
Column Cache: Buffer Cache for Columnar Storage
on HDFS

Takeshi Yoshimura
IBM Research - Tokyo

Tokyo, Japan
tyos@jp.ibm.com

Tatsuhiro Chiba
IBM Research - Tokyo

Tokyo, Japan
chiba@jp.ibm.com

Hiroshi Horii
IBM Research - Tokyo

Tokyo, Japan
horii@jp.ibm.com

Abstract—Columnar storage is a data source for data an-
alytics in distributed computing frameworks. For portability
and scalability, columnar storage is built on top of existing
distributed file systems with columnar data representations such
as Parquet, RCFile, and ORC. However, these representations fail
to utilize high-level information (e.g., columnar formats) for low-
level disk buffer management in operating systems. As a result,
data analytics workloads suffer from redundant memory buffers
with expensive garbage collections, unnecessary disk readahead,
and cache pollution in the operating system buffer cache.

We propose column cache, which unifies and re-structures the
buffers and caches of multiple software layers from columnar
storage to operating systems. Column cache leverages high-level
information such as file formats and query plans for enabling
adaptive disk reads and cache eviction policies. We have devel-
oped a column cache prototype for Apache Parquet and observed
that our prototype reduced redundant resource utilization in
Apache Spark. Specifically, with our prototype, Spark showed
a maximum speedup of 1.28x in TPC-DS workloads while
increasing Linux page cache size by 18%, reducing total disk
reads by 43%, and reducing garbage collection time in a Java
virtual machine by 76%.

I. INTRODUCTION

As data volumes increase, large-scale distributed data pro-
cessing systems have been progressively more used in many
data-centric applications. Hadoop is a de facto standard of
scale-out architecture in the massive data processing world,
and these days, various workloads including batch process-
ing and interactive analytics such as machine learning and
relational query processing are running on top of Hadoop
ecosystems. Due to changes in the characteristics of these
applications, it is increasingly important to consider how data
is managed in the system and what data format is optimal for
applications in order to swiftly deal with massive data.

In terms of data storage format for analytical read-mostly
query processing, columnar data representation has significant
advantages over the row-wise format in many aspects as
studied in RDBMS [1]. For example, columnar storage can
filter unused columns when loading large data into memory.
This feature increases the chance to parallelize data processing
on in-memory computing. Dremel [2] opens up columnar
storage in massive data processing systems, and successors
such as Parquet [3], RCFile [4], and ORC [5] are utilized in
many systems today.

Since data processing systems consist of multiple software
layers (e.g., operating systems (OSs), frameworks, runtime,

Parquet
metadata

File
checksum

Parquet data Parquet
data

Local
file

HDFS
file

Parquet

HDFS HDFS file

Local
file

Local
file

Local
file

Local
file

Local
file

Local
file

Local
fileEXT4

Disk blocks

Abstraction level

Physical disk offset

JVM
Java
Obj.

Java
Obj.

Java
Obj.

Java
Obj.

Java
Obj.

Java
Obj.

Java
Obj.

Java
Obj.

Page cache

Fig. 1. Nested data abstractions in Parquet.

and many libraries), data itself is also abstracted in multiple
layers. We call this phenomenon nested data abstractions in
this paper. While multi-layered data management systems try
to achieve good performance with their own policies, this
optimization often has a negative impact on the performance of
the application. In the case of the Parquet example, shown in
Fig. 1, applications must go through multiple data abstraction
layers to retrieve underlying data stored in local files. In this
process, OSs generally retain a page cache for the files, the
Java virtual machines (JVMs) preserve a heap for the buffered
input stream, the Hadoop distributed file system (HDFS) [6]
may keep the data in memory for repeated access, and so
on. These inefficient and non-coordinated data buffering and
caching logics cause the following three problems.

First, the multiple software layers for data management use
redundant buffers. In big data processing, increased memory
usage by redundant buffers can cause performance issues.
Moreover, on columnar storage written in Java, redundant
buffers also lead to frequent JVM heap memory alloca-
tions, which increases the CPU time of garbage collections
(GCs) [7], [8].

Second, common heuristics in OSs causes inefficient disk
accesses for columnar storage. Although the columnar storage
has high-level information such as file formats, the underlying
OS does not leverage the information for disk reads. We
observed that heuristics in block I/O management degrades
the disk I/O throughput by splitting block I/O requests into
the configured length of disk readahead, which is too small
for column reads.

Third, columnar storage can pollute the system-wide cache
in OSs. The primary users of columnar storage on HDFS such



A data analytics executor process

Columnar storage

HDFS client

Data analytics core

Page cache

Local filesystem

Column
cache

New data flowExisting data flow

Fig. 2. Column cache data flows in a data analytics. Data flows of a
column read after the data analytics obtains a file handler from HDFS servers
is shown.

as Spark [9] and Tez [10] utilize page cache in OSs for their
shuffle processing. Columnar storage also has two different
access patterns in its data: main data is infrequently accessed,
while metadata is frequently accessed. Even so, page cache
in OSs manages them with the same cache eviction policy.
In particular, main data accesses in columnar storage pollute
the page cache and then slow down other file reads in the
shuffle processing of data analytics. Data analytics provides
rich information on the order of data reads in advance as
query plans, but the cache eviction policy cannot leverage such
information.

In this paper, we present a new buffer cache, column cache,
to solve the major drawbacks of nested data abstractions.
As shown in Fig. 2, column cache unifies and re-structures
redundant buffers and caches in the multiple layers into a
single software module. Regardless of the unified architecture,
column cache does not need to modify HDFS servers and OSs.
Column cache uses direct I/O [11] to read local files without
page cache interleaving. It preserves the fault tolerance that
HDFS servers and the underlying OS offer.

Column cache stores main data and metadata in different
ways on the basis of high-level information such as file
formats and query plans. The column cache reads the exact
size of main data in accordance with the file formats. With
the information of query plans, column cache estimates the
number of scans for each main data in advance. Then, it can
release the cached main data immediately after finishing the
number of main data scans. Column cache monitors system
memory and keeps the cached data in memory as long as
possible if the system memory has enough space for page
cache in the OS.

In this work, we optimize Parquet file reads in Spark on
HDFS. We modified 88 lines of code in Spark to call our
custom Parquet reader and to pass query plans to column
cache. We believe we can easily extend column cache to
support other columnar formats such as ORC, which is often
used with Tez. We do not assume any unique features of
Spark and Parquet such as supports for nested data structures
(originally introduced in Dremel [2]). Moreover, we require
less or no effort for the backward compatibilities because
HDFS and Parquet already have well-defined file formats and
communication protocols to support older versions of them.

Our evaluation showed that column cache exhibited better
usages of computing resources: it increased page cache size
by 18%, reduced total disk reads by 43%, and reduced GC
time by 76% in the best cases of multi-stream TPC-DS [12]
with a scale factor of 1,000 GB. As a result of better resource
utilization, we observed up to 1.28x speedups on six-node
clusters with 32 CPU cores and 128 GB RAM.

The first contribution of this paper is to analyze the draw-
backs of nested data abstractions in Parquet. Although the
basis of our initial motivation is similar to HBase layered
design issues that existing work has pointed out [13], we
provide a more detailed study of the unique drawbacks due
to losing high-level information in terms of the buffer and
cache efficiency in columnar storage.

The second contribution of this paper is to provide a solution
to inefficient buffer and cache in Parquet due to its nested data
abstractions. We found that by using the rich information of
columnar storage and data analytics workloads, column cache
could predict most of the sizes and patterns of disk reads,
unlike other buffer caches for general workloads. The major
difference from the existing functionality that bypasses OS
in database [14], [15], [16] is that column cache also avoids
memory pressure in OS page cache that data processing other
than reading columnar storage uses. As a result, column cache
shows better performance in shuffle-heavy queries in Spark
SQL.

The third contribution is to show and solve the issues
specific to JVM runtime. Columnar storage frequently allo-
cates JVM heap memory and incurs time-consuming GCs.
Our prototype results imply that buffer and cache schemes in
the columnar storage are also a cause of GCs in Spark SQL,
known as a CPU bottleneck workload [7].

In Section II, we analyze and describe examples of concrete
issues pertaining to nested data abstractions on Parquet as our
initial motivation for this work. Then, Section III shows the
design and concept of column cache for efficient columnar
storage on distributed file systems. Section IV reports the
implementation details of column cache for Parquet on top
of HDFS. We evaluate column cache with Spark 2.2.0 on our
microbenchmark and TPC-DS in Section V. Related work is
presented in Section VI. We conclude with a brief summary
in Section VII.

II. ANALYSIS OF PARQUET FILES

In this section, we analyze file access patterns and discuss
page cache effects when Apache Spark runs TPC-DS with a
1 TB data set (a scale factor: 1,000 GB). We use Apache
Parquet, a popular columnar format for Spark applications. In
our analysis, five slave servers of 32 virtual cores store the
data set with the format and process SQL with their 128 GB
RAM and 1 TB disk.

A. Access Patterns

First, we identify typical patterns to access files formatted
with Parquet. A Parquet format is a columnar format on top
of HDFS, which stores an HDFS file as multiple OS files



0 20 40 60

Elapsed time (sec)

0

50

100

150

200

250
H

D
FS

 b
lo

ck
 f

ile
s

Fig. 3. Access pattern of Parquet files. The access patterns of 250 Parquet
files are gathered and stacked. Gray line represents time for sequential accesses
of a file and black circle represents non-sequential accesses.

in a directory with block numbers (e.g., blk 123456). We
added instruments into the Linux kernel to record page cache
behavior for a file descriptor and an offset in each file access
and ran query q69 of TPC-DS a representative query that
heavily loads table records stored with the Parquet format on
HDFS.

Fig. 3 shows durations of file accesses for 250 files in an
HDFS file formatted with Parquet while running the query q69.
A gray line and a black circle respectively represent sequential
and non-sequential access. We sorted the two types of accesses
with block numbers of an HDFS file and access time. We
observed three characteristics from this analysis.

First, Spark reads files with non-sequential access only at
the start and with sequential access almost always. In the non-
sequential access, we found that Spark scans the footer region
in a Parquet file and determines its structure. In the Parquet
format, records are stored in a file in columns rather than rows.
The first stored data is the first column of the first record and
the second stored data is the first column of the second record.
The data of the second column follows all the data in the first
column. The footer of a Parquet file informs offsets of the
boundaries of columns. By using the offsets, Spark can avoid
loading unnecessary data.

Even though Spark attempts to load only necessary data
in a Parquet file, the OS may load unnecessary data in
the file through speculative disk reads. For example, with
readahead configuration, the OS reads more on-disk data than
the application requests. Large readahead will improve the
performance of sequential access, but increase redundancy of
file reads.

Second, Spark reads a Parquet file only once in most cases.
As shown in Fig. 3, once a sequential access finishes for a file,
no more accesses happen for that file. We frequently observed
this phenomenon not only in the query q69 but also in the
other queries of TPC-DS.

Because Spark reads a Parquet file only once in processing
a query, page cache for the file rarely work performance.
In typical data analytics workloads, sizes of scanned tables
in a query are larger than system memory. Therefore, cache
pollution will occur by refreshing the page cache with Parquet

0
10
20
30
40
50
60

q2
3a

q2
3b

q1
4a

q1
4b q1

6
q6

4
q9

4
q9

5* q8
0

q6
9El

ap
se

d 
tim

e 
(m

in
)

TPC-DS queries
(a) Elapsed time

heap=24GB
heap=48GB
heap=80GB

0
10
20
30
40

q2
3a

q2
3b

q1
4a

q1
4b q1

6
q6

4
q9

4
q9

5* q8
0

q6
9

D
is

k 
re

ad
s (

TB
) 

TPC-DS queries
(b) Total disk reads

heap=24GB
heap=48GB
heap=80GB

0

200

400

600

0 4 8 12 16 20 24 28 32 36 40 44U
se

r m
em

or
y (

G
B)

Elapsed time (min)

(c) User memory in q23a

heap=24GB heap=48GB heap=80GB

0

200

400

600

0 4 8 12 16 20 24 28 32 36 40 44

Pa
ge

 ca
ch

e 
si

ze
 (G

B)

Elapsed time (min)
(d) Page cache in q23a

heap=24GB heap=48GB heap=80GB

Fig. 4. Performance effects of heap configurations. (a) and (b) show the
processing time and the total bytes of disk reads for ten queries. (c) and (d)
show the time-series trace of user memory and page cache in query q23a.
Query q95* caused out-of-memory errors in a 24-GB heap configuration.

files, which will not be reused.
Third, Spark accesses multiple Parquet files in parallel. In

this experiment, we observed that Spark allocates 32 tasks to
scan 32 Parquet files at the same time. Spark provides the
number of virtual cores as a configuration to specify its task
concurrency and we configured the value 32 to be the same
as the number of cores. This task concurrency is important
for data processing in Spark. After data is loaded, Spark
performs CPU-intensive operations in query processing, such
as sorting and grouping records. Therefore, tuning guides of
Spark recommend using the same number of physical cores
as the number of virtual cores.

However, if Spark loads Parquet files in parallel, memory
overheads increase. In the software stacks to load a Parquet file
in Spark, there are several buffering mechanisms for the file: a
Java class of a Parquet reader buffers to construct records, an
HDFS client buffers to calculate a checksum for each block,
and the OS buffers as page cache for future accesses. These
memory overheads increase depending on the task concurrency
of Spark and pollute the page cache as a result.

The above three observations indicate that cache pollution
frequently happens when Spark reads Parquet files with un-
necessary data loading, mostly meaningless page caching, and
multi-threaded and multi-layered buffering. Spark and Parquet
libraries reuse the existing mechanisms to load files, such as
HDFS and OSs, which do not work efficiently to load large
Parquet files.

B. Page Cache Effects on Spark SQL

As discussed in Section II-A, reading large Parquet files
pollute the page cache in the underlying OS. The problem is
that the cache pollution affects not only Parquet file reads but
also other file operations in the entire system, such as Spark
shuffle processing, which uses local files as temporal storage
and relies on the page cache for its performance.

We analyze the performance effects of page cache on Spark
by changing its heap memory configurations and comparing



Master node

Slave node

Spark driver

Name node

Data node

Disk

Slave node
Spark executor

Column cache
Column cache

Broadcast
query plans

Spark executorQuery planner
Column cache

Caching
(§3.5)

Buffering
(§3.4)

Data abstraction
mapping (§3.3)

Data node

Disk

Slave node
Spark executor

Column cache
Data node

Disk

Spark SQL

SQL queries

Fig. 5. Overview of column cache.

the performance and resource usage. We run ten TPC-DS
queries with a 24, 48, and 80 GB JVM heap for Spark on
the same cluster as the experiment in Section II-A. Spark can
use raw heap memory outside of the JVM heap for shuffle
processing, and we set 48 GB of the raw memory in all
configurations. Using raw memory, a large portion of the JVM
heap is used for buffering HDFS and Parquet data.

Fig. 4(a) shows how much these configurations affect the
overall performance of our experiment. Fig. 4(b) reports the
total bytes of disk reads in the six nodes. We found that disk
intensive queries degraded performance by up to 14 minutes
when changing the 48 GB heap to 80 GB. In the 80 GB heap,
we often observed larger disk reads due to memory pressure
in page cache. In contrast, the 24 GB heap caused runtime
garbage collections due to memory pressure in JVM heap.

For ease of understanding, we also show the time-series
trace of user memory and OS page cache in Fig. 4(c) and
(d). Larger heap configuration caused higher memory pressure
that evicted the page cache. In Spark, a symptom of shuffle
processing appears as a spiky increase of user memory con-
sumption (e.g., at 16 minutes in Fig. 4(c)). Fig. 4(d) shows
the page cache decreases after the shuffle processing starts.
The results of our experiments indicate that reduced memory
footprint in Parquet files should lead to significant speedups in
disk-intensive queries due to lower pressure in the page cache.

III. COLUMN CACHE

Column cache is a new buffer cache that overcomes the
drawbacks of nested data abstractions in columnar storage
on distributed file systems. We utilize it to solve the three
problems described in Section II. Specifically, Parquet readers
can reduce redundant buffers with data abstraction mapping
(Section III-C), column cache simplifies and optimizes block
I/O management (Section III-D), and cache pollution decreases
as a result of our cache management (Section III-E). In this
section, we focus on Parquet files as a primary target of
column cache and Spark as the target of a parallel distributed
computing framework.

A. Architecture

As shown in Fig. 5, column cache runs as a software
component in user processes for a master and slaves. In the

slaves, Spark executors call column cache to read Parquet files
on HDFS instead of the default components. Column cache
recognizes the formats of HDFS and Parquet files to read
them without speculative disk reads in the OS. We create a
buffering and caching mechanism for column cache without
using the existing page cache of OSs. Column cache retrieves
query plans in the master and uses the information in slaves
as described in Section III-E. In data parallel computing, slave
processes often scan different data splits that are not shared,
and so, column cache does not share cached data among
processes.

Column cache works only to read Parquet files and does not
modify the others. As a result, Spark can use OS page cache to
perform shuffle processing and read files of different formats
as usual. In addition, column cache does not require any
modification in HDFS servers such as Name and Data nodes.
Therefore, column cache is available without any restarts of
such storage servers. This design choice is essential since
users hesitate to modify and restart existing storage servers
to optimize workloads on running data clusters.

B. Overview of Buffer Cache Policy

Once column cache uses a memory buffer to read a file, it
keeps it as a disk cache for requests to read the same file in
the future. Unlike page cache in OS, column cache associates
a range key between the beginning and the end of the offsets
of cached file content to a memory buffer. Thus, a key has
three elements: a file path, an offset in the file, and a length
of a buffer. Every access to the offset within a cached range
key returns cached data in column cache. If a Spark executor
requests a disk region that overlaps with a cached memory,
column cache issues disk reads only for the non-overlapped
region and reuses the overlapped region in the cache.

Column cache manages disk cache with different strategies
for two types of access patterns in Parquet files as described
in Section II-A: for metadata regions and for the others.
Column cache never evicts disk cache for metadata regions
although it does evict cache for the others with a cache eviction
policy described in Section III-E. A Spark executor accesses a
metadata region of a Parquet file multiple times if the Parquet
file is large. On the other hand, a metadata region is small
because it contains only offsets for column data, data types,
the length of metadata, and magic bytes. Therefore, we believe
that memory of disk cache for metadata regions will not cause
system memory pressure.

Column cache does not cache files for an HDFS checksum,
which corresponds to an HDFS file as shown in Fig. 1. Column
cache reads an HDFS file and then stores memory buffers
for the file in the disk cache. Although verification with its
checksum is necessary to read an HDFS file, this verification
is redundant to read cached memory buffers. An advantage of
user-level caching of Parquet files in column cache is that it
reduces such redundant verification.



Layer API
Parquet ParquetFileReader.readNextRowGroup
HDFS (data) BlockReaderLocal.read
HDFS (csum) BlockReaderLocal.fillBuffer
local FS pread

Fig. 6. Parquet/HDFS/Linux APIs to be tracked.

C. Data Abstraction Mapping

Column cache allocates the exact size of memory for each
column in a row group of a Parquet file. In general, the
redundancy of disk buffering is derived such that memory
must be allocated before disk reads even though disk reads
are necessary to calculate the required size for the memory. In
contrast, with the format information of a Parquet file, column
cache can allocate the exact size of memory for each column
before the actual disk read.

Offsets in a Parquet file are not offsets in an OS file. A
Parquet file is an HDFS file that consists of multiple files.
With only the offset ranges of a Parquet file, column cache
cannot allocate memory before disk reads.

Column cache resolves a mapping from a column to local
files by communicating with a Name and Data node of
HDFS. In typical use-cases of Parquet, distributed computing
frameworks calculate the offset ranges of a Parquet file to be
scanned in advance of actual scans. Column cache acquires
these offset ranges and sends them to an Data and Name node.
They return the actual paths, offsets, and lengths of local files
to be read, and then the column cache can allocate the exact
size of memory for local file reads to read a column. Column
cache keeps the data mapping in memory to avoid redundant
server inquiries.

Fig. 6 shows example APIs that read local files of a
Parquet file. When column cache calls the readNextRowGroup
method of ParquetFileReader class to read records, the HDFS
client module performs two reads of HDFS files, one for a
block file (BlockReaderLocal.read) and one for a checksum
file (BlockReaderLocal.fillBuffer). Thus, an HDFS client calls
pread on the block and checksum file for an HDFS file read.
Column cache allocates the exact size of memory for the two
file reads beforehand.

D. Explicit Disk Buffering

Column cache uses direct I/O [11] to bypass page cache
in an OS so as to avoid unnecessary disk readahead in the
page cache. The biggest advantage of direct I/O is that it
does not break file systems guarantees, such as file system
journaling and access controls. Specifically, direct I/O does not
merge or split block I/O requests from the user’s applications.
Therefore, we emulate a raw block I/O request within the file
boundaries of each single read-variants system call invocation.
Underlying block device drivers eventually digest the requests
into a physical I/O that is as large as possible. Direct I/O
requires programs to obey alignment rules in Linux and file
descriptors with special open flags, but the limitations are
moderate for implementing column cache. A widely used

optimization in HDFS, short circuit local reads [17], allows
us to retrieve the local file descriptors and offsets for HDFS
block and checksum files. Note that column cache retrieves
remote blocks as current HDFS does, but it also puts data in
the cache as well as local data.

Column cache also leverages the information of file formats
to aggregate multiple read system calls into one. Specifically, it
aggregates physically consecutive columns to be scanned. The
simple block I/O in direct I/O allows us to increase physical
disk throughputs simply by aggregating the system calls.

Initial disk reads to obtain the structure of a Parquet file
require a different buffering strategy, since the information of
file formats is not available yet. At the initial read, column
cache reads a disk block size (e.g., 4 KB) of data from a
Parquet file to retrieve the offset and length of the metadata
region. After the initial read, we perform a single read system
call with the length and the offset of the metadata region.

One thing to note here is that we do not provide asyn-
chronous and prefetch mechanisms for file reads, unlike page
cache in the OS. The OS may aggregate (or split) multiple
block I/O in different threads, but this is not necessary for
typical use cases of Parquet files. We assume that column
cache callers are data-parallel executors such as Spark, which
attempts to read separated data regions in parallel. Therefore,
asynchronous and prefetch mechanisms potentially cause re-
dundant thread creations and latencies for waiting for irrele-
vant block I/O.

E. Cache Management

Column cache reduces cache pollution and keeps system
memory less pressured by tracking states of each buffer cache
entry. We use reference count, weak reference count, and last
accessed time for tracking these states. Unlike existing work
for the least-recently-used, least-frequently-used, and other
variants (e.g., [18], [19]), our cache management is based on
incoming data accesses within query plans.

The initial state is Loading, in which column cache fetches
data from local or remote storage. Column cache determines
the Loading state if the reference count is larger than zero.
The reference count is incremented before the actual disk read
starts and decremented after it finishes. Column cache does not
release the memory at the Loading state.

The second state is Reserved, in which column cache keeps
a column in memory until incoming queries consume it. We
use weak reference counts for each column to manage the
Reserved state. The weak reference count is calculated with
query plans, which contain information about which order of
tables is scanned in a query. Column cache prioritizes which
columns should be kept in memory with the frequency of
remaining scans each column has. Column cache first releases
the least-frequently-used cache at the Reserved state if the
system memory is pressured. We also use the least-recently-
used policy with the column’s last accessed time if two have
the same priority.

The third state is Cached, in which column cache keeps
column data in memory for potential iterative reuse during



API (parameters) Return Caller (Spark)
extractPlan(Root*) Map* Driver
broadcastPlan(Map*) Void Driver
receivePlan(Map*) Void Executor
parsePlan(Parquet Path) Void Task thread

Fig. 7. APIs for ingesting query plans. Map* represents the mapping of
a Parquet file path and Parquet filters. Root* represents the root node of a
query plan that is made as a direct acyclic graph. This figure also lists API
callers when Spark uses column cache.

a data analytics session. The Reserved cache becomes the
Cached state if the weak reference count reaches zero, which
mean that all the running queries do not scan the cache.
Column cache monitors amounts of free system memory so
that cache in the Reserved or Free state does not evict page
cache in the OS. In our prototype, we set 80% of system
memory usage as a threshold to start shrinking the column
cache. Column cache also provides the upper limit of the
Cached memory for use in specific environments such as those
in which cluster schedulers exist (e.g., YARN).

IV. IMPLEMENTATION

We prototyped column cache in Parquet 1.9.0 on Hadoop
and HDFS 2.7.3 on OpenJDK 1.8. We selected Java and Scala
for our prototype development because Parquet, Hadoop, and
Spark are written in these languages. We implemented column
cache with 3920 lines of Java and 2033 lines of Scala. We
modified 88 lines of Spark 2.2.0 to call column cache.

A. Column Cache APIs

Column cache provides APIs for Parquet file reads and for
ingesting query plans. These APIs wrap existing APIs. Thus,
existing users of Parquet files can use column cache simply
by changing API calls to the column cache wrappers. We also
define additional APIs in which data analytics frameworks can
pass their query plans to column cache.

Fig. 7 shows four APIs that column cache uses to ingest
query plans. A query planner in parallel distributed computing
frameworks first calls extractPlan with the root of the tree that
represents the query plan. Then, extractPlan extracts pairs of
scanned HDFS files and filter operators for a Parquet read. The
broadcastPlan and receivePlan APIs broadcast and receive the
extracted map with (de)serialization. Scanner/filter task threads
call parsePlan to request column cache to count the number
of incoming scans of each region in the given HDFS file.

B. Explicit Memory Management

The cache management discussed in Section III-E requires
explicit, raw (i.e., C language level) memory management
because we use Java/Scala for the development of column
cache. JVM does not return JVM heaps to the OS unless GCs
occur. To this end, column cache directly calls anonymous
mmap/munmap to allocate and free memory for buffer and
cache. Column cache uses JNI to directly call mmap/munmap
with an external library [20]. The library wraps every Libc
call and contains native binaries for each CPU platform. We

HDFS file:

Local file:

∆𝑜𝑓𝑓′ ∆𝑙𝑒𝑛′

𝑜𝑓𝑓 𝑙𝑒𝑛

𝑜𝑓𝑓′

𝑙𝑒𝑛 + ∆𝑜𝑓𝑓) + ∆𝑙𝑒𝑛′

𝑜𝑓𝑓: starting offsets for reading an HDFS file
𝑙𝑒𝑛: the length of reading an HDFS file
𝑜𝑓𝑓′: the local file offset mapped to 𝑜𝑓𝑓 in an HDFS file
∆𝑜𝑓𝑓) = 𝑜𝑓𝑓′	𝑚𝑜𝑑	512

∆𝑙𝑒𝑛) = 512− ∆𝑜𝑓𝑓) + 𝑙𝑒𝑛 	𝑚𝑜𝑑	512 	𝑚𝑜𝑑	512

Fig. 8. Converting an HDFS file read into a local file read. The upper
line shows a particular region that column cache requests to read from the
view of HDFS. In this example, we handle 512-byte alignments in local file
reads (the lower line) to use direct I/O.

do not use other malloc variants such as a sun.misc.Unsafe
memory allocator because column cache needs to allocate far
larger memory than a single memory page. This kind of raw
heap management in Java is now becoming common among
data analytics such as Spark [21].

C. Direct I/O on HDFS files

An obstacle in using direct I/O in Linux is the rules for
alignments [11] in the read system call parameters. Specifi-
cally, we need to align the memory address, file offset, and
length to be read. In particular, the alignments for offset and
length raise an implementation challenge because we need to
convert offsets and lengths in an HDFS file to ones in local
files. Fortunately, mmap returns a page-aligned address of the
memory, which often align to the size of disk blocks (e.g.,
512 bytes). Thus, we need to care about the alignments for
file offset and length to be read.

Fig. 8 shows the conversion of an HDFS file read to a local
file read with direct I/O. When column cache receives a request
for reading a column, it first looks up the information of the
Parquet metadata to retrieve the HDFS file path (path), the
starting offset (off ) of the column, and the length (len) of the
column. Column cache also obtains local file mapping (a file
descriptor for a local file path (FD), offset (off ′), and length
(len′)) from the data abstraction mapping with the HDFS-level
information. Then, we allocate raw heap memory (addr) with
the size of len+∆off ′+∆len′ in Fig. 8. Column cache calls
the pread systemcall on the allocated memory with FD and
registers addr + ∆off ′ as a cache entry with the key (path,
off , len).

V. EVALUATION

In this section, we report the performance of column cache
that is integrated into Spark 2.2.0. Three types of workloads
are evaluated: a microbenchmark, single-stream TPC-DS, and
multi-stream TPC-DS. TPC-DS is a standard benchmark for
decision support systems and covers four query classes that
characterize most decision support queries: reporting, ad-hoc,
iterative, and data mining. We use a scale factor of 1,000 GB
for the TPC-DS input.

A. Experimental Setup

We use our computing cluster under IBM Cloud for these
experiments. TPC-DS workloads are run under one master
and five slave nodes, while our microbenchmark uses a single



node. In IBM Cloud, each node runs Ubuntu 16.04 LTS with
32 virtual CPU cores, 128 GB RAM, and two virtual disks.
There are two types of disks: a 100-GB disk for general
binaries and logs, and a 1-TB disk for HDFS and Spark.
They are formatted and mounted as an XFS file system on
Linux 4.13. The block I/O scheduler is Noop, which is the
default scheduler in our environment, and the readahead size
is 128 KB. Before every measurement, we drop page cache
in Linux to ensure the input is read from the file system. The
configuration of Spark for our experiment is a 48-GB JVM
heap, 48 GB of raw memory, and 32 GB unused. The unused
memory is reserved for page cache. The microbenchmark uses
a 48-GB JVM heap as well. All the experiments use the same
versions of OpenJDK (version 1.8), HDFS (version 2.7.3),
and Spark (version 2.2). Our Spark runs as the standalone
mode, where each node allocates a JVM process for Spark
jobs. We set ten threads for the GCs in the Spark process. All
the configurations are the same in the vanilla Spark and our
customized Spark with column cache. For multi-stream runs of
TPC-DS, we configure Spark as a fair scheduling mode, which
enables us to run concurrent queries [22]. Other configurations
are not mentioned here as they are the default.

B. Microbenchmark

We created a microbenchmark that scans Parquet files on
a single node so as to easily understand the performance
advantage of column cache. It emulates a typical scanning
phase of Spark SQL, which assigns a series of Parquet
files to threads. We used 256 Parquet files with SNAPPY
compression. Each file contains three million records with flat
(i.e., not-nested) columns that have eight different data types.
The benchmark assigns the files to 32 tasks corresponding to
the 32 CPU cores in our experiment.

Fig. 9(a) shows the throughput when the column cache is
used and not used. We also changed the number of threads
to verify scalability and see how the effectiveness of column
cache changes by the number of concurrent scans. The results
are averages of ten runs for each configuration. Column cache
shows up to 1.2x speedup compared to the baseline. The
throughput well scales up to 16 threads, and the effectiveness
of column cache increases as the number of threads increases.
This means column cache is well suited for big data analysis.
This benchmark is an extremely disk-intensive workload, and
thus, the throughput with 32 threads was worse than the one
with 16 threads because the workload reaches the maximum
bandwidth of the storage.

Fig. 9 also contains time-series trace of CPU, memory,
and disk usages with or without column cache under the
configuration of 32 threads. We focus on the results of 32
threads since other experiments with Spark also use 32 threads
for data scans. Fig. 9(b) shows higher CPU usage in column
cache, which means efficient processing of Parquet files.
The CPU utilization becomes high while decoding complex
formats of Parquet files and becomes low during disk read.
Column cache achieves higher CPU usages because of efficient
utilization of memory and disks.

0

32

64

96

128

0 10 20 30 40 50 60 70 80

M
em

or
y 

us
ag

e 
(G

B)

Elapsed time (sec)
(c) Memory usage (baseline)

Page cache
Other user
Raw heap
JVM heap

0

32

64

96

128

0 10 20 30 40 50 60

M
em

or
y 

us
ag

e 
(G

B)

Elapsed time (sec)
(d) Memory usage (column cache)

Page cache
Other user
Raw heap
JVM heap

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

C
PU

 u
sa

ge
 (%

)

Elapsed time (sec)
(b) CPU usage

baseline column cache

0
0.2
0.4
0.6
0.8

1
1.2

0 10 20 30 40 50 60 70 80

D
is

k 
re

ad
 b

an
dw

id
th

 (
G

B/
s)

Elapsed time (sec)
(e) Disk usage

baseline column cache

0

5

10

15

20

10 20 30 40 50 60 70

Bl
oc

k 
I/O

 re
qu

es
t (

Ko
ps

/s
)

Elapsed time (sec)

(f) Number of I/O requests

baseline column cache

0
0.2
0.4
0.6
0.8
1
1.2
1.4

0
20
40
60
80

100
120

1 2 4 8 16 32Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

Number of threads

(a) Throughput

baseline column cache
improved ratio (right)

Fig. 9. Microbenchmark results. These figures show the throughput and
resource usage of our microbenchmark that emulates a typical scanning phase
of Spark SQL.

Fig. 9(c) and (d) shows memory usage in the baseline and
column cache, respectively. We separated the usage of the Java
heap and raw heap. The baseline stores in-memory data to the
Java heap, while column cache uses raw heap with explicit
memory management. “Other user” represents the memory
usage of user processes other than the Java and the raw heap,
calculated by subtracting the two areas from the usage of total
user memory.

The memory usage of column cache is much smaller
because the size of page cache is very small. This is because
column cache bypasses page cache in OS using direct I/O. The
sum of the Java and the raw heap is almost the same between
the baseline and column cache because a large portion of these
areas is used by the in-memory data. Note that the size of the
page cache of the baseline and the size of the raw heap of
column cache are almost the same. Since the size of the raw
heap is the size of the in-memory data, this result implies
that the in-memory data is redundantly stored in both the user
memory buffers in the Java heap and the page cache in the
case of the baseline.

We also measured the number of block I/O requests to show
the advantage of direct I/O. Fig. 9(e) shows the bandwidth for
disk reads. The column cache achieves higher bandwidth by
explicit disk buffering with direct I/O. Fig. 9(f) shows the
number of block I/O requests per second, which decreases in
column cache compared to the baseline because direct I/O can
issue larger chunks of block I/O than page cache, while page
cache limits the block size to the readahead bytes. The default
size of readahead in Ubuntu is 128 KB, but we observed
that 94% of requests from column cache is 1 MB in our



-50
0

50
100
150
200
250

0 0.5 1 1.5

Sp
ee

du
p 

(s
ec

)

File I/O size (TB)

0

0.5

1

1.5

0 0.5 1 1.5

El
ap

se
d 

tim
e 

ra
tio

File I/O size (TB)

Fig. 10. Elapsed time. Each point shows the improvement of processing
time for each query. The left figure shows the absolute decrease of elapsed
time by column cache. The right figure shows the improvement ratio of the
time (higher is better). Both figures show the result with file I/O that Spark
reports.

microbenchmark. The page cache does not allow adaptive disk
reads even if there are various sizes of disk reads.

These results explain why we do not choose mmap-based
I/O for column cache. Mmap reuses the page cache functional-
ity including readahead. Generalized mechanisms of readahead
in the page cache cause the slowdown in our workloads.

C. Single-Stream TPC-DS

We also evaluate column cache with all the 103 queries in
TPC-DS. We measured the elapsed time for each query and
the resource utilization in each workload. Each result is an
average of ten runs.

Fig. 10 shows the speedups for the 103 queries of TPC-
DS with column cache. The file I/O sizes shown were the
total number of input and shuffle bytes that Spark reports.
Column cache showed at most a 1.2x speedup compared to the
baseline although Spark workloads involve other operations
such as data compressions and shuffle processing. In particular,
large improvements tended to happen in queries with large file
I/O. A large file I/O often occurs in shuffle-heavy processing
in Spark. Column cache monitored system memory to avoid
memory pressure in the page cache, which speeds up Spark
shuffle processing.

In contrast, 33 queries with less than 400-GB file I/O
showed a slowdown by up to 15 seconds (7% slowdown for
the query) due to the overhead of column cache. Column cache
does not optimize workloads with small working sets, since
the system can store the whole data in memory.

Fig. 11 shows the overall resource utilization in the 103
queries. We measure memory usage, disk usage, GC time,
CPU usages, and network usages. We measure the GC time
that Spark reported while we monitor system-level statistics
for other resources.

Fig. 11(a) shows reduced memory usage of column cache
(by up to 30%) while (b) shows up to a 40% increase of
memory usage in small file I/O. Column cache cached data
in user memory, and so, it simply used the unused memory
for its cache. In large shuffle size, the cache was released and
the total size of memory became less than the baseline. As
shown in Fig. 11(c), column cache evicted its cache when the
page cache dominated the memory and increased the ratio of

0
0.5

1
1.5

2
2.5

0 0.2 0.4 0.6 0.8 1 1.2
File I/O size (TB)

(g) Total GC time

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 0.2 0.4 0.6 0.8 1 1.2
File I/O size (TB)

(h) Total CPU usage

0
0.2
0.4
0.6
0.8

1
1.2

0 0.2 0.4 0.6 0.8 1 1.2
File I/O size (TB)

(i) Total network I/O

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 0.2 0.4 0.6 0.8 1 1.2
File I/O size (TB)

(f) Total disk write

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2
File I/O size (TB)

(e) Total disk read

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2
File I/O size (TB)

(a) Total memory usage

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2
File I/O size (TB)

(c) Page cache usage

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2
File I/O size (TB)

(b) User memory usage

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2
File I/O size (TB)

(d) Total disk I/O

Fig. 11. Ratio of resource usages. Each point shows the decreased ratio of
resource usage for a query. Lower y-axis values are better and less than one
means improvement over the baseline. The x-axis shows the amounts of file
I/O that Spark reports.

page cache by 6%. The figure also shows that the direct I/O
reduced the size of page cache in small file I/O.

Fig. 11(d) shows that column cache reduced disk reads by
up to 48%. Column cache reduced cache misses in the page
cache, which in turn reduces extra disk reads, as shown in
Fig. 11(e). Some short queries also reduced disk writes with
column cache, as shown in (f). Column cache reduced memory
pressure in page cache and it also resulted in fewer disk writes.

Queries with large file I/O showed that GC time decreased
with column cache, as shown in Fig. 11(g). We observed up
to a 90% decrease of GC time but some short queries show a
100% GC time increase due to the overhead of column cache.
Column cache shows up to a 20% increase of CPU time in
Fig. 11(h).

Network I/O is also decreased in queries with small file
I/O (as shown in Fig. 11(i)), since the queries sent only a
few Giga-bytes to networks on each node. As a result, the
cache for remote blocks in column cache reduced relatively
large amounts of network I/O in these queries. Other queries
did not show any improvements in amounts of network I/O
because most of the queries sent and received network packets
for shuffle processing, which we did not modify.

D. Analysis of a Representative Query

To provide more detailed views of resource utilization, we
show the time-series metrics of TPC-DS query q14b, with the
highlighted result of column cache speedup. Fig. 12 shows the
time-series data of CPU utilization, disk read bandwidth, used
memory, and page cache size with and without column cache
for a single run of query q14b. We select the metrics in one
of five slave nodes in our cluster.

As shown in Fig. 12(a), the user memory of query q14b
can be divided into two phases: eventual memory increase by



0
20
40
60
80

100

0 4 8 12 16 20 24

C
PU

 u
sa

ge
 (%

)

Elapsed time (min)

(d) CPU usage

baseline column cache

0
20
40
60
80

100

0 4 8 12 16 20 24M
em

or
y 

us
ag

e 
(G

B)

Elapsed time (min)

(a) User memory

baseline column cache

0
20

40
60
80

100

0 4 8 12 16 20 24Pa
ge

 ca
ch

e 
si

ze
 (G

B)

Elapsed time (min)

(b) Page cache

baseline column cache

0

100

200

300

400

0 4 8 12 16 20 24To
ta

l d
is

k r
ea

d 
(G

B)

Elapsed time (min)

(c) Total disk read

baseline column cache

Fig. 12. Summary of TPC-DS query q14b. The figures show time-series
traces of each resource utilization in a slave node.

table scan (until 10 minutes) and spiky increases by shuffle
processing. Column cache directly affected the table scan
phase, but it also influenced shuffle processing by our cache
replacement policy. Column cache decreased total amounts of
user memory in shuffle phase by evicting less frequently used
data during the query processing.

In addition to the user memory reduction in the scan phase,
column cache did not pollute the page cache by using direct
I/O, as shown in Fig. 12(b). The OS preserved the page
cache until the system memory was filled with it (at around 7
minutes). The page cache in column cache was derived from
shuffle outputs.

Fig. 12(c) shows that column cache reduced disk reads by
142 GB. We decreased total disk reads by avoiding cache
pollution in the page cache. Column cache increased CPU
utilization, as shown in Fig. 12(d). Column cache achieves
higher CPU usages due to its efficient utilization of memory
and disks, as we discussed in Section V-B.

E. Multi-Stream TPC-DS

The third evaluation of column cache is under the existence
of multiple queries, which represents a more realistic use case.
To this end, we built 90 workloads with seven randomly se-
lected queries from 103 queries in TPC-DS. These workloads
concurrently submitted the selected queries to Spark SQL.
Spark also processed the queries in parallel by using a fair
scheduler [22]. We evaluate the elapsed time for each query
and the overall resource utilization in each workload. Each
result is an average of three runs.

As Fig. 13 shows, large improvements tended to happen in
queries with large file I/O, as well as for results of a single
query. The speed up by column cache became larger (up to
1.28x) than the single query run shown in Fig. 10.

Fig. 14 helps clarify how the 1.28x speedup happened. The
figure shows the overall resource utilization for each workload.
Multi-stream TPC-DS caused heavier shuffle processing and

-200
0

200
400
600
800

0 0.5 1 1.5

Sp
ee

du
p 

(s
ec

)

File I/O size (TB)

0

0.5

1

1.5

0 0.5 1 1.5

El
ap

se
d 

tim
e 

ra
tio

File I/O size (TB)

Fig. 13. Elapsed time. The figure shows the processing time of each query
in multi-stream TPC-DS. Note that we use file I/O sizes that each query (not
workload) requires, and so, the maximum amounts of file I/O are different
from those in Fig. 14.

0

0.5

1

1.5

2

0 0.5 1 1.5 2
File I/O size (TB)

(g) Total GC time

0

0.5

1

1.5

2

0 0.5 1 1.5 2
File I/O size (TB)

(h) Total CPU usage

0

0.5

1

1.5

2

0 0.5 1 1.5 2
File I/O size (TB)

(i) Total network I/O

0
0.2
0.4
0.6
0.8

1
1.2

0 0.5 1 1.5 2
File I/O size (TB)

(f) Total disk write

0
0.2
0.4
0.6
0.8

1
1.2

0 0.5 1 1.5 2
File I/O size (TB)

(e) Total disk read

0
0.5

1
1.5

2
2.5

0 0.5 1 1.5 2
File I/O size (TB)

(a) Total memory usage

0
0.5

1
1.5

2
2.5

0 0.5 1 1.5 2
File I/O size (TB)

(c) Page cache usage

0
0.5

1
1.5

2
2.5

0 0.5 1 1.5 2
File I/O size (TB)

(b) User memory usage

0
0.2
0.4
0.6
0.8

1
1.2

0 0.5 1 1.5 2
File I/O size (TB)

(d) Total disk I/O

Fig. 14. Ratio of resource usages. Each point shows decreased resource
utilization in a workload with seven concurrent queries. We use file I/O sizes
that Spark reports for each workload, which consists of seven concurrent
queries.

more memory pressure than single-stream TPC-DS. As a
result, user memory usage in Fig. 14(b) showed a more
decreased ratio than the results of single-stream TPC-DS
because of the cache eviction in column cache. As shown in
Fig. 14(c), we observed up to an 18% increase of page cache in
workloads with large file I/O. As well as user memory, column
cache reduced total disk reads by up to 43% in Fig. 14(e). We
also observed a large ratio of user memory in workloads with
small file I/O (up to 2.3x). In multi-stream TPC-DS, column
cache needed to preserve a larger cache for processing seven
concurrent queries. As a result, the user memory in multi-
streams became larger than in single streams if there was no
pressure on the system memory. The high concurrency should
cause large overheads in user-level cache management, but we
still observed up to a 76% decrease of GC time.

VI. RELATED WORK

Application-level buffer cache management, which is a pri-
mary characteristic of column cache, has been explored mainly
in database management systems. An article in 1981 [23]



stated that the motivation behind their OS bypass was poor
performance in generic OS buffer management. Modern stor-
age engines [14] and databases [15], [16] also provide OS-
bypassing functionalities. We also show that Spark, which
is a modern data analytics platform, also has a performance
issue in buffer cache management. In particular, column cache
solves issues deriving from layered software stacks around
parallel distributed computing and distributed file systems.

A more drastic design of column cache is to re-design the
entire storage stack to optimize device-level data management.
The biggest benefit of the drastic design is to fully utilize
modern high-performance storage such as NVMe SSD. It
enables us to reduce the cost of context switches between
the kernel and user processes [24], [25]. We could also
modify the OS kernel to expose key kernel-level information
to Spark so that it can modify buffer cache policies as done
in [26], [27], [28]. Instead of these drastic approaches, we
demonstrate the design of application-specific buffer cache
using the limited interfaces of the existing APIs of the Linux
kernel. Fadvice [29] is also able to change cache behavior
in OSs, but unfortunately, the functionality is limited and not
enough to satisfy the requirements of column cache.

VII. CONCLUSION

In this paper, we presented and solved issues of nested data
abstraction with column cache. In column cache, the unified
architecture in user space enables us to easily leverage query
plans and format information for optimized buffer cache in
HDFS. Column cache increased Linux page cache size by
18%, reduced total disk reads by 43%, and reduced GC time
by 76% in multi-stream TPC-DS. As a result of improved
resource utilization, Spark showed a maximum speedup of
1.28x. We achieved the speedup with small fixes of Spark
and no restarts of HDFS servers.

REFERENCES

[1] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik, “C-store: A column-oriented dbms,” in Proceedings of
the 31st International Conference on Very Large Data Bases (VLDB
’05), 2005, pp. 553–564.

[2] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis, “Dremel: Interactive analysis of web-scale datasets,”
Proceedings of VLDB Endowment, vol. 3, no. 1-2, pp. 330–339, Septem-
ber 2010.

[3] “Apache parquet,” http://parquet.apache.org.
[4] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu, “Rcfile:

A fast and space-efficient data placement structure in mapreduce-based
warehouse systems,” in Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering (ICDE ’11), 2011, pp. 1199–1208.

[5] “Apache orc,” https://orc.apache.org.
[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop

distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST ’10), 2010, pp. 1–10.

[7] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making sense of performance in data analytics frameworks,” in Pro-
ceedings of the 12th USENIX Conference on Networked Systems Design
and Implementation (NSDI ’15), 2015, pp. 293–307.

[8] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytiniotis, G. Ra-
malingan, D. Murray, S. Hand, and M. Isard, “Broom: Sweeping out
garbage collection from big data systems,” in Proceedings of the 15th
USENIX Conference on Hot Topics in Operating Systems (HotOS ’15),
2015, pp. 2–2.

[9] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proceed-
ings of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’12), 2012, pp. 15–28.

[10] “Apache tez,” https://tez.apache.org.
[11] “Clarifying direct io’s semantics,” https://ext4.wiki.kernel.org/index.php/

Clarifying Direct IO%27s Semantics.
[12] M. Poess, T. Rabl, and H.-A. Jacobsen, “Analysis of tpc-ds: The first

standard benchmark for sql-based big data systems,” in Proceedings of
the 2017 Symposium on Cloud Computing (SoCC ’17), 2017, pp. 573–
585.

[13] T. Harter, D. Borthakur, S. Dong, A. Aiyer, L. Tang, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Analysis of hdfs under hbase:
A facebook messages case study,” in Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST ’14), 2014, pp.
199–212.

[14] “Wiredtiger: System buffer cache,” http://source.wiredtiger.com/2.9.3/
tune system buffer cache.html.

[15] “Direct i/o - facebook/rocksdb wiki - github,” https://github.com/
facebook/rocksdb/wiki/Direct-IO.

[16] “The column-store pioneer — monetdb,” https://www.monetdb.org.
[17] “Apache hadoop 2.7.3 - hdfs short-circuit local reads,” https:/

/hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-hdfs/
ShortCircuitLocalReads.html.

[18] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,
S. Shenker, and I. Stoica, “Pacman: Coordinated memory caching
for parallel jobs,” in Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (NSDI ’12), 2012.

[19] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim, “On the existence of a spectrum of policies that subsumes the
least recently used (lru) and least frequently used (lfu) policies,” in
Proceedings of the 1999 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS
’99), 1999, pp. 134–143.

[20] “Java native accesses,” https://github.com/java-native-access/jna.
[21] R. Xin and J. Rosen, “Project tungsten: Bringing apache spark closer

to bare metal,” https://databricks.com/blog/2015/04/28/project-tungsten-
bringing-spark-closer-to-bare-metal.html, April 2015.

[22] “Job scheduling — spark 2.3.0 documentation,” https://spark.apache.org/
docs/2.3.0/job-scheduling.html#fair-scheduler-pools.

[23] M. Stonebraker, “Operating system support for database management,”
Communications of the ACM, vol. 24, no. 7, pp. 412–418, Jul. 1981.

[24] S. Peter, J. Li, D. Woos, I. Zhang, D. R. K. Ports, T. Anderson, A. Krish-
namurthy, and M. Zbikowski, “Towards high-performance application-
level storage management,” in Proceedings of the 6th USENIX Con-
ference on Hot Topics in Storage and File Systems (HotStorage ’14),
2014.

[25] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” ACM Transactions on Computer Systems (TOCS), vol. 33,
no. 4, pp. 11:1–11:30, Nov. 2015.

[26] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, N. C. Burnett, T. E.
Denehy, T. J. Engle, H. S. Gunawi, J. A. Nugent, and F. I. Popovici,
“Transforming policies into mechanisms with infokernel,” in Proceed-
ings of the 19th ACM Symposium on Operating Systems Principles
(SOSP ’03), 2003, pp. 90–105.

[27] S. VanDeBogart, C. Frost, and E. Kohler, “Reducing seek overhead with
application-directed prefetching,” in Proceedings of the 2009 Conference
on USENIX Annual Technical Conference (USENIXATC ’09), 2009.

[28] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “Implementation and per-
formance of integrated application-controlled file caching, prefetching,
and disk scheduling,” ACM Transactions on Computer Systems (TOCS),
vol. 14, no. 4, pp. 311–343, Nov. 1996.

[29] D. Plonka, A. Gupta, and D. Carder, “Application buffer-cache manage-
ment for performance: Running the world’s largest mrtg,” in Proceedings
of the 21st Large Installation System Administration Conference (LISA
’07), 2007, pp. 63–78.


