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Abstract—We investigate the problem of identifying individual
link metrics in a communication network from end-to-end path
measurements, under the assumption that linkmetrics are additive
and constant. To uniquely identify the link metrics, the number of
linearly independent measurement paths must equal the number
of links. Our contribution is to characterize this condition in terms
of the network topology and the number/placement of monitors,
under the constraint that measurement paths must be cycle-free.
Our main results are: 1) it is generally impossible to identify all
the link metrics by using two monitors; 2) nevertheless, metrics of
all the interior links not incident to any monitor are identifiable
by two monitors if the topology satisfies a set of necessary and
sufficient connectivity conditions; 3) these conditions naturally
extend to a necessary and sufficient condition for identifying all
the link metrics using three or more monitors. We show that these
conditions not only facilitate efficient identifiability tests, but also
enable an efficient algorithm to place the minimum number of
monitors in order to identify all link metrics. Our evaluations on
both random and real topologies show that the proposed algorithm
achieves identifiability using a much smaller number of monitors
than a baseline solution.

Index Terms—Identifiability condition, linear algebraic model,
monitor placement, network tomography.

I. INTRODUCTION

A CCURATE and timely knowledge of the internal state
of a network (e.g., delays on individual links) is essen-

tial for various network operations such as route selection, re-
source allocation, and fault diagnosis. Directly measuring the
performance of individual network elements (e.g., nodes/links)
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is, however, not always feasible due to the traffic overhead of
the measurement process and the lack of support at internal net-
work elements for making such measurements [1]. These lim-
itations motivate the need for external approaches, where we
infer the states of internal network elements by measuring the
performance along selected paths from a subset of nodes with
monitoring capabilities, hereafter referred to as monitors.
Depending on the granularity of observations, external

approaches can be classified as hop-by-hop approaches or
end-to-end approaches. The former rely on special diagnostic
tools such as traceroute, pathchar [2], and Network Character-
ization Service (NCS) [3] to reveal fine-grained performance
metrics of individual links by sending active probes. Traceroute
reports delay for each hop on the probed path by gradually
increasing the time-to-live (TTL) field of probing packets. Its
refinement, pathchar, returns hop-by-hop capacities, delays,
and loss rates. A later advancement, NCS, also returns available
capacities on each link. While providing fine-grained infor-
mation, the above tools require that Internet Control Message
Protocol (ICMP) be supported at each internal node. Even
then, they suffer inaccuracies caused by asymmetry in routes
and different priorities of ICMP and data packets. Moreover,
these tools can generate a large number of probing packets,
causing extra load and, potentially, congestion. In risk-sensitive
applications, security policies may even block hop-by-hop
measurements.
Alternatively, the end-to-end approach provides a solution

that does not rely on the cooperation of internal network ele-
ments or the equal treatment of control/data packets. It relies
on end-to-end performance metrics (e.g., end-to-end delays)
experienced by data packets to solve for the corresponding
hop-by-hop metrics using network tomography. Network to-
mography [4] refers to the methodology of inferring internal
network characteristics through end-to-end measurements.
Without requiring special cooperation from internal nodes, net-
work tomography can utilize measurements from data packets
to obtain path-level information [5], thus reducing the need for
active probes.
In many cases, link metrics are additive, i.e., the combined

metric over multiple links is the sum of individual link met-
rics. For instance, delays are additive, while a multiplicative
metric (e.g., packet delivery ratio) can be expressed in an ad-
ditive form by using the function. For additive metrics,
we can model the problem as that of solving a system of linear
equations, where the unknown variables are the link metrics,
and the known constants are the end-to-end path measurements,
each equal to the sum of the corresponding link metrics along
a path. Thus, network tomography essentially solves this linear
system of equations.
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Existing work on network tomography emphasizes extracting
as much information about link metrics as possible from avail-
able measurements. However, past experience shows that it is
frequently impossible to uniquely identify all link metrics from
path measurements [6]–[8]. For example, if two links (not nec-
essarily adjacent) always appear together in measurement paths,
then we can at most identify their sum metric but not the indi-
vidual metrics. Generally, many measurement paths are linearly
dependent in that some paths are linear combinations of the rest,
and hence their measurements do not provide new information.
From the perspective of linear algebra, link metrics are uniquely
identifiable if and only if the number of linearly independent
measurement paths equals the number of links. There is, how-
ever, a lack of basic understanding of the topological conditions
that ensure identifiability, even in the simplified scenario of con-
stant link metrics.
In this paper, we consider two closely related problems: 1)

Under what conditions can one uniquely identify all link met-
rics from end-to-end measurements? 2) Given an arbitrary net-
work topology, how can one place monitors to satisfy the above
conditions using the minimum number of monitors? We study
both problems in the context of controllable, cycle-free mea-
surements, i.e., monitors can direct measurement packets to se-
lected paths as long as they do not contain cycles. Such routing
is generally supported in networks under common administra-
tion (e.g., single-ISP networks), or overlay networks formed by
overlay nodes and physical paths between these nodes (modeled
as overlay links), where controllable routing can be achieved
by enabling strict (or loose) source routing (an IP option) [9]
at all network nodes during measurement. More importantly,
the assumption of controllable, cycle-free measurements cap-
tures capabilities of a new generation of networks performing
software-defined networking (SDN) [10]–[12]. In SDN, routing
is performed on a per-flow basis in two steps: a route setup
phase where a (logically) centralized SDN controller specifies
the path of a flow by setting entries in the forwarding tables
of switches along the path, and a data forwarding phase where
data of the flow are forwarded hop by hop by switches ac-
cording to their forwarding tables. Therefore, monitors, in co-
operation with the SDN controller, can dictate paths of mea-
surement packets during route setup, while the cycle-free con-
straint precludes formation of endless cycles in the data for-
warding phase. In all of the above scenarios,1 network tomog-
raphy can assist in accurately monitoring network performance
experienced by data traffic while reducing measurement over-
head. Throughout this paper, we assume that all link metrics are
additive and constant. Our “constant” link metric refers to one
that either changes slowly relative to the measurement process,
or that is a statistical characteristic (e.g., mean, variance) of the
link that remains constant over time.2

Although the linear algebraic answer to the first ques-
tion is straightforward (the number of linearly independent
paths equals the number of links), a useful answer should be
expressed in terms of externally verifiable network properties

1Note that SDN by itself does not dictate reporting of per-link metrics. Fur-
thermore, SDN does not overcome issues with policies in coalition networks
that prevent reporting of per-link metrics; thus, network tomography will still
be required.
2In this case, end-to-endmeasurements are also statistical characteristics, e.g.,

path mean/variance. In the case of variance, we also need the independence
between link qualities to make the metric additive.

such as the network topology and the number/placement of
monitors. To this end, we establish necessary and sufficient
conditions on network topology and monitor placement for
uniquely identifying link metrics from controllable, cycle-free
measurements between the monitors. We further develop an
efficient algorithm that leverages the established conditions to
place monitors in a given network such that all link metrics
can be uniquely identified by using the minimum number of
monitors.

A. Further Discussions on Related Work

Based on the model of link metrics, existing work can be
broadly classified into statistical and algebraic approaches. Sta-
tistical approaches model link metrics as random variables with
(partially) unknown probability distributions and apply various
parametric/nonparametric techniques to estimate the link metric
distributions from realizations of path metrics [13], [1], [14]. Al-
gebraic approaches consider link metrics as unknown constants
and use linear algebraic techniques to compute linkmetrics from
cumulative path metrics [6], [7].
With link metrics modeled as random variables, multicast,

if supported, can be exploited as a measurement method with
broad coverage and low overhead [15], [16]. Subtrees and uni-
cast are employed in [5] and [17] as alternatives, due to the
inflexibility and impracticality of multicasting to all receivers.
Employing multicast, [5] and [18] derive the necessary and suf-
ficient conditions on the multicast tree for identifying all link
metric distributions. If most links do not exhibit severe losses
or delays, [19] proposes algorithms to identify the worst per-
forming links. A novel approach proposed in [8] employs the
Fourier transform of the observable path metric distributions
to estimate the unobservable link metric distributions. All the
abovemethods implicitly assume the links to be identifiable, and
themulticast-basedmethods requiremultiple monitors to partic-
ipate in the measurement process. In contrast, we assume uni-
cast measurements and focus on establishing topological con-
ditions for identifying all link metrics by using the minimum
number of monitors.
For constant link metrics, [7] shows that it is challenging to

solve the inverse problem due to the presence of linearly de-
pendent paths. When all but link metrics are zero, compres-
sive sensing techniques are used to identify the nonzero link
metrics [20], [21]. If all link metrics are binary (normal/failed),
[22] proves that the network must be -edge-connected
to identify up to failed links by measuring cycles at a single
monitor. For arbitrary valued link metrics, few positive results
are known. If the network is directed (links have different met-
rics in different directions), [14] proves that not all link met-
rics are identifiable unless every nonisolated node is a monitor.
Even if every node is a monitor, unique link identification is still
impossible if measurement paths are constrained to cycles [6].
If the network is undirected (links have equal metrics in both
directions), [23] derives the first necessary and sufficient con-
ditions on the network topology for identifying all link metrics,
given that monitors can measure cycles or paths possibly con-
taining cycles. A similar study in [24] characterizes the min-
imum number of measurements needed to identify a broader set
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of link metrics (including both additive and nonadditive met-
rics), under the stronger assumption that measurement paths can
contain repeated links. Since routing along cycles is typically
prohibited in real networks, it remains open as to what the con-
ditions are if only cycle-free paths can be measured. In this re-
gard, we investigate the fundamental relationships between link
identifiability, network topology, and the number/placement of
monitors. Once identifiability is confirmed, a follow-up problem
is to construct linearly independent paths between monitors to
perform measurements, for which we have developed an effi-
cient path construction algorithm in [25].
Little is known when it comes to placing monitors to en-

sure network identifiability. In [26] and [27], the problem of
placing the minimum number of monitors to identify all link
metrics under uncontrollable routing is proven to be NP-hard,
and the NP-hardness persists even if some nodes control their
local routing policy [28]. In contrast, we show in this paper
that under controllable cycle-free routing, this problem can be
solved optimally in linear time.

B. Summary of Contributions

We study here for the first time the fundamental topolog-
ical conditions for identifying additive link metrics by using
end-to-end measurements on cycle-free paths. Our contribu-
tions are fourfold.
1) We prove that it is generally impossible to identify all link
metrics using only two monitors, irrespective of the net-
work topology and the placement of monitors.

2) We establish necessary and sufficient conditions for iden-
tifying the metrics of all interior links (links not incident
to any monitor) using two monitors. These conditions are
shown to be verifiable in time, where

is the number of nodes and is the number of links.
3) We extend the above result to a necessary and sufficient
condition for identifying all link metrics using ( is
the minimum requirement, but typically many more) mon-
itors. This condition can be verified in time.

4) We propose an algorithm to place monitors in an arbitrary
network in time, which guarantees the iden-
tifiability of all link metrics with the minimum number of
monitors. Our evaluations on both randomly generated and
real topologies show that the proposed algorithm requires
a substantially smaller number of monitors than a baseline
solution.

We note that our goal is to characterize identifiable scenarios
for constant additive link metrics, and questions for identifying
nonadditive link metrics (e.g., bandwidth) or estimating link pa-
rameters in cases where link metrics are modeled as random
variables are beyond the scope of this paper.
The rest of the paper is organized as follows. Section II for-

mulates the problem. Section III summarizes our main results.
Sections IV and V present identifiability conditions for the case
of two monitors, and Section VI addresses the case of three or
more monitors. Algorithms for testing network identifiability
and deploying monitors are presented in Section VII. Finally,
Section VIII concludes the paper.

TABLE I
NOTATIONS IN GRAPH THEORY

II. PROBLEM FORMULATION

A. Models and Assumptions

We assume that the network topology is known3 and model it
as an undirected graph , where and are the sets
of nodes and links4, respectively. Note that graph can rep-
resent a logical topology where each link in corresponds to
a combination of physical links/nodes, e.g., in an overlay net-
work. Without loss of generality, we assume is connected,
as different connected components have to be monitored sepa-
rately. Denote the link incident to nodes and by ; links
and are assumed to have the same metric. Certain nodes in
are monitors and can initiate/collect measurements. We assume
that each link in has two distinct endpoints (i.e., no self-loop),
and no two links connect to the same pair of nodes. Lastly, no

3Network topology can be obtained through exchanging control packets [29],
[30] explicitly. Note that network internal states cannot be inferred from these
control packets in an accurate manner due to the unequal treatment of control
and data packets.
4We use the terms network and graph, link and edge, and node and vertex

interchangeably.
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Fig. 1. Sample network with three monitors: , , and .

link metrics in are known prior to taking measurements.
Table I summarizes all graph theory notations used in this paper
(following the convention of [31]).
Let denote the number of links in , the

set of links in , the column vector of
all link metrics, and the column vector
of all available path measurements, where is the number of
measurement paths and is the sum of link metrics along
measurement path . We assume that monitors can control
the routing of measurement packets as long as the path starts
and ends at distinct monitors and does not contain repeated
nodes. In the language of graph theory, we limit measurements
to simple paths (in contrast, a nonsimple path may contain re-
peated nodes). The path measurements are expressed in terms of
the unknown link metrics through the following linear system:

(1)

where is a measurement matrix, with each
entry denoting whether link is present on
path . The network tomography problem is to invert this linear
system to solve for given and .
A link is identifiable if the associated link metric can be

uniquely determined from path measurements; network is
identifiable if all links in are identifiable. Otherwise, the link
or the network is said to be unidentifiable. Given the above
linear system, is identifiable if and only if in (1) has full
column rank,5 i.e., . In other words, to uniquely
determine , there must be linearly independent simple
paths between monitors. We note that within an unidentifiable
network, some links may still be identifiable, for which we have
built algorithms for determining partial network identifiability;
see [32] for details.

B. Objective

Given a network topology , the first objective of this paper is
to derive necessary and sufficient conditions for identifying all
link metrics in (or certain subgraphs of ) under a given place-
ment of monitors by solving the linear system (1). Our
second objective is to compute a placement of the minimum
number of monitors in that enables the identification of all
link metrics.

C. Illustrative Example

Fig. 1 displays a sample network with three monitors
and 11 links (links – ). To identify all 11 link metrics,

eleven end-to-end paths (one path, seven

5While a full-rank is not necessarily robust to invert, we have developed an
efficient algorithm to construct such that can be solved without inverting
explicitly [25].

Fig. 2. Organizing graph into exterior links and interior graph ( and
may have overlap).

paths, and three paths) are constructed to form the
measurement matrix

where if and only if link is on path . Then, we have
, where is the vector of end-to-end measurements

taken at the destination monitors. In this example, is invert-
ible, and thus can be uniquely identified, i.e., .
In Fig. 1, other simple paths can be measured as well, although
they do not provide further information since the measurement
matrix already has full rank. However, if we remove a monitor,
say , then it can be verified that the remaining paths no longer
form an invertible measurement matrix. Note that a path such as

is not allowed because it contains a cycle.

III. MAIN RESULTS

Our main contributions are a set of necessary and suf-
ficient conditions for network identification that are ex-
plicitly expressed in terms of network topology and the
number/placement of monitors (proofs of theorems can be
found in Sections IV–VI). To begin, we first establish a neg-
ative result that no matter where we place the monitors, we
cannot identify all link metrics using only two monitors.
Theorem III.1: For any given network topology with

( is the number of links), is unidentifiable with twomonitors,
irrespective of their placement.
Second, we examine the two-monitor case in more detail and

discover that the unidentifiability issue only applies to a small
subset of links, and that the majority of links can be identified
under certain conditions. Specifically, given two monitors
and , we can organize into two parts6 as illustrated in Fig. 2.

6An area with a dashed border denotes a subgraph (nodes/links on the dashed
border are also part of the subgraph, e.g., and in Fig. 2 are
part of ), and a solid line denotes a link/path/cycle.
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Fig. 3. (a) with monitors. (b) with two virtual monitors.

Definition 1: Given a network with two monitors and
, we have the following.
1) The interior graph of is the subgraph obtained by
removing the monitors and their incident links, i.e.,

where and
.

2) We refer to links incident to monitors, i.e., ,
as exterior links, and the remaining links as interior links.

We show that the exterior links can never be identified using
two monitors (see Corollary IV.1), but the interior links can be
identified under the following conditions.
Theorem III.2: Assume that the interior graph (with

) of under a given placement of two monitors (
and ) is connected and direct link (incident to and
) does not exist in . The necessary and sufficient con-

ditions for identifying all link metrics in are the following.
is 2-edge-connected for every interior link in .

is 3-vertex-connected.
Third, we show that the above conditions can be naturally ex-

tended to a necessary and sufficient condition for identifying all
link metrics in using three or more monitors. This condition
is based on an extended graph obtained from as follows.
As illustrated in Fig. 3, given a graph with monitors, its ex-
tended graph is obtained by adding two virtual monitors
and and virtual links between each pair of virtual-actual
monitors. The identifiability of is characterized by a simple
condition on as follows.
Theorem III.3: Assume that monitors are used to

measure simple paths. The necessary and sufficient condition on
the network topology for identifying all link metrics in is
that the associated extended graph be 3-vertex-connected.
Finally, we develop efficient algorithms that can: 1) test

whether a given placement of monitors can identify all link
metrics; and 2) compute a placement of the minimum number of
monitors needed to identify all link metrics (see Section VII).
Both algorithms run in linear time w.r.t. network size (i.e.,

) and hence are suitable for large networks.

IV. UNIDENTIFIABILITY WITH TWO MONITORS

At least two monitors are required to identify link metrics
by monitoring simple paths. In this section, we investigate
if two monitors suffice to identify all link metrics in the net-
work. Suppose that two distinct nodes are selected to serve
as monitors. Each measurement starts at one monitor and
terminates at the other via a controllable simple path. The
termination node then reports the end-to-end metric, which
becomes an entry in the measurement vector . From the

perspective of graph theory, such a network can be represented
as , where and are the
monitors, are the nonmonitors, and . Let

be a direct link between and (if it exists). Since
can be easily identified through a one-hop measurement,

we assume without loss of generality that (i.e.,
there is no direct link) in Sections IV and V, where only two
monitors are used.

A. Proof of Theorem III.1

Any with can be organized as in7 Fig. 2. Let
denote the set of neighboring nodes of node . We define

and
to be the sets of neighbors of and , respectively,

where , , and , can overlap
.

Assuming that is connected and all link metrics in
are known, we can reduce any equation associated with a
simple path between and to the form (see Table I for
notations)

(2)

for some and . This is obtained by rewriting
the original equation (
is the segment of in ) to place the unknowns on the left-
hand side, and setting . Thus, we obtain

equations from all of the simple paths between and
, each corresponding to the sum of the metrics of one link

incident to and one link incident to . The corresponding
reduced measurement matrix is (each column corresponding to
an unknown link metric)

...
. . .

...
. . .

. . .
...

...
. . .

(3)

where the blank entries are zero. We apply the following linear
transformations to . For each and

, replace row by

7If certain links in cannot be included in any possible paths constructed
from to in Fig. 2, then these links are unidentifiable, resulting in a dis-
connected or one-edge-connected interior graph .
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; it can be verified that the result is a row
of zeros. Ignoring rows of zeros, transforms into

...
. . .

. . .

(4)

where the rows are linearly independent, and the number of rows
equals . This transformation preserves the rank of
because can be reconstructed from as follows: The first
rows in and are identical; row in equals row

in ; row in equals
in

. Hence, the rank of equals . When
is not connected, some rows in may not exist because there is
no simple path connecting the corresponding nodes in and ,
and the rank of may be even smaller. Since there are
unknown variables and , they cannot
be uniquely determined even if all link metrics in are already
known. Therefore, with is unidentifiable using two
monitors.
In fact, we can show that none of the exterior links is iden-

tifiable because the metric of any one exterior link will add a
linearly independent row to in (4), thus yielding full column
rank of (i.e., the metrics of the remaining exterior links are
also determinable).
Corollary IV.1: None of the exterior links (except )

can be identified with two monitors.
Proof: Assume that all the interior link metrics are known.

We prove Corollary IV.1 by contradiction. From the proof of
Theorem III.1, we see that the transformed measurement matrix

gives a maximum set of linearly independent equations
(one equation per row) regarding the exterior link metrics

and . Suppose there exists one exte-
rior link metric, say , which is identifiable. Since each
row in only involves two exterior link metrics, it is easy to
see that knowing the metric of any exterior link (i.e.,
according to the assumption) will allow unique identification of
all the other exterior link metrics, contradicting the fact that
is rank-deficient and hence not able to identify all the metrics.
Note the direct link (if exists) is always identifiable.
Therefore, none of the exterior links (except ) can be
identified with two monitors.

B. Discussion of Paths With Cycles

At the end of [23, Sec. III-B], the authors raise the question
whether or not monitoring nonsimple paths (i.e., paths that may
contain cycles) between twomonitors suffices to identify all link

Fig. 4. Illustration of Condition : bridge not incident to monitors;
(b) bridge incident to monitor ; (c) edge cut separating and
monitors; (d) edge cut separating and .

metrics in the network.8 According to Corollary IV.1, the exte-
rior links cannot be identified even if all the interior link met-
rics are known; allowing cycles in the interior graph provides
no additional information regarding the exterior links. Conse-
quently, the answer to that question in [23] is that monitoring
(simple or nonsimple) paths between two monitors is not suffi-
cient to identify all link metrics.

V. IDENTIFIABILITY OF INTERIOR LINKS WITH TWO MONITORS

Network administrators are more interested in using
end-to-end measurements to infer the qualities of links that are
at least one hop away as network administrators can employ
other methods to estimate metrics of the links that are directly
incident to monitors. Therefore, in this section, we only focus
on the interior graph and derive necessary and sufficient
conditions on the network topology for identifying all links
in using two monitors ( and ), under the earlier as-
sumption that no link metrics (including those of links incident
to and ) are known ahead of time.
Before going into details, we first point out that it is suffi-

cient to solve the case in which is a connected graph. This
is because if consists of connected compo-
nents , we can decompose the entire graph
into subgraphs , with

(see the definition of graph union in Table I). Since none of
the simple paths in can traverse , the
identification of links within different ’s is decoupled. There-
fore, in the rest of this section, we assume is connected with

. Our result can be applied to each separately when
is disconnected.

A. Proof of Theorem III.2: Necessary Part

Suppose all links in are identifiable.We prove the necessity
of Conditions and in Theorem III.2 by contradiction.
a) Let be an arbitrary interior link. If is dis-
connected, then is a bridge9 in [shown in Fig. 4(a)]. If
and each contain a monitor, then is unidentifiable

by Lemma A.1 (Appendix). If and are both in
(or ), then cannot be included in any measurement
path (otherwise, will be used more than once), and is
thus unidentifiable. Both cases contradict the assumption
that all interior links are identifiable.

b) Suppose there is a bridge in . If is an ex-
terior link, as shown in Fig. 4(b), then by Lemma A.1
(Appendix), its adjacent interior links are

8We restrict the paths from containing repeated monitors to exclude measure-
ment of cycles, as is already solved in [23].
9A link whose removal will disconnect the graph is a bridge [31].
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unidentifiable, contradicting the assumption that all in-
terior links are identifiable. Thus, must be an interior
link. Since by a), an interior link cannot be a bridge in ,
, must be an edge cut as shown in Fig. 4(c) and

(d). If both and are in as in Fig. 4(c), then all
paths traversing must traverse as well.

Thus, we can at most identify , but not
and individually. If is in and is in as in
Fig. 4(d), then every path must traverse either
or , but not both. Assuming that and in Fig. 4(d)

are connected and all link metrics in them are known, then
the resulting measurement matrix is similar to (3), ex-
cept that each row in has a new entry associated with

or

Here, blank entries correspond to zeroes, is given by
(3), and is a -element column vector of all
ones. Let and denote the first and last rows
in , respectively. Then, applying the same linear trans-
formations as applied to (3) to both and , we can
transform into (ignoring rows of zeros)

where is given by (4) and is a -el-
ement column vector of all ones. In , for each

, replace with
. Ignoring duplicate rows, trans-

forms into

where all rows are linearly independent. Since any subset
of equations in contains more than un-
known variables, none of these variables can be identified.
When and are not connected, the rank of can
be even smaller. Thus, and are unidentifiable,
contradicting the assumption that all the interior links are
identifiable.
Based on a) and b), we see that must be 2-edge-
connected for any (i.e., Condition holds).

c) We can also prove Condition by contradiction; see
Proposition A.2 (Appendix).

B. Proof of Theorem III.2: Sufficient Part

Given Conditions and , we need to show that all links
in are identifiable. We first introduce two types of identifiable
links. The argument then consists of showing that every interior
link belongs to one of these two types.

Fig. 5. Two types of identifiable links in (a) cross-link (b) shortcut .

1) Cross-Link, Shortcut, and Nonseparating Cycle: We
begin by introducing a few notions essential to our proof.
The first notion is a cross-link that connects nodes on two

simple paths between the monitors.
Definition 2: As illustrated in Fig. 5(a), link is a cross-link

if four paths , , , and formed from
simple paths by

(5)

such that

(6)

See Table I for definitions of graph union/intersection and
; note that paths are also graphs. The constraints in (6) are

used to ensure that are simple paths, e.g.,
( and have no common node other than ) ensures that
no cycles exist in . However, this does not require
to be node disjoint, e.g., and can have common nodes. A
cross-link can then be identified by

(7)

The second notion is a shortcut that connects the endpoints of
a simple path whose metric is known.
Definition 3: As illustrated in Fig. 5(b), link is a shortcut if
a simple path whose metric has been identified such that

the following simple paths can be formed:

(8)

satisfying , and
Again, the constraints are used to guarantee that and

are simple paths. A shortcut can be identified by

(9)

The third notion is a special kind of cycle defined as follows.
Definition 4: A nonseparating cycle in , denoted by , is

an induced subgraph10 such that: 1) is a cycle (see definition
in Table I); and 2) does not separate any node from monitors,
i.e., each connected component in contains at least one
monitor.
For example, there are four nonseparating cycles in Fig. 6:

, , , and . Cycle
is not a nonseparating cycle as it is not induced

(due to link ), neither is as it separates
from monitors.

10An induced subgraph of is a subgraph such that for any pair of vertices
and in , is an edge in if and only if is an edge in .
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Fig. 6. Sample network with identifiable interior graph.

Fig. 7. Possible cases of interior link : (a) Case A; (b) Case B-1;
(c) Case B-2.

2) Proof: The key to the sufficiency proof is to show that
each interior link can be categorized as either a cross-link or a
shortcut when the network satisfies Conditions and . The
proof proceeds in three steps.
The first step is to show that under Conditions and ,

every interior link satisfies one of the three cases as shown
in Fig. 7. Specifically, we have the following lemma.
Lemma V.1: If graph satisfies Conditions and , then

for any interior link , there exists a nonseparating cycle
with , a cycle with , a simple path
connecting one monitor with a node on , and a simple
path connecting the other monitor with a node on
such that we have the following.
a) and have at most one common node other than
(i.e., ).

b) and are disjoint, neither going through nor (i.e.,
, and ).

c) , .
Proof: See [33].

Lemma V.1 states that there must exist two cycles sharing
link , a nonseparating cycle and a (not necessarily non-
separating) cycle that satisfy conditions a)–c) in the lemma.
These conditions imply three possible cases.
• Case A [Fig. 7(a)]: is also a nonseparating cycle, and

have no common node other than and , and each of
and connects to a different monitor by a disjoint simple
path.

• Case B-1 [Fig. 7(b)]: Any path from any node in
to monitors must have a common node with .

• Case B-2 [Fig. 7(c)]: and must have at least one
common node (denoted by ) other than and .

These cases are guaranteed to be complete by Lemma V.1.
We will show later that Case-A links are cross-links and Case-B
(including B-1 and B-2) links are shortcuts.
The second step is to recognize that in Case A [Fig. 7(a)],

we can construct four measurement paths – by (5), using
– marked in the figure. Thus, a Case-A link is a cross-

link and can be identified as in (7). The challenge is that it is im-
possible to construct measurement paths as in (5) for the other
two cases [Fig. 7(b) and (c)] since the conditions in (6) cannot be
satisfied. This motivates us to explore the possibility of identi-
fying in these two cases by (9), i.e., to investigate whether
in Fig. 7(b) and (c) can be characterized as a shortcut.

The third step is to show that any link of Case B-1 or B-2 is
indeed a shortcut. We prove this by showing that for any Case-B
link, we can find a detour path connecting its endpoints such that
all the links in this detour path are cross-links, and thus can be
identified by (7). To this end, we show the following lemma.
Lemma V.2: Let with . If

satisfies Conditions and , then we have the following.
a) For any nonseparating cycle in , there is at most one
Case-B link in this nonseparating cycle.

b) For any Case-B link in the interior graph of , there
exists a nonseparating cycle with
and . For this nonseparating cycle

, there exist disjoint simple paths and
, each intersecting with only at the

endpoint, i.e., and
.

Proof: See [33].
Lemma V.2(b) implies that a Case-B link must reside on

a nonseparating cycle within the interior graph. Meanwhile,
Lemma V.2 a) implies that all the other links on cycle are
cross-links, as there is at most one Case-B link on each nonsep-
arating cycle. Furthermore, we show in LemmaV.2(b) that there
exist disjoint simple paths and connecting the endpoints
of link to different monitors, each sharing only one common
node with at the endpoints of link . Together, these allow
us to construct two measurement paths and as in (8),
where consists of only cross-links whose metrics
are known from (7). Thus, a Case-B link is a shortcut and can
be identified by (9).
Therefore, under Conditions and , every interior link is

identifiable.
As an example, Fig. 6 displays a network satisfying Condi-

tions and , where each interior link can be characterized
as either a cross-link or a shortcut.

VI. IDENTIFIABILITY WITH THREE OR MORE MONITORS

Since two monitors are not sufficient to identify all link met-
rics in , we explore in this section the case where the network
contains three or more monitors.

A. Conversion Into Two-Monitor Problem

Section V suggests that it is easier to identify links that are
one hop away from the monitors. This observation motivates us
to construct an extended graph of (see Fig. 3), so that all
links of interest (actual links in ) are at least one hop away
from virtual monitors and . This construction immedi-
ately converts the problem of identifying using monitors
to a problem of identifying the interior graph of using two
monitors (again we have no prior knowledge of link metrics in
or ). Therefore, we can apply Theorem III.2 to obtain the

following result.
Lemma VI.1: Employing monitors to measure simple

paths, the necessary and sufficient condition on the network
topology for identifying all link metrics in is that the as-
sociated extended graph has an identifiable interior graph,
i.e., satisfies Conditions and in Theorem III.2.

Proof: Since is the interior graph of , it suffices
to show that the information attainable by the real monitors

is the same as the information attainable by the
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virtual monitors and , if the virtual monitors can make
end-to-end measurements along simple paths in .
First, we show that any measurement between the real mon-

itors can be obtained from measurements between and .
To this end, consider a path
in , as shown in Fig. 3(b). Four simple paths between and

can be constructed

(10)

Viewing as a “cross-link,” we can compute
from the measurements on these four paths via (7) (replacing

by ).
Second, we show that measurements between and in
do not provide extra information for identifying links in

compared to measurements attainable by the real monitors.
This is proved by observing that for any simple path

containing at least
one link in , the information relevant for identifying links in
can be obtained by measuring its subpath ,
which must also be a simple path.

B. Sketch of Proof for Theorem III.3

The special structure of allows us to consolidate the two
Conditions and into a single condition as stated in The-
orem III.3, based on the following arguments.
From the structure of (see Fig. 3), we prove in

Propositions A3 and A4 (Appendix) that satisfies
Conditions and in Theorem III.2 if and only if
is both 3-edge-connected and 3-vertex-connected. According
to [31, Proposition 1.4.2], a 3-vertex-connected graph is also
3-edge-connected. Thus, the necessary and sufficient conditions
in Lemma VI.1 can be simplified to a single condition that
be 3-vertex-connected.
Remark: Note cannot be 3-vertex-connected if .

Therefore, 3 is the absolute lower bound of minimum monitor
requirement for ensuring identifiability of an arbitrary nontrivial
network topology; however, the minimum number of monitors
required for achieving identifiability of a given network is typ-
ically greater than 3 (see Section VII-C).

VII. TESTING AND ENSURING IDENTIFIABILITY

The conditions we have derived have broader impact than
mere theoretical interest. A major benefit of characterizing net-
work identifiability in terms of network topology is that we can
leverage existing graph-processing algorithms to efficiently test
for or ensure the identifiability of a given network. In this sec-
tion, we present efficient algorithms that can: 1) test for the iden-
tifiability of a given network with a given monitor placement;
and 2) place the minimum number of monitors in a given net-
work to identify all its link metrics.

A. Efficient Identifiability Test

The first question we want to answer is: Given a network
topology and a placement of monitors, how do we
efficiently determine if is identifiable or not? If , then
we know from Theorem III.1 that it is impossible to identify the

entire . Nevertheless, we can test whether the interior graph
is identifiable using Conditions and in Theorem III.2,
which transform into multiple tests of edge/vertex connectivity.
The problem of determining whether a given graph is -edge/
vertex-connected has been well studied. Specifically, fast algo-
rithms have been proposed to test if a graph is: 1) 2-edge-con-
nected [34], or 2) 3-vertex-connected [35], both in time

( : number of nodes; : number of links). Using these
algorithms, we can test for the identifiability of the interior
graph of as follows.
1) For each interior link , apply the 2-edge-connectivity test
in [34] to . is unidentifiable if the test fails.

2) Apply the 3-vertex-connectivity test in [35] to .
is unidentifiable if the test fails.

The interior graph of is identifiable if all the tests succeed.
The overall complexity is .
Similarly, if , then we can test for the identifiability of

the entire using the condition in Theorem III.3.
1) Construct the extended graph as in Fig. 3.
2) Apply the 3-vertex-connectivity test in [35] to .
is identifiable if the test succeeds, and unidentifiable
otherwise.

The complexity of this algorithm is ,
which is the same as .

B. Optimal Monitor Placement

The next question we want to answer is the following: Given
an arbitrary topology , what is the minimum number of moni-
tors needed and where should they be placed to identify all link
metrics in ? While one can enumerate all possible placements
for monitors and test for identifiability until an
identifiable placement is found, what we really want is an ef-
ficient algorithm to achieve the same outcome. This requires a
deeper understanding of the structure of an identifiable graph.
We illustrate our idea by an example in Fig. 8(a). We first

consider the minimum deployment: Using fewer monitors cer-
tainly renders the network unidentifiable. This yields the fol-
lowing rules.
1) Dangling node (e.g., ) must be a monitor, as otherwise its
adjacent link cannot be measured using simple paths.

2) A node on a tandem of links (e.g., ) must be a monitor, as
otherwise we can only identify the sum of its adjacent link
metrics ( and ) and not the individual metrics.

3) For a subgraph with two cut-vertices11 (e.g., ) or a
2-vertex cut12 (e.g., ), at least one node other than those
cuts must be a monitor, as otherwise even if all links
outside this subgraph have been identified, the vertices in
the cuts ( and for , and for ) are effectively
the two “monitors” for this subgraph, and Theorem III.1
states that this subgraph cannot be identified.

4) Similarly, for a subgraph with one cut-vertex (e.g., ), at
least two nodes other than the cut-vertex must be monitors.

Our strategy is to use the above four rules to deploy the nec-
essary monitors. If we can prove that these necessary monitors
are also sufficient to identify all links, then our deployment is
optimal. To formally present the algorithm, we introduce the
following definitions.

11A cut-vertex is a vertex whose removal will disconnect the graph.
12A 2-vertex cut is a set of two vertices such that removing or

alone does not disconnect , but removing both disconnects .
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Fig. 8. (a) Original graph. (b) Biconnected components. (c) Triconnected
components.

Definition 5: A -connected component of is a maximal
subgraph of that is either: 1) -vertex-connected, or 2) a com-
plete graph with up to vertices. The case of is also called
a biconnected component, and a triconnected component.
Intuitively, a biconnected component is a subgraph connected

to the rest of the graph by cut-vertices, and a triconnected com-
ponent (within a biconnected component) is a subgraph con-
nected to the rest by 2-vertex cuts. For instance, Fig. 8(b) shows
the biconnected components of Fig. 8(a), separated by cut-ver-
tices , , , , , and . Fig. 8(c) shows the triconnected com-
ponents, separated by the above cut-vertices and 2-vertex cuts

, , and . To identify the triconnected compo-
nents, we process the graph by adding virtual links as follows:
If a minimal 2-vertex cut13 whose vertices are not neighbors
(e.g., ), connect them by a virtual link; repeat this on the
resulting graph until no such cut exists. In the sequel, nodes that
are cut-vertices or part of 2-vertex cuts are called separation
vertices (e.g., , , , , , , , , , and ).
Monitor Placement Algorithm: There exist fast algorithms to

partition an arbitrary graph into biconnected components [36]
and then into triconnected components [35]. Note that the output
of [35] is the set of triconnected components of augmented
with the virtual links.14 Based on these algorithms, we propose
a master algorithm, Minimum Monitor Placement (MMP), to
place the minimum number of monitors needed to identify .
As shown in Algorithm 1, MMP first applies rules 1) and 2)
to select all the dangling vertices and vertices on tandems as
monitors (line 1), and then applies rules 3) and 4) to select addi-
tional monitors in each15 triconnected/biconnected component.
For a component , let denote the number of separation ver-
tices, the number of cut-vertices, and the number of (al-
ready selected) monitors in . MMP goes through each tricon-
nected and then biconnected component that contains three or
more nodes to ensure that: 1) each triconnected component has
at least three nodes that are either separation vertices or moni-
tors (lines 6–8); and 2) each biconnected component has at least
three nodes that are either cut-vertices ormonitors (lines 10–12).
Finally, it selects additional monitors as needed to ensure that
the total number of monitors is at least three (lines 14–16).
Optimality: It is easy to see from rules 1)–4) that MMP

only deploys monitors when needed, and thus no algorithm can
achieve identifiability with fewer monitors; on the other hand,

13That is, neither of the vertices are cut-vertices.
14The algorithm in [35] does not require a separate step to add virtual links;

it adds virtual links as needed in the process of graph partitioning.
15MMP does not depend on the order of biconnected/tricon-nected compo-

nents being considered for monitor selection.

Algorithm 1:Minimum Monitor Placement (MMP)

input: Connected graph
output: A subset of nodes in as monitors

1 choose all the nodes with degree less than 3 as monitors;
2 partition into biconnected components ;
3 foreach biconnected component with do
4 partition into triconnected components ;
5 foreach triconnected component of with

do
6 If and then
7 randomly choose nodes in that

are neither separation vertices nor monitors as
monitors;

8 end
9 end
10 if and then
11 randomly choose nodes in that

are neither cut-vertices nor monitors as monitors;
12 end
13 end
14 If the total number of monitors then
15 randomly choose nonmonitor nodes as monitors;
16 end

we show that the monitor placement by MMP is also sufficient,
i.e., all link metrics can be identified from end-to-end measure-
ments between the selected monitors. Thus, MMP is optimal as
it places the minimum number of monitors to identify all link
metrics in , as stated in the following theorem.
Theorem VII.1: For an arbitrary connected network ,

Algorithm 1 (MMP) generates the optimal monitor placement
in the sense that: 1) all link metrics in are identifiable under
this placement; and 2) no placement can identify all link metrics
in with a smaller number of monitors.

Proof: See the Appendix.
Complexity: In Algorithm 1, lines 1 and 14–16 take

time. Splitting into biconnected (line 2) and
then triconnected components (line 4) takes
time [35], [36]. Selecting monitors takes time per com-
ponent, and the counters ( and ) can be
computed during the splitting/selecting process. Therefore, the
entire algorithm has time complexity.
Example: Given the graph in Fig. 8(a) as input (total

of 22 nodes), MMP selects 11 monitors, where nodes
are selected by lines 6–8, by lines

10–12, and by lines 10–12. It can be verified that the resulting
graph satisfies the identifiability condition in Theorem III.3.

C. Evaluation of MMP

We evaluate MMP through a set of simulations on both ran-
domly generated and real network topologies. We use the fol-
lowing algorithm, referred to as Random Monitor Placement
(RMP), as a benchmark for comparison16: Given network ,
randomly select nodes as monitors and test
the identifiability of the resulting network using the algorithm in

16To our knowledge, MMP is the first monitor placement algorithm for iden-
tifying additive link metrics by measuring controllable, cycle-free paths. Thus,
we use random placement to represent the average performance of an arbitrary
monitor placement for comparison.
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Section VII-A. Generally, RMP cannot guarantee network iden-
tifiability for arbitrary and . Therefore, we measure its per-
formance by the fraction of random placements achieving net-
work identifiability over multiple Monte Carlo runs.
1) Random Topologies: We first consider synthetic topolo-

gies generated according to four widely used random graph
models: Erdös–Rényi (ER) graphs, Random Geometric (RG)
graphs, Barabási–Albert (BA) graphs, and Random Power Law
(PL) graphs. We randomly generate 100 graph realizations of
each model,17 with each realization containing 150 nodes (i.e.,

). The generated graphs are then input to the monitor
placement algorithms. We now explain the models and the cor-
responding results separately.

ER Graph: The ER graph is a simple random graph
generated by independently connecting each pair of nodes
by a link with a fixed probability . The result is a purely
random topology where all graphs with an equal number of
links are equally likely to be selected. It is known [37] that

is a sharp threshold for the graph to be
connected with high probability, which implies a minimum
value of for .

RG Graph: The RG graph is frequently used to model
the topology of wireless ad hoc networks. It generates a
random graph by first randomly distributing nodes in a unit
square, and then connecting each pair of nodes by a link if
their distance is no larger than a threshold , which denotes
node communication range. The resulting topology contains
well-connected subgraphs in densely populated areas and
poorly connected subgraphs in sparsely populated areas. It is
known that ensures a connected graph
with high probability [38], which gives a minimum range of

for .
BA Graphs: The BA model [39] provides a random

power-law graph generated by the following preferential at-
tachment mechanism. We begin with a small connected graph

and add nodes
sequentially. For each new node , we connect to
existing nodes, where specifies (a lower bound on) the
minimum node degree, such that the probability of connecting
to node is proportional to the degree of . If the number
of existing nodes is smaller than , then connects to all
existing nodes. The BA graph has been used to model many
naturally occurring networks, e.g., Internet, citation networks,
and social networks.

PL Graphs: The BA model introduces an artifact that all
node degrees are lower-bounded by . Alternatively, the
PL graph [40] provides another way of generating power-law
graphs by directly specifying a sequence of expected node
degrees according to the power law, i.e.,

. The generation of a PL graph is similar to that
of an ER graph, except that instead of connecting each pair of
nodes with the same probability, nodes and in a PL graph
are connected by a link with probability .
We conduct simulations in two scenarios, densely connected

graphs (Fig. 9 with parameter configurations: for
ER, for RG, for BA, and
for PL) and sparsely connected graphs (Fig. 10 with parameter
configurations: for ER, for BA, and

17All realizations are guaranteed to be connected, as we discard disconnected
realizations in the generation process.

Fig. 9. Comparison between RMP and MMP: densely connected graphs (
for BA, for ER,

for PL, and for RG).

Fig. 10. Comparison between RMP and MMP: sparsely connected graphs
( for BA, for ER, and

for PL).

for PL), to evaluate how graph density affects the per-
formance of MMP and RMP. Since the number of links and
the minimum number of monitors (computed by MMP)
vary across graph realizations, we present the average values
denoted by and for each graph model, shown in the
captions of Figs. 9 and 10. In each scenario, we have tuned pa-
rameters of each model to generate roughly the same average
number of links. As RMP is a randomized algorithm, we re-
peat it for 2000 Monte Carlo runs to obtain the average per-
formance for each graph realization. We then average the re-
sults over the 100 graph realizations to obtain the final results,18

shown in Figs. 9 and 10.
For densely connected graphs (Fig. 9), the probability that

RMP is able to identify all the links increases with the number
of monitors . However, fewer than 20% of the ER, RG, and
PL graphs are identifiable when (recall ),
whereas a careful monitor deployment in the same graphs by

18For each graph realization, MMP achieves identifiability with probability
one for and zero for . Therefore, the overall probability
for MMP to achieve identifiability using monitors is computed as the fraction
of graph realizations with .
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MMP ensures identifiability with significantly fewer monitors
. Therefore, in most cases, the proposed algorithm

(MMP) substantially outperforms a randomized scheme (RMP)
in the required number of monitors. One exception is the BA
graphs, where RMP achieves similar performance to that of
MMP. This can be explained as follows: When , fur-
ther simulations show that 87.8% of the generated BA graphs
are 3-vertex-connected as each node (except the initial nodes

, and ) has at least three neighbors; according to MMP,
this implies that an arbitrary placement of three monitors will
achieve identifiability, and there is no need for a sophisticated
placement algorithm. Meanwhile, a comparison of the BA and
the PLmodels implies that the exceptional performance of RMP
in the BA model is due to the requirement that all node degrees
be lower-bounded by three rather than the power-law distribu-
tion of node degrees since it does not achieve the same supe-
rior performance on PL graphs. For ER, RG, and PL graphs,
it is easy to form sparsely connected subgraphs, thus requiring
more monitors in these sparsely connected subgraphs to guar-
antee network identifiability. Among the four models, we ob-
serve that RMP exhibits the worst performance in the model
with the largest . This is because large is resulted
from poor connectivity within certain subgraphs, where a con-
siderable number of nodes have to be selected as monitors to
achieve identifiability. Thus, RMP fails to achieve identifiability
if it does not select a sufficient number of nodes in any of these
subgraphs.
We perform similar simulations for sparsely connected

graphs by adjusting the parameters,19 shown in Fig. 10. In
comparison to Fig. 9, both MMP and RMP perform worse
in sparsely connected graphs, requiring a larger number of
monitors to achieve the same probability of identifiability.
This is because sparser graphs impose more constraints on
candidate measurement paths between pairs of monitors, and
thus more monitors are needed to identify all links. As we
compare the performance of the same graph models in Figs. 9
and 10, we observe that all models exhibit smooth transitions
when we vary the average number of links except for the BA
model, which has extremely good performance for
but poor performance (except for RG) for . This can
again be explained by examining the 3-vertex-connectivity
of the generated graph realizations. We have verified that as
we reduce from 3 to 2, the probability for BA graphs
to be 3-vertex-connected drops from 87.8% to 0%, making it
unlikely for an arbitrary placement to achieve identifiability.
In fact, when , on average 49.2% of the nodes in
BA graphs have degrees less than 3, which requires them to
be selected as monitors by rules 1) and 2) in MMP. Therefore,
RMP fails to achieve identifiability if it misses one of these
nodes, resulting in its poor performance.
2) Autonomous System Topologies: We now test MMP

and RMP on real network topologies. We use the autonomous
system (AS) topologies from both the Rocketfuel [29] and the
CAIDA [30] projects, which represent IP-level connections
between backbone/gateway routers of several ASs from major
Internet service providers (ISPs) around the globe. The

19To generate roughly the same number of links as in the other models,
for the RG graph becomes much smaller than , making the
probability of generating a connected RG graph very small. Thus, the RGmodel
is omitted from Fig. 10.

TABLE II
PARAMETERS OF AS TOPOLOGIES IN ROCKETFUEL

TABLE III
PARAMETERS OF AS TOPOLOGIES IN CAIDA

parameters of selected networks obtained from these two
projects are listed in Tables II and III, where we sort
the networks according to their numbers of links, and

denotes the minimum fraction of
monitors computed by MMP in a network with nodes.

a) AS Topologies From Rocketfuel: As shown in Table II,
each AS in Rocketfuel corresponds to an ISP. To identify the
entire network, we observe that most ISPs need a significant
fraction of nodes to be monitors, ranging from around 30%
(Ebone, AT&T, Sprintlink) to more than 60% (Abovenet). This
is because ISP networks contain a large number of gateway20

routers to connect to customer networks or other ISPs, which ap-
pear as dangling nodes that have to be selected as monitors [see
rule 1) in Section VII-B]. We repeat RMP for Monte
Carlo runs for each ISP to evaluate its average performance,
measured by the fraction of Monte Carlo runs achieving identi-
fiability, as shown in Fig. 11. To facilitate comparison, we mark
the fraction of monitors needed byMMP in the legends of
the same plot; note that MMP guarantees identifiability for each
network so long as . We normalize the number
of monitors by the total number of nodes in order to compare
networks of different sizes. Moreover, we only plot the results
of RMP for since RMP fails to achieve identifia-
bility in almost all of the simulations when .
As in the case of synthetic graphs, we again observe a sig-

nificant improvement of MMP over RMP. Specifically, RMP
has at most 50% probability of identifying all the links even if
99% of the nodes are monitors, whereas MMP guarantees iden-
tifiability using at most 64% of nodes as monitors. The poor
performance of RMP is due to the heterogeneous connectivity

20In real networks, monitor selection may be constrained to a subset of nodes,
e.g., gateways. Under such a constraint, the issue of achievable number of iden-
tifiable links (i.e., partial network identifiability) is left for future work.
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Fig. 11. Comparison between RMP and MMP: ISP topologies in Rocketfuel
( Monte Carlo runs, ).

Fig. 12. Comparison between RMP andMMP: AS topologies in CAIDA (3000
Monte Carlo runs, ).

within ISP networks, which contain poorly connected subnet-
works that need a large fraction of monitors, a requirement un-
likely to be fulfilled by random placement. We also observe that
the relative performance of MMP and RMP varies for different
networks, e.g., Level3 and Exodus experience similar perfor-
mance under RMP, whereas their minimum fractions of moni-
tors computed byMMP differ significantly (0.15 for Level3 and
0.42 for Exodus). Intuitively, this is because RMP performance
is determined by the relative number of valid placements, i.e.,
the fraction of all the candidate placements that achieve
identifiability, whereas MMP performance is determined by the
smallest for which this fraction is nonzero.

b) AS Topologies From CAIDA: ISP topologies have
evolved since the Rocketfuel project; consequently, we repeat
the above evaluation on a recent data set obtained by the
CAIDA project; see results in Table III and Fig. 12. Compared
to the ASs in Rocketfuel data set, we observe that ASs with
similar average node degrees (i.e., ) in the CAIDA
data set require a larger fraction of monitors for complete
identification, e.g., for AS8717 with average
node degree 4.2 in Table III, whereas for
AS1755 (Ebone) with average node degree 4.4 in Table II.

Fig. 13. Two cases of bridge link : (a) interior bridge; (b) exterior bridge.

This is because ASs in the CAIDA data set tend to be more
skewed in connectivity, with more densely connected cores
and a larger number of dangling nodes (likely the gateways
for peer/customer connections). As all dangling nodes have
to be selected as monitors, such skewed connectivity leads to
a higher ratio of monitors, although the average node degree
is not necessarily smaller. Meanwhile, comparison to RMP
(3000 Monte Carlo runs), presented in Fig. 12, shows that the
improvement of MMP over RMP remains significant. As in
Fig. 11, RMP again exhibits poor performance for all the ASs
considered in Fig. 12, which has less than 35% probability of
identifying all links even if the fraction of monitors is as
large as 0.99. In particular, for almost all the networks (except
for AS20965) in Fig. 12, RMP fails to identify all the links in
more than 60% of the simulations even if all but one node are
monitors. In contrast, carefully selected monitors by MMP can
guarantee complete identification while substantially reducing
the required number of monitors.

VIII. CONCLUSION

We study the fundamental conditions on network topology
and placement of monitors for identifying additive link met-
rics using end-to-endmeasurements along simple paths between
monitors. We show that with two monitors, it is impossible to
identify all the linkmetrics, but is possible to identify themetrics
of interior links that are at least one hop away from the moni-
tors, for which we derive the necessary and sufficient conditions
in terms of edge/vertex connectivity of the network topology.
We further study the case of three or more monitors and derive
the corresponding necessary and sufficient conditions for iden-
tifying all the link metrics. We show that these conditions are
not only useful for testing network identifiability under a given
monitor placement, but also enable an efficient monitor place-
ment algorithm that guarantees identifiability using the min-
imum number of monitors. Our evaluations on both random and
real network topologies verify that the proposed algorithm sig-
nificantly outperforms a baseline solution.

APPENDIX

Lemma A.1:

Suppose two monitors are deployed in to measure simple
paths. If link is a bridge in with one monitor on each side,
as illustrated in Fig. 13, then neither nor its adjacent links are
identifiable.
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Proof: Consider the case of Fig. 13(a). Assume all links
except link and its adjacent links and

are identified. We can then reduce the linear
equation associated with any path to the form

(11)
Writing these equations in matrix form and applying the linear
transform in the proof of Theorem III.1 yield a transformedmea-
surement matrix (blank entries are zero)

...
. . .

...

. . .
...

This matrix corresponds to the maximum set of linearly
independent equations involving the unknown variables ,

, and . Since any subset of equations
contains more than unknown variables, none of these vari-
ables can be identified. Therefore, and its adjacent links are
all unidentifiable.
In the case of Fig. 13(b), similar argument applies, except that
is replaced by and is replaced by .

Proposition A.2: Using two monitors measuring simple
paths, if all link metrics in the interior graph of are identifi-
able, then is 3-vertex-connected.

Proof: Suppose that all the interior links of are identifi-
able, and is not 3-vertex-connected. Then, the con-
nectivity21 of must be 1 or 2.
1) Suppose that the connectivity of is 1. Then, it
must have a cut-vertex, denoted by . There are three pos-
sible cases as illustrated in Fig. 14. First, if ,
as shown in Fig. 14(a), then removing does not discon-
nect since has been assumed to be connected.
Thus, must be in . Let and denote two
of the connected components separated by . If each of
and contains a monitor, as shown in Fig. 14(b), then
removing does not disconnect because link

still connects and ; if one of the components,
say , has no monitor, as shown in Fig. 14(c), then any

path employing links in must both enter and
leave through , forming a cycle (which is forbidden).
Therefore, the connectivity of must be greater
than 1.

2) Suppose that the connectivity of is 2. Thus,
there must be a 2-vertex cut, denoted by . There are
three possibilities. First, if [Fig. 14(a)],
then removing does not disconnect be-
cause the remaining graph is still connected. Second, if
one monitor in , say as shown in Fig. 15(a),

21The greatest integer such that is -vertex-connected is the connectivity
of .

Fig. 14. Possible scenarios of a cut-vertex : (a) is a monitor; (b) the removal
of separates and ; (c) contains no monitors when is deleted.

Fig. 15. Possible scenarios of a 2-vertex cut : (a) contains a mon-
itor; (b) contains no monitors.

then any path employing links in must
enter through and exit through . We can effec-
tively view and as the new “monitors” and their ad-
jacent links and as the new “exterior
links” for . Applying Corollary IV.1 yields that
and are all unidentifiable, contradicting the as-
sumption that all the interior links are identifiable (because

are interior links). Finally, if both and are in
, as shown in Fig. 15(b), then any path em-

ploying links in must enter/exit via and . Note
that there must be a component separated by that
has no monitor (e.g., ) because otherwise link
will keep the components connected after removing and
. For links in , and are effectively the new “moni-
tors,” and thus by Corollary IV.1, the links and

are unidentifiable. This also contradicts the as-
sumption that all the interior links are identifiable.

Thus, the connectivity of must be greater than 2,
i.e., is 3-vertex-connected.

Proposition A.3: Given a graph employing mon-
itors, the extended graph of satisfies Conditions (i.e.,

is 2-edge-connected for each link in ) if and only if
is 3-edge-connected.
Proof: Necessary Part: Suppose is 2-edge-con-

nected for all in . Consider removing two links in , de-
noted by and .
1) If at least one of these links, say , is in , then by
assumption is 2-edge-connected. Thus,
is connected.

2) Suppose none of these links is in , i.e., both and are
virtual links. Since the virtual monitors and each
connect to all actual monitors in , and there are at least
three actual monitors, and are each connected to
via at least three virtual links. Therefore, and are
still connected with after and are deleted. Since we
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Fig. 16. is disconnected, where : (a)
separates and monitors; (b) separates monitors.

have assumed to be a connected graph, is
connected.

We have shown that remains connected after removing
any two links. Therefore, is 3-edge-connected when

is 2-edge-connected.
Sufficient Part: Suppose is 3-edge-connected. Then,

obviously, is 2-edge-connected for each .

Proposition A.4: Given a graph G employing
monitors, the extended graph of satisfies Condition
(i.e., is 3-vertex-connected) if and only if is
3-vertex-connected.

Proof: Necessary Part: We prove the necessary part by
contradiction. Suppose is not 3-vertex-connected, but

is 3-vertex-connected, then the connectivity of must
be 2, because removing one link will decrease connectivity by at
most 1. Thus, there must exist two nodes, denoted by and ,
whose removal will disconnect . There are three possibilities
for and .
1) If , are , , then after their removal, the re-
maining graph is still connected.

2) If is a virtual monitor ( or ) and is a node in ,
then being disconnected will imply

also being disconnected (as the remaining
graphs of and are the same), contradicting
the assumption that is 3-vertex-connected.

3) If , are both in (can be real monitors), then two
cases may occur after removing and : a) a con-
nected component that does not contain any real monitor;
b) each connected component contains at least one real
monitor, as illustrated in Fig. 16. In the case of Fig. 16(a),

is disconnected as well, contradicting
the 3-vertex-connectivity of . In the case of
Fig. 16(b), different components in can still
connect via virtual links and virtual monitors, thus contra-
dicting the assumption that is disconnected.

Hence, when is 3-vertex-connected, the
connectivity of cannot be less than 3, i.e., is also
3-vertex-connected.

Sufficient Part: If is 3-vertex-connected, then after
adding one link , is also 3-vertex-connected.

Proof of Theorem VII.1: If is already 3-vertex-connected,
then is always 3-vertex-connected as long as there are at
least three monitors, no matter how they are placed. This case
is handled by lines 14–16 in Algorithm 1. We will show that

Fig. 17. Possible scenarios for a triconnected component with .

even if is not 3-vertex-connected, Algorithm 11 still guaran-
tees that is 3-vertex-connected. We prove this statement by
showing that after removing any two nodes in , each re-
maining node in is connected to at least one monitor.
There are three possible cases: 1) belong to the same tri-
connected component; 2) belong to different triconnected
components within the same biconnected component; 3)
belong to different biconnected components. We now analyze
these cases separately.
1) Consider deleting two nodes in a triconnected com-
ponent . If , then is a bridge. According to
rules 1)–4) (Section VII-B), each of the neighboring com-
ponents of must contain at least one monitor other than
and . Thus, after deleting and , each connected

component must contain at least one monitor.
Now consider the case of . Since
must be connected (due to its triconnectivity), it suffices to
show that contains or is connected to at least
one monitor. There are four possibilities depending on the
number of separation vertices in , denoted by .
a) If , then must be 3-vertex-connected or a
triangle. After removing two vertices, the remaining
graph is either connected with at least one monitor
or a degenerate graph of a single node (which is a
monitor).

b) If , then there exists one cut-vertex in
(shown22 in Fig. 17). If , then
is still connected to monitors in neighboring com-

ponents via ; if , then
must contain a monitor because two of the nonsepa-
ration vertices in must be monitors by rule 4).

c) If , then there are two possible sce-
narios (shown in Fig. 18), i.e., a 2-vertex-cut

, or has two cut-vertices and . If
, then must contain

at least one monitor because contains at least one
monitor that is not a separation vertex [by rule 3)].
If and (or the other
way), then is still connected to moni-
tors in neighboring components via . Similarly, if

, then is still connected
to monitors in neighboring components via and
.

d) If (three possible scenarios are shown in
Fig. 19), then Algorithm 1 will not place any mon-
itor in . Nevertheless, after removing two nodes
and , at least one separation vertex must remain,
and thus is still connected to monitors in

22Note that there may be more than one triconnected subgraph connecting at
, but we only illustrate the minimum for clarity; the same applies to subse-

quent illustrations in this proof.
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Fig. 18. Possible scenarios for a triconnected component with :
(a) contains a 2-vertex cut ; (b) contains two cut-vertices and
.

Fig. 19. Possible scenarios for a triconnected component with :
(a) contains a 2-vertex cut and a cut-vertex ; (b) contains two
2-vertex cuts and ; (c) contains three cut-vertices
and .

at least one neighboring component via the remaining
separation vertex.

The above shows that remaining nodes in are still con-
nected to monitors after removing two nodes and
within the same triconnected component .

2) Now consider deleting two nodes in two different
triconnected components that are in the same
biconnected component . Note that the remaining graph

must be connected because the only
scenario for to be disconnected is when belong to
the same 2-vertex cut of , which implies that must
belong to the same triconnected component, contradicting
our assumption. Similar to Case 1), we have the following
four possibilities depending on the number of cut-vertices
in , denoted by .
a) If , then is biconnected , and

must contain at least one monitor be-
cause the total number of monitors is at least three
(see lines 14–16).

b) If , then rule 4) implies that
contains two monitors other than the cut-vertex .
If , then is still con-
nected to monitors in neighboring components via ;
if , then itself contains a
monitor.

c) If , then connects to neighboring bicon-
nected components via two cut-vertices and .
If , then itself con-
tains a monitor, as rule 3) requires to contain a
monitor that is not a cut-vertex; if (or

), then is connected to mon-
itors in at least one neighboring component via (or
).

d) If , then connects to neighboring bicon-
nected components via at least three cut-vertices ,
, and . There may not be any monitor in in this

case. However, must be connected to
monitors in at least one neighboring component via
the remaining cut-vertex.

The above shows that nodes in are still con-
nected to monitors after removing nodes and in two
different triconnected components but within the same bi-
connected component .
Although our argument has focused on the (triconnected or
biconnected) component that contains both and , it is
easy to see that nodes in the neighboring components that
share or are also connected to monitors after these
two nodes are removed, as this is a special case of the above
argument where the number of removed nodes is at most
two, and the removed nodes have to be separation vertices.
Remark: The above argument assumes that virtual links
have been added (see explanations after Definition 5).
However, the construction of virtual links implies that if a
node in will be disconnected from monitors
without virtual links, then this node must have only two
neighbors, and line 1 in Algorithm 1 would have selected
this node as a monitor. Thus, our argument holds without
added virtual links.

3) Finally, consider deleting two nodes and from two
different biconnected components and , respectively.
Then one of the following scenarios will occur.
a) If neither nor is a cut-vertex,23 then
is still connected. Moreover, it contains at least one
monitor as there are at least three monitors in .

b) If is a cut-vertex but is not (or the other way),
then we leverage a result from Cases 1) and 2): Re-
moving two nodes from a biconnected component
(whether in the same triconnected component or not),
all remaining nodes are still connected to monitors.
Applying this result, we see that removing one node
from a biconnected component also does not discon-
nect any remaining node from monitors, i.e., each
connected component in has at least one mon-
itor. Consider the connected component containing
. Removing cannot disconnect , as otherwise
will have to be in the same biconnected component

as or a cut-vertex itself, contradicting our assump-
tions; furthermore, must contain at least two mon-
itors by rule 4). Thus, each connected component in

, including , has at least one monitor.
c) If both and are cut-vertices, then each connected
component in must connect to the rest of
the graph in the original through one or two cut-
vertices (i.e., and ). By rules 3) and 4), each
of these connected components contains at least one
monitor other than or .

In summary, the arguments in Cases 1)–3) imply that, for any
(which may not be 3-vertex-connected), 1) guarantees that

all nodes in are still connected to monitors after
deleting two arbitrary nodes in . Since all the monitors
are connected through virtual links and virtual monitors in the

23 and cannot be a 2-vertex cut because otherwise and are in the
same triconnected component, contradicting our assumption.
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extended graph , must be connected.Moreover,
if the virtual monitors are deleted from , then the re-
maining graph (i.e., ) is still connected since is assumed to
be connected. Finally, if (or ) and are deleted,
then we have shown that all the nodes in are connected to
monitors, and since these monitors are still connected via ,
the entire graph is connected. Therefore, em-
ploying Algorithm 1 to place monitors, the resulting extended
graph is always 3-vertex-connected. By Theorem III.3, this
implies that the placed monitors can uniquely identify all the
link metrics in .
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