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What this talk is about…

ü What matters when setting up a learning problem in real-world 
distributed systems  

ü Challenges to anticipate 

ü Insights and lessons learned while addressing them. 
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A “Simple” Recipe!

q Step I – Learning Problem Formulation
q Domain Knowledge –

q Understand key limitations of existing mechanisms
q Understand metrics of success

q Gather a dataset
q Learn a model

q Step II – Close the loop
q Implement and Deploy learned models in existing system architecture

q Step III – Evaluate using metrics of success
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In reality, we face challenges that add many twists and turns in to this recipe.



Two Problem Instances

Ø Job scheduling in datacenter environments
Ø Problem - Long tail of job completions

Ø Resource allocation in public cloud environments
Ø Problem - Right-sizing resources for workloads
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Parallel Data Intensive Computational Frameworks

Job completedJob queue

Master
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Stragglers

Job completedJob queue

Master

Slaves

Despite addressing data-skew, and blacklisting faulty 
hardware or slow nodes, stragglers continue to exist…
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Existing Mechanism - Speculative Execution
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I. Identify stragglers as early as possible

II. Schedule tasks for improved job finishing times

1. To avoiding creation of stragglers

2. To avoid replication
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Design Goals

Avoid 
Wasting 

Resources

Avoid Wasting Time 
in detecting stragglers
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I. Identify stragglers as early as possible
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Design Goals: ML formulation

Classify machine state to be 
healthy or straggler prone

Classifier
Straggler

Non-Straggler

State of a machine

Straggler Predictor

Utilization statistics

Wrangler, SoCC’14



Classifier

I. Identify stragglers as early as possible
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Design Goals: ML formulation

Classifier
Straggler

Non-Straggler

State of a machine

Straggler Predictor

Utilization statistics

Predictive 
Scheduler

II. Schedule tasks for improved job finishing times

Use predictions as hints to the scheduler

Wrangler, SoCC’14



Job Scheduling in Data Intensive Computational Frameworks
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Straggler 
Predictor

Our proposal: Wrangler
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Predictive 
Scheduler

Worker

Master

Worker 
1

Workers

Scheduling
Decisions

Job
Scheduler

Heartbeats 

Utilization 
Counters

~100 counters 
CPU, Memory, Disk, Network, …

SVM
~70-80% accuracy

Defer scheduling a task on a node 

that is predicted to create a straggler

But, this managed 
to elongate jobs
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Our proposal: Wrangler
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Straggler 
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Confident? Yes

Only confident predictions influence 
scheduling decisions
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Evaluation

Ø Does Wrangler Improve Job Completion Times?
Ø With confidence measure, by up to 60%

Ø Does Wrangler Reduce Resources Consumed?
Ø By up to 55%

Ø Load-Balanced clusters with Wrangler
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ML for Systems - Guidelines

§ Estimating causes behind stragglers
§ Predicting task execution times
§ Predicting straggler tasks 
§ Predicting straggler-causing situations on nodes

#1 Explore multiple domain-specific ways to formulate a problem

#2 Develop mechanisms to guard the system state from modeling errors
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Training overhead? – No curated datasets
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Long Data-Collection time - In our 20 node set up, typically the 
training data collection phase took 2-4 hours…

Too Many Models - We built per-node and per-workload models 
to be robust to heterogeneity…

Share data across nodes and workloads: Multi Task Learning

Idea

SDM’15, JMLR’16



Regularized Multi-Task Learning*

• T learning tasks
• Instead of one w, we need to learn a w for each of the T tasks

Common across all the 
learning tasks

*Evgeniou, et al., KDD 2004 

Loss function

Specific for a learning  
task, t

wt = w0 + vt

min
w0,vt,b

�0kw0k2 +
�1

T

TX

t=1

kvtk2+
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High Memory

GPUs
SSDs

Regularized Multi-Task Learning*

wt = w0 + vt

w0

wgpu

wssd

whm
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Proposed Formulation
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Common across the tasks in 
a group, denoted by g

wt = w0 + vt + wg

wt = w0 + vt +wgpu +wssd + ...

SDM’15, JMLR’16



Proposed Formulation
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All tasks belong to the same 
group

Each task is its own group

wt = w0 + vt + wg

Weight vector of the g-th group
of the p-th partition 

wt = w0 + vt +
PX

p=1

wp,gp(t)

wt =
PX

p=1

wp,gp(t)
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Proposed Formulation
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min
wp,g,b

PX

p=1

GpX

g=1

�p,gkwp,gk2 + Loss function
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Proposed Formulation: Predicting Stragglers
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The corresponding training problem is then,

xmin
w,b

�0kw0k2 +
⌫
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Evaluation: MTL used in Real-world setting
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üReduced data collection time by 6x

üBetter Generalization - Improved prediction accuracy by up to 7%

ü Improved job completions – 99th percentile improved by 57.8%

SDM’15, JMLR’16



ML for Systems - Guidelines

#1  Explore multiple domain-specific ways to formulate a problem

#2  Develop mechanisms to guard the system state from modeling errors

#3  Beware of the differences between similar-looking learning tasks

#4  When obtaining data is expensive, utilize existing data by exploring domain-specific 
correlation structures between learning tasks
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Two Problem Instances

q Job scheduling in datacenter environments
q Problem - Long tail of job completions

q Resource allocation in public cloud environments
q Problem - Right-sizing resources for workloads
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WorkloadA

m1.xlarge m1.large

m1.medium

m2.xlargem2.2xlarge

m2.4xlarge

c1.xlarge

c1.medium

What VM type should I 
use for my workload?

Answer is workload specific
and depends on 

Cost and performance goals

A1
A2

A3A4
A5

F2

F4

F8 D11v2

D12v2D13v2

n1-standard-1

n1-standard-4

n1-highmem-2 n1-highcpu-8

f1-micro

Deploying a workload to the Cloud…

PARIS SoCC’1726



Specify cost/performance goals

VMI VMII

Run user-workload task

… VMk

Trivial! but expensive!

Run on all VM types?

x
√

Cost Efficient

Accurate

VM Types

Key Ingredient: Cost-Perf Trade-off Map

Objective: Enable informed cost-perf trade-off decisions

27 PARIS SoCC’17



However, learning them 
simultaneously 
makes it expensive…

Attempting to learn:
• VM type behavior, and
• Workload behaviorVMI VMII

Run user-workload task

… VMk

Trivial! but expensive!

Run on all VM types?

x
√

Cost Efficient

Accurate

VM Types

Our Proposal: PARIS
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Learn 
Workload 
behaviour

Learn 
VM Type 
behaviour Attempting to learn:

• VM type behavior, and
• Workload behavior

However, learning them 
simultaneously 
makes it expensive…

Our Proposal: PARIS

Key Insight: De-couple learning of VM types and workloads
29 PARIS SoCC’17



VM1

Extensive benchmarking to model 
relationship between VM types

Light-weight fingerprinting to model 
the relationship between user workloads 
and benchmark workloads

VM2 VM100…

Run Benchmark Workloads

Run User 
-Workload

Cost Efficient AccurateVM Types

Key Insight: De-couple learning of VM types and workloads

Our Proposal: PARIS

g:{Benchmark Data, Fingerprint} à Performance and variability
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ML for Systems - Guidelines

#1  Explore multiple domain-specific ways to formulate a problem

#2  Develop mechanisms to guard the system state from modeling errors

#3  Beware of the differences between similar-looking learning tasks

#4  When obtaining data is expensive, utilize existing data by exploring domain-specific 
correlation structures between learning tasks

#5  Develop triggers for re-learning to avoid biased predictions

#6  For cost-efficiency and generalizability, decouple learning of different systemic aspects 
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