In Fig. 5, selecting nodes a, b, and c as monitors forms the optimal monitor
placement for 1-identifiability, where a is selected by line 19, and b and c are selected by lines 20–24.

Complexity. In Algorithm A, all PLCs are precomputed in the master algorithm (OMP-CSP). Then Algorithm A essentially
processes all PLCs, each in constant time. Therefore, the total time complexity is O(|T |) (T is the set of triconnected
components) for Algorithm A.

A.3. Proof of Lemma 14

According to the definition, a PLC in G must be a subgraph of a biconnected component (say B) in G. To get all PLCs in B,
we can first decompose B into triconnected components (forming set T). Then for a triconnected component T ∈ T which
is not a triangle that can be merged with other triangles to form a polygon, let graph Λ′ be the maximum graph union of
triconnected components in T such that (i) V (T) ⊆ V (Λ′), (ii) each involved triangle is not mergeable with other triangles,
and (iii)Λ′ is 2-connected. Removing all virtual links inΛ′ yields the corresponding PLCΛ. It has been proved in [22] that in
any given network, after triconnected component decomposition, all triconnected components that are not mergeable with
other triangles are unique. In other words, the decomposition uncertainty only lies in mergeable triangles. Therefore, PLC Λ

(|Λ| > 2, i.e., not a bond) constructed above contains a fixed set of triconnected components. In this way, all other non-bond
PLCs can be found in the rest of B. For any two non-bond PLCs constructed in this way, they can have at most one common
node. This is because if they havemore than one common node, then it implies the graph union above is notmaximum. After
constructing all these non-bond PLCs, if not all links in B are covered, then each remaining link together with its end-points
is a bond PLC, because each of these links is part of a mergeable triangle. In summary, any biconnected component can be
uniquely decomposed into bond and non-bond PLCs, and obviously the PLC decomposition in one biconnected component
is independent of other biconnected components, thus completing the proof. �

L. Ma et al. / Performance Evaluation () – 21

Fig. 9. Undistinguishable nodes v1 and v2 in PLC Λ1 .

A.4. Proof of Theorem 15

We randomly choose two nodes in PLC Λ as monitors, denoted bym1 andm2. Besidesm1 andm2, we assume that there
still exists at least one non-monitor, since the monitor failure can be directly determined.

In Λ, suppose there exist two non-monitors v1, v2 ∈ Λ, where any measurement path traversing v1 must also traverse
v2, i.e., v1 and v2 are not distinguishable. This implies that v2 is not measurable using simple paths when v1 is removed.
This case is illustrated in Fig. 9, where any two nodes in {v1, v2, v3, v4} form a 2-vertex-cut, and there is no direct link
connecting any two nodes in {v1, v2, v3, v4}. In Fig. 9, there is no cycle-free path traversing one and only one of v1 and v2;
such a network must contain a polygon (e.g., {v1, v2, v3, v4} in Fig. 9 are four nodes in the same polygon); therefore, Λ is
not a PLC, contradicting the assumption.

Suppose two non-monitors v with v ∈ Λ andw withw ∉ Λ are not distinguishable. However, there exists a simple path
traversing v using only the nodes in Λ. Thus, v and w are distinguishable, contradicting the assumption.

Therefore, if a PLC contains at least two monitors, then all its non-monitors are identifiable. �

A.5. Proof of Corollary 16

(1) Consider PLCΛwith two and only two cut-vertices.We know that these two cut-verticesmust have two external vertex-
disjoint paths to differentmonitors. Using these two externalmonitor connections as two segments in themeasurement
path, we can follow the same argument in Appendix A.4 to prove that any two non-cut-vertices inΛ are distinguishable.
Moreover, for any non-cut-vertex v inΛ, we can always find ameasurement path traversing v (or not traversing v) since
Λ is 2-connected. Therefore, v is also distinguishable from any node outside Λ. Hence, if Λ contains two cut-vertices,
then all its non-cut-vertices are identifiable.

(2) Consider PLC Λ with three or more cut-vertices. In this case, we know from (1) that any non-cut-vertex is 1-identifiable
and all cut-vertices have external vertex-disjoint paths to different monitors. Thus, it suffices to show the cut-vertices
onΛ are also identifiable. In this case, for any cut-vertex vc , we can construct a path inΛwithout traversing vc , since the
removal of vc does not separate Λ (Λ is 2-connected). Therefore, cut-vertex vc is distinguishable from any other single
node failure in the entire network. Hence, ifΛ contains three ormore cut-vertices, then all its nodes are identifiable. �

References

[1] R. Kompella, J. Yates, A.G. Greenberg, A.C. Snoeren, Detection and localization of network black holes, in: IEEE INFOCOM, 2007.
[2] N. Duffield, Simple network performance tomography, in: IMC, 2003.
[3] D. Ghita, C. Karakus, K. Argyraki, P. Thiran, Shifting network tomography toward a practical goal, in: ACM CoNEXT, 2011.
[4] N. Duffield, Network tomography of binary network performance characteristics, IEEE Trans. Inform. Theory 52 (2006) 5373–5388.
[5] Y. Bejerano, R. Rastogi, Robust monitoring of link delays and faults in IP networks, in: IEEE INFOCOM, 2003.
[6] H.X. Nguyen, P. Thiran, Active measurement for multiple link failures diagnosis in IP networks, in: PAM, 2004.
[7] S. Stanic, S. Subramaniam, G. Sahin, H. Choi, H.-A. Choi, Active monitoring and alarm management for fault localization in transparent all-optical

networks, IEEE Trans. Netw. Serv. Manag. 7 (2010) 118–131.
[8] H. Nguyen, P. Thiran, The Boolean solution to the congested IP link location problem: Theory and practice, in: IEEE INFOCOM, 2007.
[9] A. Dhamdhere, R. Teixeira, C. Dovrolis, C. Diot, Netdiagnoser: Troubleshooting network unreachabilities using end-to-end probes and routing data,

in: ACM CoNEXT, 2007.
[10] Y. Huang, N. Feamster, R. Teixeira, Practical issues with using network tomography for fault diagnosis, ACM SIGCOMM Comput. Commun. Rev. 38

(2008) 53–58.
[11] S. Ahuja, S. Ramasubramanian, M. Krunz, SRLG failure localization in all-optical networks usingmonitoring cycles and paths, in: IEEE INFOCOM, 2008.
[12] S. Cho, S. Ramasubramanian, Localizing link failures in all-optical networks using monitoring tours, Elsevier Comput. Netw. 58 (2014) 2–12.
[13] L. Ma, T. He, A. Swami, D. Towsley, K.K. Leung, J. Lowe, Node failure localization via network tomography, in: ACM IMC, 2014.
[14] M. Cheraghchi, A. Karbasi, S. Mohajer, V. Saligrama, Graph-constrained group testing, IEEE Trans. Inform. Theory 58 (2012) 248–262.
[15] M. Wang, W. Xu, E. Mallada, A. Tang, Network tomography via sparse recovery, IEEE Trans. Inform. Theory 61 (2015) 1028–1044.
[16] J. Chuzhoy, S. Khanna, Polynomial flow-cut gaps and hardness of directed cut problems, J. ACM 56 (2009) 1–28.
[17] L.R. Ford, D.R. Fulkerson, Maximal flow through a network, Canad. J. Math. 8 (1956) 399–404.
[18] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman & Co, 1990.
[19] V. Chvatal, A greedy heuristic for the set-covering problem, Math. Oper. Res. 4 (1979) 233–235.
[20] R. Diestel, Graph Theory, Springer-Verlag, Heidelberg, New York, 2005.
[21] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146–160.
[22] J.E. Hopcroft, R.E. Tarjan, Dividing a graph into triconnected components, SIAM J. Comput. 2 (1973) 135–158.

http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref4
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref7
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref10
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref12
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref14
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref15
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref16
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref17
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref18
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref19
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref20
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref21
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref22

22 L. Ma et al. / Performance Evaluation () –

[23] L. Ma, T. He, A. Swami, D. Towsley, K.K. Leung, Node failure localization: Theorem proof, Technical Report, April 2015. [Online]. Available:
http://researcher.watson.ibm.com/researcher/files/us-maliang/NodeFailureTechReportApr15.pdf.

[24] S. Ahuja, S. Ramasubramanian, M. Krunz, Single-link failure detection in all-optical networks using monitoring cycles and paths, IEEE/ACM Trans.
Netw. 17 (2009) 1080–1093.

[25] Rocketfuel: An ISP topology mapping engine, University of Washington, 2002. [Online].
Available: http://www.cs.washington.edu/research/networking/rocketfuel/.

[26] Macroscopic Internet Topology Data Kit (ITDK), The Cooperative Association for Internet Data Analysis (CAIDA), April 2013. [Online]. Available:
http://www.caida.org/data/active/internet-topology-data-kit/.

[27] P. Erdös, A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 17–61.

Liang Ma is a Research Staff Member in cloud-based networking department at IBM T.J. Watson Research Center, New York. He
received his Ph.D. degree from Imperial College London, UK, in 2014, M.Sc. and B.Sc. degrees from Beijing University of Posts
and Telecommunications, China, in 2010 and 2007. Before joining Imperial College, he worked at NTT DoCoMo Beijing Labs,
Ericsson (China) Communications, and Microsoft Research Asia, where he was involved in WLAN Medium Access Control, High-
speed Switching System, and Software Radio-Based Gigabit Multi-antenna Communications, respectively. He was the recipient of
International Conference on Distributed Computing System (ICDCS 2013) Best Paper Award, IBM Patent Award 2013, Best Student
Paper Award of ITA in Network & Information Sciences 2013, ACM Internet Measurement Conference (IMC 2013) Best Paper Award
Nomination, INFOCOM 2014 Student Travel Grant, and the winner of Outstanding Graduate Student 2008 and Excellent Student
Awards four times during 2003–2006.

Ting He received the B.S. degree in Computer Science from Peking University, China, in 2003 and the Ph.D. degree in Electrical
and Computer Engineering from Cornell University, Ithaca, NY, in 2007. In 2007, she joined the IBM T.J. Watson Research Center,
where she is currently a Research Staff Member in the Network Analytics Research Group. At IBM, she has worked as a primary
researcher and task lead in several research programs including the International Technology Alliance (ITA) program funded by
US ARL and UK MoD, the ARRA program funded by NIST, and the Social Media in Strategic Communication (SMISC) program
funded by DARPA. Her work is in the broad areas of network modeling, statistical inference, and information theory. She is a
senior member of IEEE. She has served as the Membership co-chair of ACM N2Women and the TPC of a range of communications
and networking conferences, including IEEE INFOCOM, IEEE SECON, IEEE/ACM IWQoS, IEEE MILCOM, IEEE ICNC, IFIP Networking,
etc. She received the Outstanding Contributor Award from IBM Research in 2009 and 2013. She received the Best Paper Award
at the 2013 International Conference on Distributed Computing Systems (ICDCS), a Best Paper Nomination at the 2013 Internet
Measurement Conference (IMC), and the Best Student Paper Award at the 2005 International Conference on Acoustic, Speech and

Signal Processing (ICASSP). In school, she was an Outstanding College Graduate of Beijing Area and an Outstanding Graduate of Peking University in 2003,
and a winner of the Excellent Student Award of Peking University from 1999 to 2002.

Ananthram Swami received the B.Tech. degree from IIT-Bombay, a Master of Science degree from Rice University and a Ph.D.
degree from the University of Southern California, all in Electrical Engineering. He is the Army’s Senior Research Scientist (ST) for
Network Science at the Army Research Lab. Before joining ARL, he held research positions with Unocal Corporation, USC, CS-3 and
Malgudi Systems. He was a statistical consultant to the California Lottery, developed a MATLAB-based toolbox for non-Gaussian
signal processing, has held visiting faculty positions at Institut National Polytechnique, Toulouse, France, and currently holds a
Visiting Professorship at Imperial College, London. He is an ARL Fellow and an IEEE Fellow. He is amember of the Founding Steering
Committee, IEEE Transactions on Network Science and Engineering; was amember of the IEEE Signal Processing Society’s Board of
Governors, and served on the editorial boards of multiple IEEE journals. He has co-organized four workshops, most recently IEEE
Signal Processing Advances in Wireless Communications (SPAWC) 2010. He has guest edited multiple special issues including
most recently a special issue of IEEE JSAC on Network Science, a special issue of IEEE JSTSP on Signal Processing for Big Data, and
an upcoming special issue of ACM Transactions on Internet Technology, on The Intelligent Internet of Things. He is corecipient of

Best Conference Paper awards at IEEE ICDCS 2013 and IEEE TrustCom 2009, best conference paper finalist at ACM IMC 2013, ICCRTS 2010 and ICCRTS 2009;
and senior co-author of three Student Best Paper awards.

Don Towsley received the BA degree in Physics in 1971 and the Ph.D. degree in Computer Science in 1975 from the University of
Texas. He is currently a distinguished professor at the Department of Computer Science, University of Massachusetts. He has held
visiting positions at numerous universities and research labs. His research interests include networks and performance evaluation.
He currently serves on the editorial board of IEEE Journal on Selected Areas in Communications and previously served as editor-
in-chief of IEEE/ACM Transactions on Networking and on numerous other editorial boards. He has served as a program co-chair
of several conferences including INFOCOM 2009. He is a member of ACM and ORSA. He has received several achievement awards
including the 2007 IEEE Koji Kobayashi Award and the 2011 INFOCOM Achievement Award. He has received numerous paper
awards including a 2008 SIGCOMM Test-of-Time Paper Award and the 1998 IEEE Communications Society William Bennett Best
Paper Award. He is a fellow of the IEEE and the ACM.

Kin K. Leung received his B.S. degree from the Chinese University of Hong Kong in 1980, and his M.S. and Ph.D. degrees from
University of California, Los Angeles, in 1982 and 1985, respectively. He joined AT&T Bell Labs in New Jersey in 1986 and worked
at its successors, AT&T Labs and Lucent Technologies Bell Labs, until 2004. Since then, he has been the Tanaka Chair Professor
in the Electrical and Electronic Engineering (EEE), and Computing Departments at Imperial College in London. He is the Head of
Communications and Signal Processing Group in the EEE Department. His current research focuses on protocols, optimization and
modeling of various wireless networks. He also works on multi-antenna and cross-layer designs for these networks. He received
the Distinguished Member of Technical Staff Award from AT&T Bell Labs (1994), and was a co-recipient of the Lanchester Prize
Honorable Mention Award (1997). He was elected an IEEE Fellow (2001), received the Royal Society Wolfson Research Merits
Award (2004–2009) and became a member of Academia Europaea (2012). He also received several best paper awards, including
the IEEE PIMRC 2012 and ICDCS 2013. He has actively served on conference committees. He serves as a member (2009–2011) and
the chairman (2012–2015) of the IEEE FellowEvaluation Committee for Communications Society. Hewas a guest editor for the IEEE

JSAC, IEEEWireless Communications and theMONET journal, and as an editor for the JSAC:Wireless Series, IEEE Transactions onWireless Communications
and IEEE Transactions on Communications. Currently, he is an editor for the ACM Computing Survey and International Journal on Sensor Networks.

http://researcher.watson.ibm.com/researcher/files/us-maliang/NodeFailureTechReportApr15.pdf
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref24
http://www.cs.washington.edu/research/networking/rocketfuel/
http://www.caida.org/data/active/internet-topology-data-kit/
http://refhub.elsevier.com/S0166-5316(15)00051-6/sbref27

	On optimal monitor placement for localizing node failures via network tomography
	Introduction
	Related work
	Summary of contributions

	Problem formulation
	Models and assumptions
	Definitions
	Classification of probing mechanisms
	Objective
	Illustrative example

	Objective of monitor placement
	Fine-grained measure of identifiability
	Maximum node identifiability under CAP
	Maximum node identifiability under CSP
	Maximum node identifiability under UP

	Monitor placement for multi-failure localization
	Monitor placement based on maximum node identifiability
	Implementation under CAP
	Implementation under CSP
	Implementation under UP

	Performance analysis

	Improved monitor placement for single-failure localization
	Observations
	Algorithm overview
	Sketch of algorithm
	Performance analysis

	Impact of probing mechanisms on monitor placement
	Conclusion
	Appendix
	Proof of Theorem 9
	Auxiliary algorithm
	Proof of Lemma 14
	Proof of Theorem 15
	Proof of Corollary 16

	References

