Machine Learning for Resource Management in the Datacenter and the Cloud

Neeraja J. Yadwadkar Post Doctoral Researcher Stanford University November 19th, 2019

What this talk is about...

- What matters when setting up a learning problem in real-world distributed systems
- ✓ Challenges to anticipate
- ✓ Insights and lessons learned while addressing them.

A "Simple" Recipe!

Step I - Learning Problem Formulation Domain Knowledge Understand key limitations of existing mechanisms Understand metrics of success Gather a dataset Learn a model

Step II – Close the loop
Implement and Deploy learned models in existing system architecture

Step III – Evaluate using metrics of success

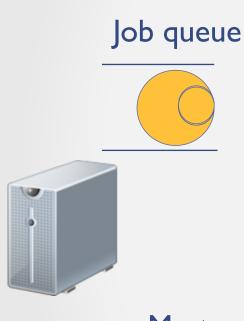
In reality, we face challenges that add many twists and turns in to this recipe.

Two Problem Instances

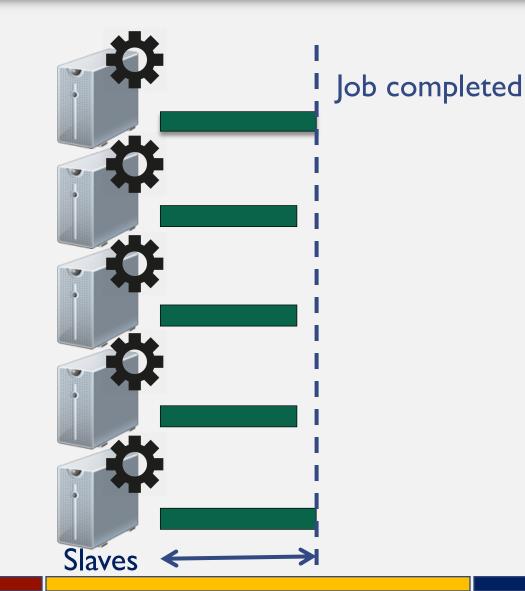
Job scheduling in datacenter environments
Problem - Long tail of job completions

Resource allocation in public cloud environments
Problem - Right-sizing resources for workloads

Parallel Data Intensive Computational Frameworks



Master



Wrangler, SoCC'14

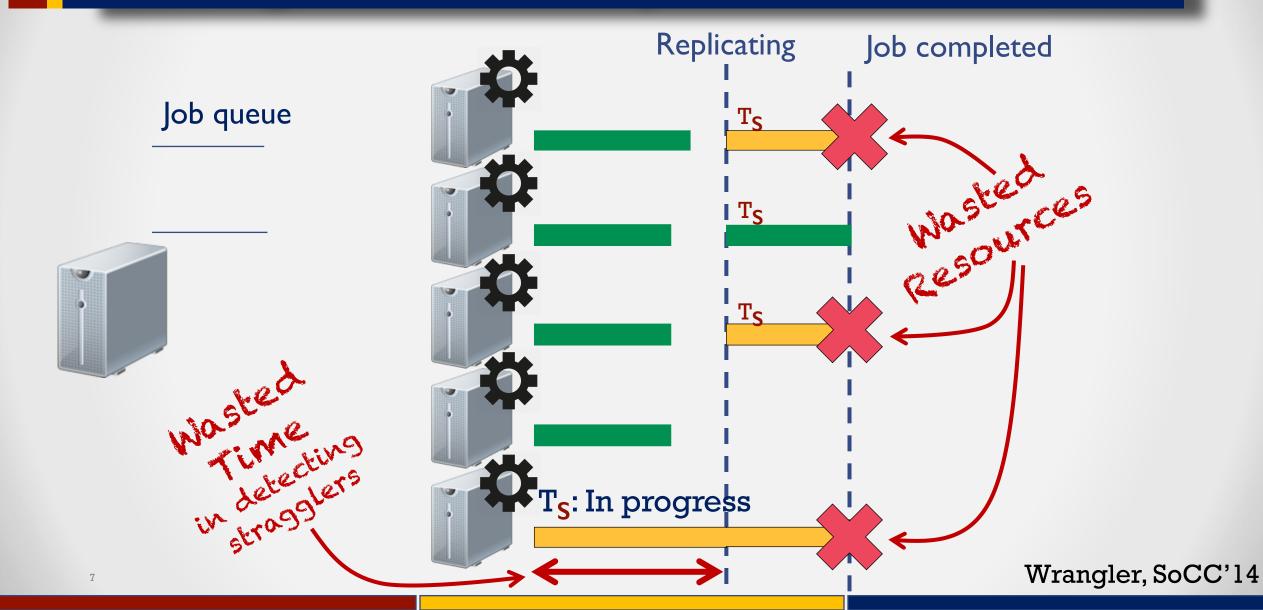
Job completed

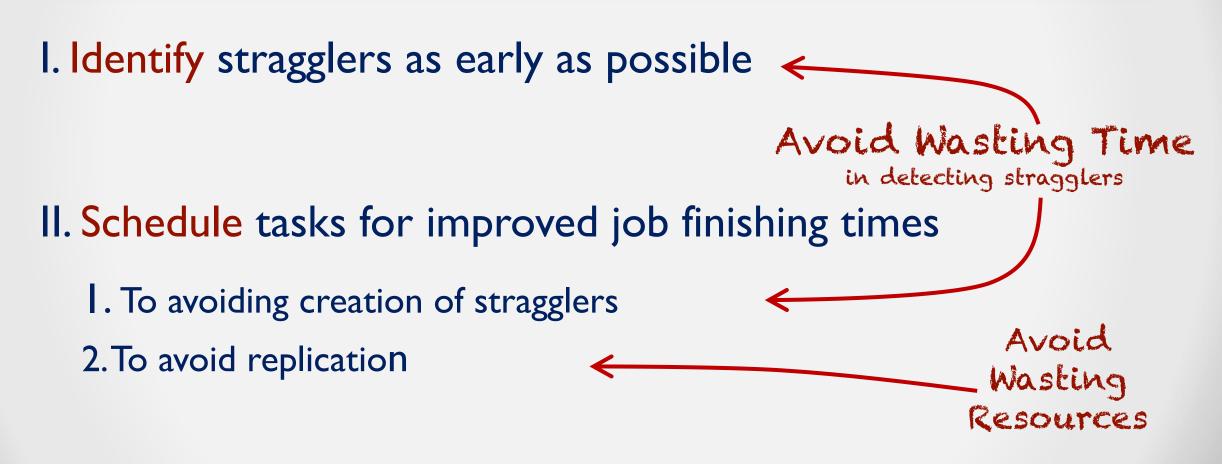
Despite addressing data-skew, and blacklisting faulty hardware or slow nodes, stragglers continue to exist...

Master

Wrangler, SoCC'14

Existing Mechanism - Speculative Execution





Wrangler, SoCC'14

Design Goals: ML formulation

I. Identify stragglers as early as possible

Classify machine state to be healthy or straggler prone

Straggler Predictor

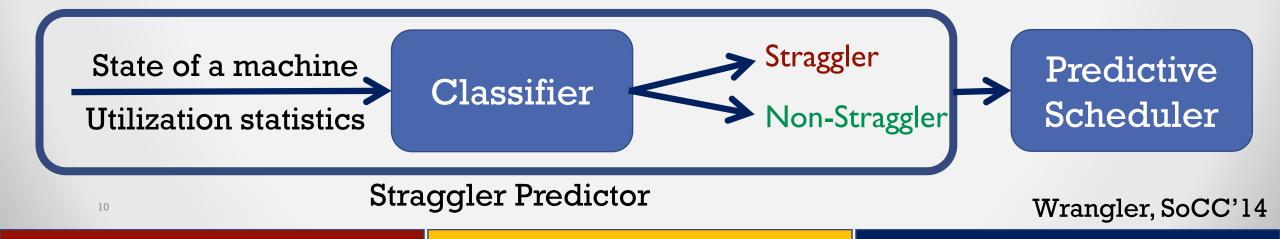
Wrangler, SoCC'14

Design Goals: ML formulation

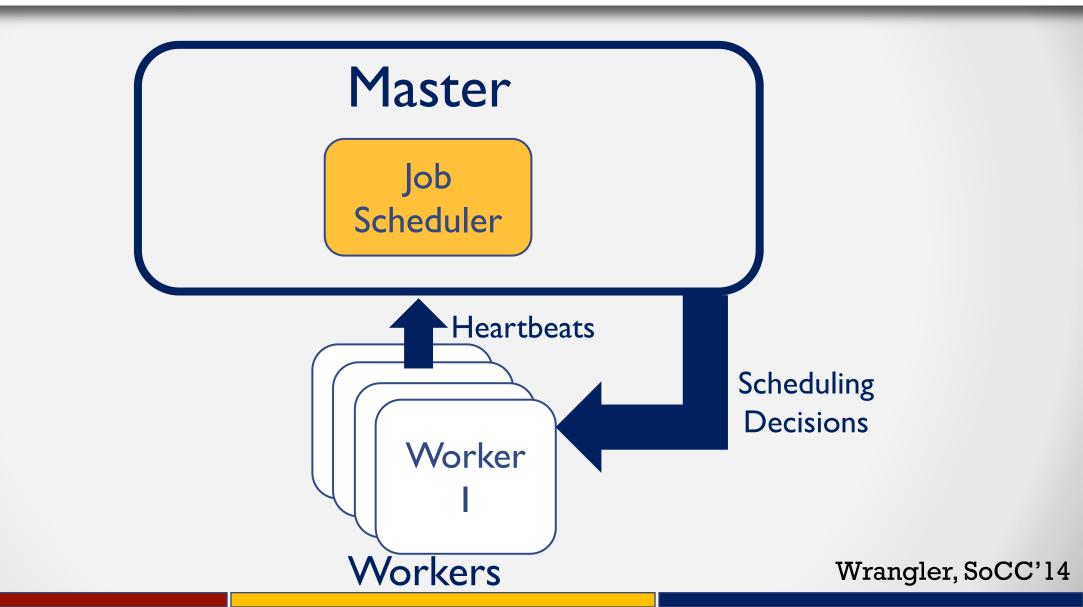
I. Identify stragglers as early as possible

II. Schedule tasks for improved job finishing times

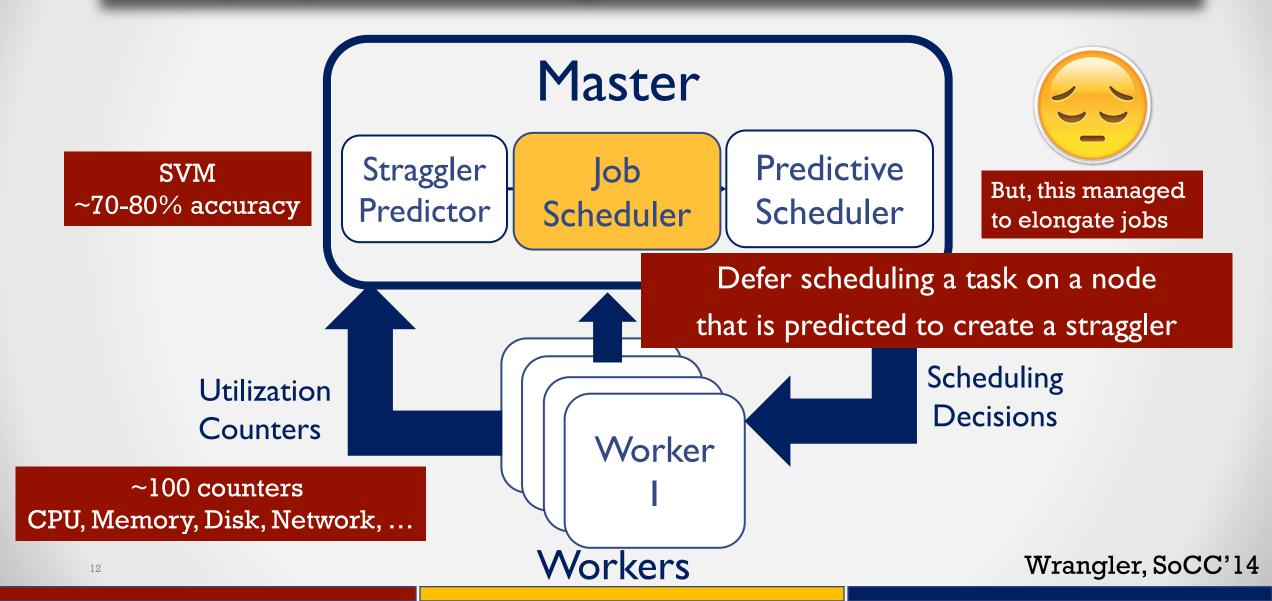
Use predictions as hints to the scheduler

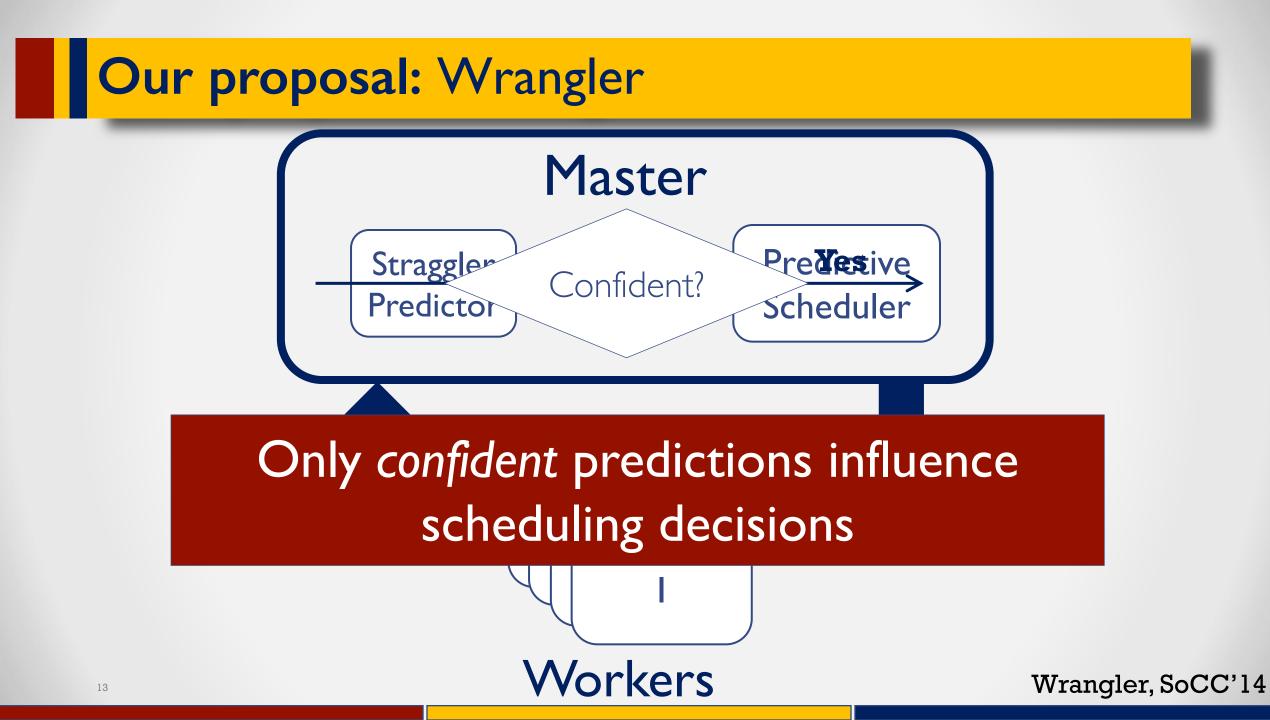


Job Scheduling in Data Intensive Computational Frameworks



Our proposal: Wrangler





Evaluation

Does Wrangler Improve Job Completion Times?
With confidence measure, by up to 60%

Does Wrangler Reduce Resources Consumed?
By up to 55%

Load-Balanced clusters with Wrangler

Wrangler, SoCC'14

ML for Systems - Guidelines

| Explore multiple domain-specific ways to formulate a problem

#2 Develop mechanisms to guard the system state from modeling errors

- Predicting straggler tasks
- Predicting straggler-causing situations on nodes

Training overhead? – No curated datasets

Too Many Models - We built per-node and per-workload models to be robust to heterogeneity...

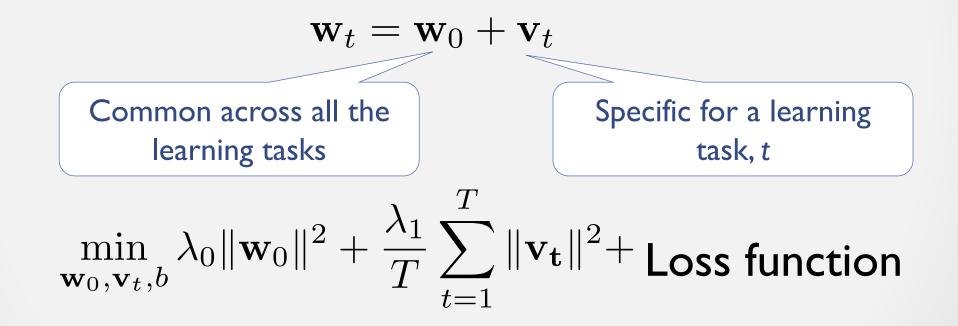
Long Data-Collection time - In our 20 node set up, typically the training data collection phase took 2-4 hours...

Idea

Share data across nodes and workloads: Multi Task Learning

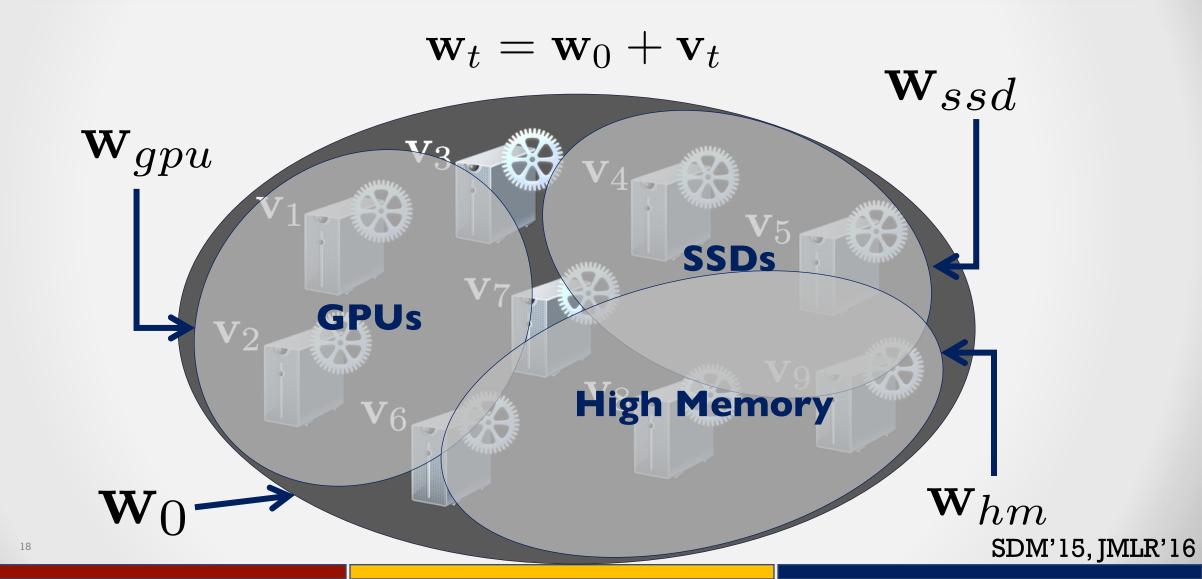
Regularized Multi-Task Learning*

- T learning tasks
- Instead of one w, we need to learn a w for each of the T tasks



*Evgeniou, et al., KDD 2004

Regularized Multi-Task Learning*



Proposed Formulation

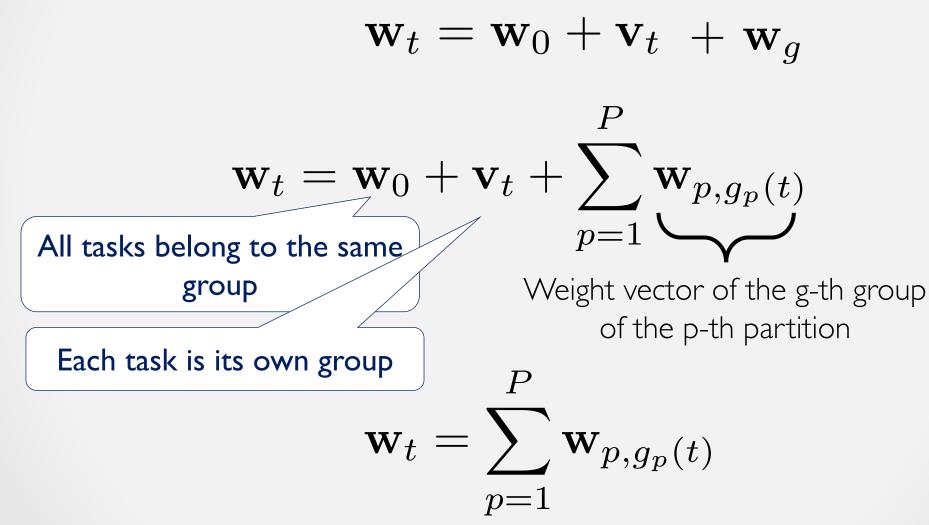
$$\mathbf{w}_t = \mathbf{w}_0 + \mathbf{v}_t + \mathbf{w}_g$$

Common across the tasks in
a group, denoted by g

$\mathbf{w}_t = \mathbf{w}_0 + \mathbf{v}_t + \mathbf{w}_{gpu} + \mathbf{w}_{ssd} + \dots$

SDM'15, JMLR'16

Proposed Formulation



SDM'15, JMLR'16

Proposed Formulation

$\min_{\mathbf{w}_{p,g,b}} \sum_{p=1}^{P} \sum_{g=1}^{G_p} \lambda_{p,g} \|\mathbf{w}_{p,g}\|^2 + \text{Loss function}$

Proposed Formulation: Predicting Stragglers

The corresponding training problem is then,

$$\min_{\mathbf{w},b} \lambda_0 \|\mathbf{w}_0\|^2 + \frac{\nu}{N} \sum_{n=1}^N \|\mathbf{w}_n\|^2 + \frac{\omega}{L} \sum_{l=1}^L \|\mathbf{w}_l\|^2 + \frac{\tau}{T} \sum_{t=1}^T \|\mathbf{v}_t\|^2 + \text{Loss function}$$

Evaluation: MTL used in Real-world setting

- \checkmark Reduced data collection time by 6x
- ✓ Better Generalization Improved prediction accuracy by up to 7%
- ✓ Improved job completions 99th percentile improved by 57.8%

ML for Systems - Guidelines

#1 Explore multiple domain-specific ways to formulate a problem

#2 Develop mechanisms to guard the system state from modeling errors

#3 Beware of the differences between similar-looking learning tasks

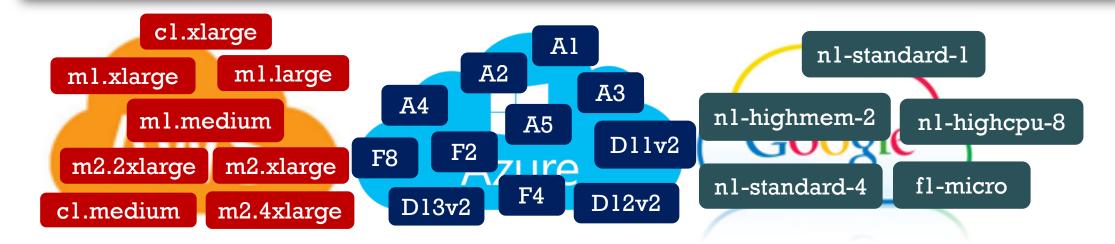
#4 When obtaining data is expensive, utilize existing data by exploring domain-specific correlation structures between learning tasks

Two Problem Instances

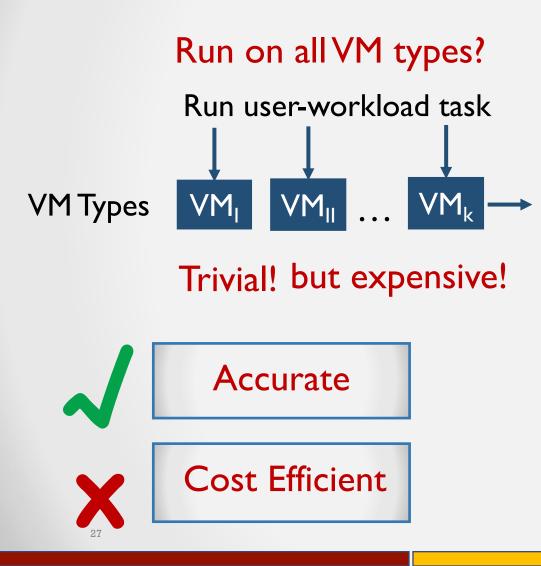
Job scheduling in datacenter environments
Problem - Long tail of job completions

Resource allocation in public cloud environments
Problem - Right-sizing resources for workloads

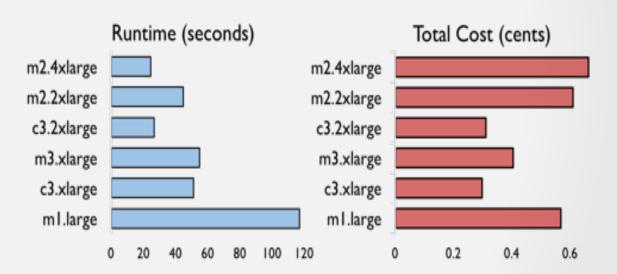
Deploying a workload to the Cloud...



Objective: Enable informed cost-perf trade-off decisions



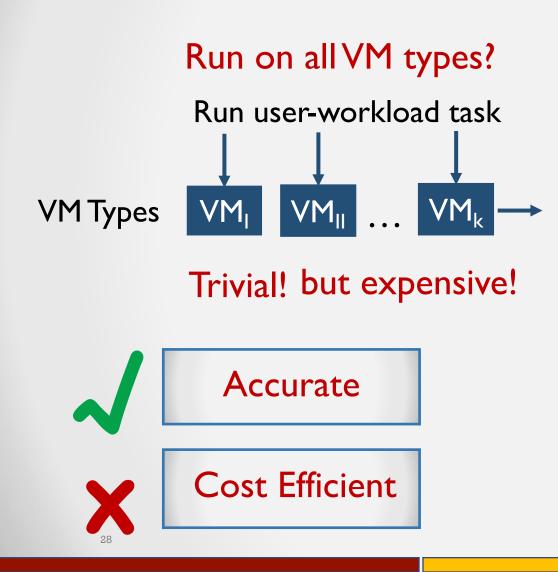
Specify cost/performance goals



Key Ingredient: Cost-Perf Trade-off Map

PARIS SoCC'17

Our Proposal: PARIS



Attempting to learn:

- VM type behavior, and
- Workload behavior

However, learning them simultaneously makes it expensive...

PARIS SoCC'17

Our Proposal: PARIS

Learn VM Type behaviour

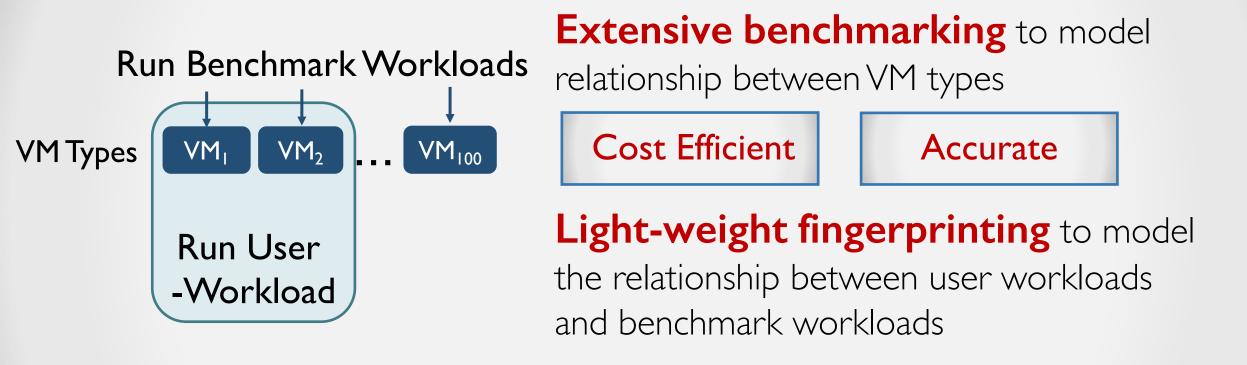
Attempting to learn:

- VM type behavior, and
- Workload behavior

However, learning them simultaneously makes it expensive...

Key Insight: De-couple learning of VM types and workloads PARIS SoCC'17

Our Proposal: PARIS



g:{Benchmark Data, Fingerprint} \rightarrow Performance and variability

Key Insight: De-couple learning of VM types and workloads PARIS SoCC'17

ML for Systems - Guidelines

#1 Explore multiple domain-specific ways to formulate a problem

#2 Develop mechanisms to guard the system state from modeling errors

#3 Beware of the differences between similar-looking learning tasks

#4 When obtaining data is expensive, utilize existing data by exploring domain-specific correlation structures between learning tasks

#5 Develop triggers for re-learning to avoid biased predictions

#6 For cost-efficiency and generalizability, decouple learning of different systemic aspects

ML for Systems - Guidelines

#1 Explore multiple domain-specific ways to formulate a problem

#2 Develop mechanisms to guard the system state from modeling errors

#3 Beware of the differences between similar-looking learning tasks

#4 When obtaining data is expensive, utilize existing data by exploring domain-specific correlation structures between learning tasks

#5 Develop triggers for re-learning to avoid biased predictions

#6 For cost-efficiency and generalizability, decouple learning of different systemic aspects

Machine Learning for Resource Management in the Datacenter and the Cloud Neeraja J. Yadwadkar neeraja@cs.stanford.edu