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Abstract—Containerized applications have become widely
used in modern software development due to its high flexibility
and lightweight deployment. Currently, there exists a large
set of publicly available container images with many different
OS and versions. As a result, developers typically carefully
choose images based on memory footprint versus flexibility with
available libraries. However, not enough is known regarding
performance. We have verified that different OS-based images
with different versions vary the performance of some applica-
tions. Additionally, minor updates in container images, without
changing its versions, also affect application performance.
Therefore, to understand the application performance, it is
important to know the performance effects from different
container images along with continuous monitoring of the
minor changes.

Since existing performance test frameworks do not encom-
pass the required features to analyze performance regressions
in container images, in this paper: we introduce an original
test framework to continuously evaluate the performance of
a broad range of container images. Our framework enables
experiments of container benchmarks with periodic image
builds, simple container orchestration, metrics collection, and
result visualization. We demonstrate the usefulness of our
framework through case studies that analyze the performance
characteristics of sixteen container images and nine popular
benchmarks. The experimental results show that there is a
noticeable performance variation due to the deployed environ-
ments and characteristics of Alpine and JDK images.

Keywords-Container; Container image; Performance; Anal-
ysis; Benchmark; Framework; Test; Docker

I. INTRODUCTION

Container images are crucial software components for
modern cloud applications offering lightweight deployment
and high reusability. Container images are distributed in
public repositories such as Docker Hub which contain over
100,000 images [1]. The public repositories provide a wide
variety of images including web frameworks, operating
system tools, and programming language runtimes, which
are essential to start and run Linux applications. Each image
also provides many choices of image versions as tags. For
example, a popular Linux image, Ubuntu, provides 223
versions of x86 64 images with 373 tags at the time of this
writing.

Developers often reuse and enhance existing images with
application logic and create new container images. Container
images for operating systems and runtimes contain software

binaries to support broad usage and rich user-friendly fea-
tures.

These additional features are useful for development pur-
poses and many use cases but can be harmful to cloud
deployment due to security concerns and excess memory
overhead for rarely used features. As a result, developers
select container oriented runtimes such as Alpine Linux as
an application base to avoid unnecessary binaries to initialize
and execute a Linux application.

These runtime images have compatible interfaces but
performance characteristics can be different due to their
minimized binaries. Giving this vast range of image selec-
tion, developers typically select images based on memory
footprint versus flexibility with available libraries. However,
not enough is known regarding performance because mem-
ory footprint does not cover all the aspects of complex
characteristics of application performance. Therefore, this
paper aims to provide a framework to help to answer the
research question “What impact does container image type
have on application performance?”

Existing performance test tools and frameworks [2] [3]
[4] [5] help reduce developer effort required to configure
and run complex experiments. ReBench [5] and airspeed
velocity (asv) [2] are simple tools to help continuous perfor-
mance testing of generic benchmarks. CloudBench [3] and
CloudPerf [4] support cloud-based deployments including
distributed environments. However, they do not focus on
container workloads, which poses new challenges for per-
formance test frameworks.

First, different deployment models must be supported
due to the isolation mechanisms inherent with containers.
Applications based on server-client architecture require net-
work configuration for multiple containers on different phys-
ical/virtual hosts. Even for stand-alone applications, online
and post hoc analysis requires systematic metrics collection
for containers. Developers often collect CPU, memory, and
other resource metrics to understand performance character-
istics, but metrics collection needs to connect to containers
behind isolation mechanisms. Runtimes with just-in-time
compilers like JDK also need special adaptation for an agent
tool to support Linux perf tools.

Second, public repositories continuously update container
tags due to minor fixes for security and bugs but developers
cannot retrieve the previous state of overwritten tags from



remote repositories. For example, we observed two minor
updates of a Python image tagged as ‘3.8’ in February
2020. Thus, post hoc analysis requires the preservation of
past versions of benchmark and base images to precisely
reproduce the past experiment. Developers also need to test
performance regression due to minor or major updates of
container images.

Finally, many choices of container images and tags some-
times require enormous amounts of continuous experiments
to cover possible combinations of tags and benchmarks,
which easily exceed human comprehension. None of the
existing frameworks provide the necessary tools to satisfy
all of these requirements.

In this paper, we propose an original benchmark frame-
work to reduce the developer engineering effort required
to evaluate the performance of container images. Our
framework enables us to run diverse ranges of popular
benchmarks for programming language runtimes, databases,
web servers/applications, and operating systems. It sup-
ports single-container experiments such as DaCapo [6] and
UnixBench, and multi-container ones such as YCSB [7]
and DayTrader. Our framework employs a periodic image
builder, a benchmark driver, metrics collection, and visual-
ization tools to help deeply and analyze a broad range of
container workloads. The periodic image builder helps us
to track and preserve the latest state of a tagged container
image, which is essential for advanced post hoc analysis
with Linux perf. The benchmark driver contains Python
class libraries to easily define and run new benchmark
experiments including distributed ones with rich metrics col-
lection for containers. Visualization tools enable developers
to continuously monitor daily changes of enormous amounts
of continuous benchmark results.

To demonstrate the usefulness of our framework, we
analyze sixteen container images and nine benchmarks.
Our analysis shows the following implications for container
application development and testing.

• The performance variation of selected container im-
ages is non-negligible. For example, nginx showed
three times better throughput than httpd under
ApacheBench. Our experimental results indicate that
performance testing of container images is essential
for development of performance-sensitive applications.
Note that selection of container images is often based
on not only performance but also software security,
license, and other practical factors. Our framework
helps engineers select better container images in terms
of performance.

• A benchmark from UnixBench showed that Alpine pro-
cessed 50% more operations per second than CentOS.
Alpine also used less CPU than CentOS. This indicates
that “fat” images potentially change performance char-
acteristics as compared with “slim” images not only
due to reduced container image size but also due to the
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Figure 1. UnixBench workloads impacted by OS image. This figure
shows UnixBench workloads which had more than 50% throughput varia-
tion caused by changing the OS image.

unique system libraries of the Alpine image.
• The latest images for IBM JDK and AdoptOpenJDK

showed different performance characteristics regard-
ing synchronization primitives, e.g., object monitors
in Java. They showed different CPU usage patterns
although they run the same benchmark on the same
cloud environment. This result indicates that many
container runtimes using Java such as Open Liberty,
Cassandra, and Elasticsearch potentially show similar
performance characteristics on concurrent workloads.

The unique contribution of this paper is threefold: 1)
design and implementation of our continuous performance
testing framework for container workloads with a periodic
image builder, a benchmark driver, metrics collection, and
a visualization tool, 2) demonstration of our framework
with case studies of nine popular benchmarks and sixteen
container images, and 3) implications of container develop-
ment/testing from our performance analysis of containers.

II. MOTIVATION

In this section, we briefly show the performance variation
due to 1) selected container images and 2) experimental
environments. The experimental results of varying container
images highlight the necessity of performance testing and
careful selection of base container images and tags. The
experiments that vary the environment show that even
carefully selected images can have different performances
due to external events and continuous testing helps us to
quantitatively understand these influences.

A. Performance characteristics of runtime containers

First, we evaluate the performance characteristics of run-
time container images, which may affect the performance
characteristics of application containers. We test the per-
formance of UnixBench and DaCapo, as application con-
tainers in this section. For the evaluation of UnixBench,
we used Alpine, CentOS, and Ubuntu images as the base
images. UnixBench consists of system-level benchmarks to
measure the performance of basic system operations such
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Figure 2. DaCapo performance with different JDK images.
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(B) Throughput of UnixBench shell1

Figure 3. Daily performance variation of DaCapo avrora (A) and
UnixBench fsbuffer (B) with different images.

as system calls, shell scripts, and file operations. DaCapo is
a benchmark collection used to analyze and optimize Java
applications, runtimes, and compilers. We ran experiments
on an m4.xlarge instance on AWS EC2 with 4 virtual
CPUs, 16 GB RAM, and a 100 GB attached volume.
Docker containers for this experiment ran on the same Linux
kernel version 4.15. Hence system-level benchmarks like
UnixBench should show similar performance characteristics
for different base OS images. However, as shown in Figure 1,
the Alpine image showed from 50% to 100% higher through-
put for some of the workloads in UnixBench as compared
with Ubuntu and CentOS. Other benchmarks such as fsbuffer
and dhry2reg did not show significant differences.

We also evaluated DaCapo with different JDK im-
ages and tags on the same node as the experiment for

UnixBench. Figure 2 shows the performance summary of the
DaCapo images we built with multiple versions of Adopt-
OpenJDK and IBM JDK 8. Avrora showed OpenJ9-based
runtimes (adoptopenjdk:8-jdk-openj9, adoptopenjdk:12-jdk-
openj9, and ibmjava:8) performed well, while in other
benchmarks, Hotspot-based runtimes (adoptopenjdk:8-jdk-
hotspot, adoptopenjdk:12-jdk-hotspot, adoptopenjdk:13-jdk-
hotspot) showed better results. HotSpot-based AdoptOpen-
JDK 8 showed better performance than later versions with
fop, luindex, pmd, and xalan tests.

These two experimental results show that the selection
of base images and tags have a large influence on the per-
formance of application containers. Developers sometimes
need to apply upgrades to the applications and OS images
they depend on due to security and feature enhancements,
however, the latest image does not always provide the best
performance.

B. Performance portability of containers

We tested the performance variation of DaCapo avrora
and UnixBench shell1 from February 14th to March 25th in
Figure 3. DaCapo avrora is a set of simulation and analysis
tools in a framework for AVR micro-controllers, which
exhibit a great deal of fine-grained concurrency. Shell1
consists of multiple iterations of a simple sort program writ-
ten in unix shell script, which launches multiple processes
with inter-process communication via unix pipe. Note that
we reconfigured the storage of the experimental node on
March 13th. As shown in the figure, DaCapo avrora showed
temporary performance degradation due to the reconfigura-
tion. In contrast, UnixBench shell1 did not show significant
performance changes in the event. Our experiments indicate
that the functional portability of container images is not
equivalent to performance portability, and containers do
not eliminate the need for performance engineering. The
performance of container images can vary depending on
external factors such as deployed environments and device
configuration. Developers still need continuous performance
evaluation to avoid the performance regression of container
applications.

C. Summary

In summary, our experiments in this section show the
following problems of container performance engineering.

• Latest image does not always provide the best perfor-
mance (Section II-A).

• Functional portability of container image is not equiv-
alent to performance portability (Section II-B).

Containerization is regarded as a lightweight virtual-
ization technology to show similar performance to bare-
metal environments. However, containerization raises the
new problems of performance engineering and we still
need performance testing of containerized workloads. In this



Category Image name Benchmark

Java adoptopenjdk, openjdk DaCapo [6],
ibmjava SPECjbb2015 [8]

Python python PyPerformance [9]

DB redis, memcached, YCSB [7],
cassandra, elasticsearch Rally [10]

Web httpd, nginx, tomcat, ApacheBench [11]
open-liberty DayTrader [12]

OS alpine, ubuntu, centos UnixBench [13]
Misc. hello-world Time for start up

Figure 4. Example benchmark images We use popular benchmarks to
evaluate the performance of container images in Docker Hub. For hello-
world, we measured the elapsed time to start a container and display a
“hello world” message on the console. We also examine multiple versions
of images. For example, we use three different versions of Python 3.

work, we aim to reduce engineers’ efforts to continuously
evaluate their container applications.

III. BENCHMARK IMAGES

This section describes workloads we examined to un-
derstand container workload performance implications. The
example workloads are listed by category in Figure 4.
Application developers often reuse container images for
language runtimes such as Java and Python. Many modern
microservices require DB container images such as Redis
and Memcached. Service providers often use Web (or Web
application) container images nginx and httpd as front-
end servers. We also add OS images such as Alpine and
Ubuntu, which are commonly used as base images.

Each benchmark in Figure 4 represents typical workloads
for evaluated programs. They are distributed in different
forms such as Java archive (.jar) files, Python packages,
and C source code. Thus, running a benchmark in a container
requires building a workload image with benchmark files
and existing container images. For example, we enhanced
Java images by copying .jar files to compose the DaCapo
and the SPECjbb2015 container images. The PyPerformance
image is built by installing a Python package manager
and the pyperformance package to the Python image. The
YCSB client uses an AdoptOpenJDK image with pre-built
.jar files from official releases. DayTrader and UnixBench
required additional Docker build stages for building source
code and configuration. The Rally image needs to contain
more than a gigabyte of test data to avoid downloading
during each benchmark run.

IV. FRAMEWORK DESIGN AND IMPLEMENTATION

In this section, we describe the concept and overall
design of our continuous containerized workload evaluation
framework. Then we explain the framework internals in
detail.

A. Concept and overall design of framework

As discussed in section II, our fundamental motivation
is to validate containerized workload performance on cloud
environments while tracking changes of a container image

and cloud infrastructure in real-time. We wanted to help ap-
plication developers and cloud users to identify performance
regression quickly and allow them to visualize detailed
metrics so they could easily understand the root cause.
Those motivations share some similarities with CI/CD tools
in terms of periodical container image evaluation, because
those tools are also continuously running test suites to verify
the correctness of code or its functionality. However, unlike
CI/CD, our focus is on the performance of production or
hybrid cloud environment rather than simply a test envi-
ronment. Unfortunately, there is no framework to satisfy
our motivations, so we proposed and built a framework to
support continuous performance evaluation for containers.

Figure 5 shows the overall design and architecture we
proposed in this paper. Our framework consists of a periodic
image builder, metrics collection, a benchmark driver, and
a visualization dashboard to track metrics and performance
variation. We define an image update event as the trigger to
initiate a full evaluation on our framework because this event
often represents an entry point to perform DevOps in a cloud
and is a natural point to integrate performance evaluation
with the CI/CD cycle. To simplify the evaluation cycle, the
framework checks for image updates periodically. Existing
monitoring systems for containers such as DataDog [14]
and Prometheus [15] enables similar metrics collection to
ours. However, our benchmark driver additionally provides
easy orchestration among benchmark containers and metrics
collection. The following sections explain each component
in detail.

B. Periodic image builder

Our periodic build system reuses Docker tags and an
external container repository to store a series of image
snapshots for post hoc analysis. We generate a unique ID
for each benchmark day and append it to the tags of every
container image. The tagged container images are pushed to
a repository and used when a user needs to reproduce an
experiment on a specific day. The Docker registry handles
the deduplication of identical disk images with different tags
to avoid consuming excessive disk space for large images
such as Rally. We assume a container image update does not
change greatly from the previous update.

For the example workloads, we re-build and track work-
load images every day using the Linux CRON daemon. Re-
building images takes less time than the first build because of
the Docker build cache system. We do not update benchmark
binaries. However, occasionally base container images need
to be updated for security and bug fixes. Currently, we do not
observe performance bottlenecks with the image repositories
but we may need to adopt efficient architectures to enhance
container image repositories such as BOLT [16] depending
on the size of image updates.
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Figure 5. Framework overview
C. Metrics collection container

Our framework provides a special container image
for metrics collection. The metrics collection container
uses Docker APIs to retrieve performance metrics and
provide output in JSON format. The Docker API in-
terface is often exposed as a special file such as
/var/run/docker.sock in Linux. The collected met-
rics include commonly used information ranging from a con-
tainer’s CPU, memory, disk, and network usage to system-
level metrics such as the number of page faults.

Users can also explicitly launch the collector container for
a specific monitored container by placing the image ID in
an environmental variable. The collector container transfers
the metrics to standard output or external loggers such
as Fluentd. Currently, our framework places the collector
container on the same host as the evaluated container, but
our collector image also supports remote hosts if the Docker
API interface of the evaluated container is exposed.

Our framework also contains special wrapper tools for the
Linux perf recorder and reporter for containers. Docker
allows us to capture Linux perf metrics specifying the
perf cgroups ID for a Docker container. The reporter
tool mounts a container image with the overlay filesystem
(as done by Docker) to enable Linux perf to traverse the
binaries and debug information inside a container image.

To display Java-level code information, developers need
to explicitly use an agent library for Java processes in-
side a container and obtain the mapping between symbol
addresses and JITed methods. Our reporter tool automat-
ically copies the mapping information for JITed code to
/tmp/perf-{PID}.map, which the Linux perf re-
porter looks up unresolved symbols. The PID number
must be a host-level process ID, and so, our recorder tool
automatically collects the mapping of container-level PID to
host-level by querying PID cgroups.

Note that workload images need to contain debug infor-
mation to get code-level metrics. From our observation, most
of the container repositories in Docker Hub also provide
such debug-friendly images as well as “slim” images. For
example, JDK images are used for debugging JVM runtimes
rather than JRE images. Benchmarks that require source
builds like UnixBench need to modify build options to add

"mynode": {
"CPE_FLUENTD_ADDR": "192.168.13.2:24224",
"CPE_REG_HOST": "www.repo.url",
"CPE_DOCKER_HOSTS": {

"localhost": "unix:///var/run/docker.sock",
"192.168.13.3": "tcp://172.17.0.1:23750"

}
}

Figure 6. Example node configuration This JSON string con-
tains the host for Fluentd (CPE FLUENTD ADDR), Docker registry
(CPE REG HOST), and benchmark runners (CPE DOCKER HOSTS).
Developers can modify and pass this JSON string to the framework to
manage the benchmark environment.

debug symbols. The technique introduced by Thalheim et
al. [17] can be helpful to reduce the size of such “fat”
container images, but a reduced image footprint potentially
affects performance characteristics.

D. Benchmark driver container

We created another special container image as the bench-
mark driver to provide simple container orchestration. The
benchmark driver allocates hosts for containers of bench-
marks and the metrics collector. Users must pass a bench-
mark script for minimum, single-node experiments, but
can also pass a list of available hosts and corresponding
Docker API interfaces to run multi-node experiments. Our
framework also allows users to specify a logger host through
a JSON string in a configuration file (Figure 6).

For multi-node experiments, the container allocation
policy uses a simple greedy algorithm. We randomly choose
unused hosts from the given host list for each benchmark
container. The benchmark fails if the benchmark script
attempts to launch more containers than available hosts. The
driver container records docker commands to easily repro-
duce and customize past experiments in post hoc analysis.

The benchmark scripts can reuse the asv library [2].
This library allows for the easy collection of elapsed time
and benchmark scores by parsing benchmark results from
standard output. Our framework also provides a helper class
library to define inter-container communication for bench-
mark runs. Overlay networks are sometimes a bottleneck for
certain workloads [18], so the framework also allows binding
to host network ports. Figure 7 shows example Python code
for DayTrader.



ports ={’9080/tcp’: ’9080’, ’9443/tcp’: ’9443’}
dt_img = conf.get_image(’daytrader’)
bd = BenchmarkDescription("daytrader", ...)
dt = DockerMon(ContainerRunner(dt_img, bd, ports=ports))
time.sleep(10)
bd2 = BenchmarkDescription(’client_stdout’, ...)
jm_img = conf.get_image(’jmeter’)
args = [’-JHOST=’ + dt.co.ip(), ’-JTHREADS=4’]
jmeter = ContainerRunner(jm_img, bd2, args, locallog=True)
dm = DockerMon(jmeter)
jmeter.join()
log = jmeter.log()
dm.join()
dt.stop()
... # parse log

Figure 7. Example benchmark code for DayTrader DayTrader requires
server and client containers. The class library helps configure two containers
through the ContainerRunner class and metrics collection with the Docker-
Mon class. The BenchmarkDescription class enables users to add additional
records for metrics collection to help understand voluminous logs.

E. Visualization of performance and resource metrics

Our framework extends asv [2] to provide the visualiza-
tion of performance metrics. We implemented the dashboard
with D3.js [19] to display the execution time of all the
benchmarks as end-to-end views (see the top of Figure 8).
When a user clicks a data point on a line chart, this view
shows the stacked area chart which represents the detailed
performance of the clicked cloud environment. Users can
also filter lines by one or multiple items such as providers
and locations of containers. In the case that our framework is
not able to collect the performance of all of the benchmarks,
the view draws the data point of a line chart for a benchmark
execution as a cross instead of a dot to represent the failure.
Since these line charts include the execution time of all
benchmarks, this view includes the time ratio of benchmarks
using pie charts when the user clicks a data point or cross
when viewing the second type of line chart.

By clicking a benchmark name on each view, the dash-
board switches its view to the asv detailed view that visu-
alizes the performance of the selected benchmark by line
charts or bar charts. This view can filter performance data
by image tag, version, and host node of a container. Also,
we visualize the detailed resource usage using Kibana [20]
to assist with detailed performance analysis of computing
resource usages and decision making for containerized ap-
plications. We add a link to this Kibana dashboard to the
detailed performance view, which allows users to analyze
performance bottlenecks with resource usage.

F. Summary and Extension for new workloads

Developers can add new workloads by registering a
Dockerfile to periodic image builder (Section IV-B) and
benchmark scripts to benchmark driver (Section IV-D). Our
framework provides a JSON file for benchmark registration.
Periodic image builder and benchmark driver look up the
file and automatically execute all the image builds and
benchmark runs one by one. Developers can reuse metrics

collection container and class libraries (Section IV-C and
IV-D) to write benchmark scripts. After the benchmark
finishes, the driver container collects benchmark results such
as elapsed time and custom benchmark metrics. Our frame-
work finally visualizes the collected results as described in
Section IV-E. We follow this development flow to build our
example workloads in Section III.

V. CASE STUDIES

In this section, we describe a performance analysis of
container images with our framework. To show the effective-
ness of our framework, our experiments focus on answering
the following questions. 1) How did base container images
modify the performance characteristics of benchmarks? 2)
What was the reason for different performance characteris-
tics between container images with the same benchmark?

We evaluated our collection of benchmark images in
Figure 4 from February 14, 2020 to March 25, 2020. During
the experimental period, the node reconfigured storage on
March 19th. Our experiments ran on a cloud instance in
AWS EC2 with four virtual x86 64 CPUs, 16 GB RAM, and
100 GB attached volume. The host operating system of all
nodes is Ubuntu 18.04LTS running Linux 4.15 and Docker
engine 19.01. We ran all experiments on a single-node mode
to eliminate the influence of network infrastructure.

A. Overall comparison of container images

As typical DB workloads, we evaluate Cassandra 3.11.5,
Redis 5.0.7, Memcached 1.5.20, and Elasticsearch 2.4.1.
We use YCSB for Cassandra, Redis, and Memcached and
Rally PMC for Elasticsearch. Our experiments with YCSB
measure the total elapsed times for load (100% insert),
workload A (50%/50% read/write), workload B (95%/5%
read/write), and workload C (100% read). Rally PMC per-
forms textual analysis on open access technical articles. We
used default benchmark configurations, for example, YCSB
operates 1000 records as the workloads. The experimental
results of the DB images are in Figure 9 (A) and (B).
The disk reconfiguration caused a performance degradation
with Rally. The performance degradation with Rally resulted
in timeout and throughput was reported as zero. However,
the performance recovered to the same level as before the
disk reconfiguration. In contrast, YCSB did not show per-
formance degradation due to the reconfiguration. However,
Cassandra experienced timeout failures several times. Redis
and Memcached showed steady performance.

We next conduct performance benchmarks of web-related
images. Web benchmarks require client images for the stress
testing of Web images. Our ApacheBench runs four client
threads that retrieve a plain HTML file 10,000 times from
unmodified server images of httpd, nginx, and Tomcat.
We use the binary for ApacheBench within the httpd
image. For DayTrader, we built a JMeter image and ran



Figure 8. End-to-end view. Developers can check the anomaly behavior of benchmark harness and overview an overall trend before deep-dive analysis
like Section V.

four client threads to access a Web application with Derby-
backed DayTrader 8 built with Open Liberty. We selected
the image of Open Liberty with the OpenJ9 version 8
runtime. The results of Web workloads are shown in Figure 9
(C) and (D). ApacheBench showed steady throughput for
every container image, while DayTrader showed the largest
performance variation among our benchmarks. We observed
that nginx showed more than 3x throughput improvement
over httpd with the default configuration.

Our OS and Docker related workloads are UnixBench
and hello-world. For UnixBench, we measured the total
throughput score of 12 workloads with Alpine, Ubuntu,
and CentOS. The score is calculated as the improved ratio
from the baseline result. We also measured the elapsed time
to display the message “hello world” with the hello-world
image, which can approximate the start up and shutdown
overhead of Docker containers. The results of UnixBench
and hello-world are presented in Figure 9 (E) and (F). The
storage reconfiguration largely affected the throughput of
both benchmarks. In particular, filesystem-related workloads
in UnixBench such as fstime, fsbuffer, and fsdisk showed
large performance variation due to the reconfiguration.

Our final experiments tested different JDK images and
multiple versions of Python with SPECjbb2015, DaCapo,
and PyPerformance. The results in Figure 9 (G), (H), and
(I) show that the Python image update improved the perfor-
mance of PyPerformance. For DaCapo, IBM JDK had the
best performance. The latest image of AdoptOpenJDK uses
HotSpot-based runtimes as well as OpenJDK, while IBM
JDK uses a different runtime.

B. Comparison of container images

1) IBM JDK vs. AdoptOpenJDK: We analyzed the per-
formance characteristics of the latest container images for
IBM JDK and AdoptOpenJDK with DaCapo. The selection

of JVM often affects the performance of Java applications
including common data analytics workloads like SQL-on-
Hadoop [21].

Figure 10 shows the CPU usage for DaCapo avrora with
IBM JDK and AdoptOpenJDK. We used default configura-
tions for each JDK in this experiment, but the IBM JDK
finished the benchmark iteration faster than AdoptOpenJDK
due to high CPU utilization.

Hot functions identified with perf metrics in our frame-
work reflected the concurrent properties of avrora (Fig-
ure 11 and 12). The IBM JDK used more CPU time to
execute the fast path of entering object monitors, which is
the primary synchronization primitive of Java applications.
However, AdoptOpenJDK frequently executes other parts of
avrora code except for kernel spinlocks instead of user-level
synchronization. These two results mean that the low CPU
utilization of AdotpOpenJDK came from relatively frequent
CPU yields in object monitors. The implementation of the
object monitor is full of heuristics, which, in our experience,
makes performance prediction difficult without testing.

This example analysis indicates that the performance
portability of container images is challenging especially
for concurrent applications. Many container applications
cannot avoid this because they are often built on type-safe
language runtimes employing garbage collection threads. We
recommend that developers test the concurrent performance
of their Java containers in pre-production environments.

2) Alpine vs. CentOS: Considering the results of
UnixBench shell1 benchmark in Figure 1, we analyzed the
performance implications of the two base OS images, Alpine
and CentOS. Despite the simplicity of the benchmark pro-
gram, Alpine completed 50% more operations than CentOS.
Alpine also used less CPU than CentOS (Figure 13), and
thus, we can obtain even better throughput by increasing
the number of threads for this benchmark.
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Figure 9. Performance of benchmarks with different container images Note that each total time and throughput are the total values of workloads
defined in each benchmark. For example, the PyPerformance result is the total time of 47 Python workloads.

Figure 10. CPU usage for DaCapo.avrora ibmjava:latest finished faster
than adoptopenjdk:latest

Figures 14 and 15 show the CPU usage differences
between CentOS and Alpine. Alpine uses musl, a libc-
compatible system library, but the hot functions for these
experiments are slightly different from CentOS. CentOS
spent more CPU time on string comparison and memory
page management, which did not even show up as hot func-
tions for Alpine. A small memory footprint can reduce the

Figure 11. Hot functions in ibmjava:latest

Figure 12. Hot functions in adoptopenjdk:latest

overhead of memory page management, but the difference
in hot functions shows that musl has different behavior than
libc in CentOS for this workload.

VI. DISCUSSION AND FUTURE WORK

In this work, our scope is relative performance of con-
tainer images, and thus, please note that our analysis covers



Figure 13. CPU usage for UnixBench.shell1

Figure 14. Hot functions in alpine:latest

only limited aspects of the performance characteristics of
general container workloads. We do not cover many inter-
esting aspects to understand absolute performance charac-
teristics of containers. For example, all of our experiments
run on virtualized environments, which can cause unpre-
dictable performance fluctuation due to noisy neighbors and
virtualization overheads. Also, container runtime and the
Linux kernel heavily affect the performance of container
workloads. Our experiments run on a single node, and
containers communicate each other through local networks
although our framework supports multi-node benchmarks.
Container images inherently reuse application binaries, and
thus, similar performance characteristics we found may or
may not occur on non-containerized workloads. Answering
the above can be important for container performance re-
search and our framework can be reused for these future
work.

VII. RELATED WORK

CloudBench [3] and CloudPerf [4] are performance test
frameworks for cloud-based deployments including dis-
tributed environments. CloudPerf also provides workload
modeling and dynamic event injections, which our frame-
work does not provide. asv [2] and ReBench [5] are tools
for generic benchmarks. However, they do not focus on per-
formance characteristics of container images, and hence they
do not have any functionality for periodic image building nor
do they have specialized containers for metrics collection.
asv also supports result visualization but does not provide
summary views we described in Section IV-E.

Camargo et al. propose a performance test framework
to break down individual service performance for a micro-
service application [22]. They focus on throughput and

Figure 15. Hot functions in centos:latest

elapsed time for performance analysis and do not collect
other metrics such as CPU usage and Linux perf.

Our framework can also be regarded as a benchmark
collection for testing complex cloud applications. Cockroach
Labs provide a benchmark collection with iPerf, sysbench,
TPC-C, etc. in their performance report [23]. Our example
workloads use a different set of benchmarks because our
focus is to compare container images, not cloud environ-
ments. However, we can extend our framework to support
their benchmark collection as well.

VIII. CONCLUSION

In this paper, we described the design and implementation
of our continuous performance test framework for contain-
ers. The framework consists of a periodic image builder, a
benchmark driver, metrics collection, and a visualization tool
to aid with the performance characterization of container im-
ages. We also demonstrated our framework with case studies
of performance characterization of nine popular benchmarks
and sixteen container images. The demonstration led to the
discovery of implications for container development and
testing: performance variation due to deployed environments
and characteristics of Alpine and JDK images.
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