
Neeraja J. Yadwadkar
Post Doctoral Researcher

Stanford University
November 19th, 2019

Machine Learning for Resource Management
in the Datacenter and the Cloud

1

What this talk is about…

ü What matters when setting up a learning problem in real-world
distributed systems

ü Challenges to anticipate

ü Insights and lessons learned while addressing them.

2

A “Simple” Recipe!

q Step I – Learning Problem Formulation
q Domain Knowledge –

q Understand key limitations of existing mechanisms
q Understand metrics of success

q Gather a dataset
q Learn a model

q Step II – Close the loop
q Implement and Deploy learned models in existing system architecture

q Step III – Evaluate using metrics of success

3

In reality, we face challenges that add many twists and turns in to this recipe.

Two Problem Instances

Ø Job scheduling in datacenter environments
Ø Problem - Long tail of job completions

Ø Resource allocation in public cloud environments
Ø Problem - Right-sizing resources for workloads

4

Parallel Data Intensive Computational Frameworks

Job completedJob queue

Master

Slaves Wrangler, SoCC’145

Stragglers

Job completedJob queue

Master

Slaves

Despite addressing data-skew, and blacklisting faulty
hardware or slow nodes, stragglers continue to exist…

6 Wrangler, SoCC’14

Existing Mechanism - Speculative Execution

Job queue

Replicating

TS: In progress

Job completed

Was
ted

Tim
e

in d
etec

ting

stra
ggl

ers

Was
ted

Res
our

ces

TS

TS

TS

7 Wrangler, SoCC’14

I. Identify stragglers as early as possible

II. Schedule tasks for improved job finishing times

1. To avoiding creation of stragglers

2. To avoid replication

8

Design Goals

Avoid
Wasting

Resources

Avoid Wasting Time
in detecting stragglers

Wrangler, SoCC’14

I. Identify stragglers as early as possible

9

Design Goals: ML formulation

Classify machine state to be
healthy or straggler prone

Classifier
Straggler

Non-Straggler

State of a machine

Straggler Predictor

Utilization statistics

Wrangler, SoCC’14

Classifier

I. Identify stragglers as early as possible

10

Design Goals: ML formulation

Classifier
Straggler

Non-Straggler

State of a machine

Straggler Predictor

Utilization statistics

Predictive
Scheduler

II. Schedule tasks for improved job finishing times

Use predictions as hints to the scheduler

Wrangler, SoCC’14

Job Scheduling in Data Intensive Computational Frameworks

11

Worker

Master

Worker
1

Workers

Scheduling
Decisions

Job
Scheduler

Heartbeats

Wrangler, SoCC’14

Straggler
Predictor

Our proposal: Wrangler

12

Predictive
Scheduler

Worker

Master

Worker
1

Workers

Scheduling
Decisions

Job
Scheduler

Heartbeats

Utilization
Counters

~100 counters
CPU, Memory, Disk, Network, …

SVM
~70-80% accuracy

Defer scheduling a task on a node

that is predicted to create a straggler

But, this managed
to elongate jobs

Wrangler, SoCC’14

Our proposal: Wrangler

13

Straggler
Predictor

Predictive
Scheduler

WorkerUtilization
Counters

Master

Worker
1

Workers

Scheduling
Decisions

Confident? Yes

Only confident predictions influence
scheduling decisions

Wrangler, SoCC’14

Evaluation

Ø Does Wrangler Improve Job Completion Times?
Ø With confidence measure, by up to 60%

Ø Does Wrangler Reduce Resources Consumed?
Ø By up to 55%

Ø Load-Balanced clusters with Wrangler

14 Wrangler, SoCC’14

ML for Systems - Guidelines

§ Estimating causes behind stragglers
§ Predicting task execution times
§ Predicting straggler tasks
§ Predicting straggler-causing situations on nodes

#1 Explore multiple domain-specific ways to formulate a problem

#2 Develop mechanisms to guard the system state from modeling errors

15

Training overhead? – No curated datasets

16

Long Data-Collection time - In our 20 node set up, typically the
training data collection phase took 2-4 hours…

Too Many Models - We built per-node and per-workload models
to be robust to heterogeneity…

Share data across nodes and workloads: Multi Task Learning

Idea

SDM’15, JMLR’16

Regularized Multi-Task Learning*

• T learning tasks
• Instead of one w, we need to learn a w for each of the T tasks

Common across all the
learning tasks

*Evgeniou, et al., KDD 2004

Loss function

Specific for a learning
task, t

wt = w0 + vt

min
w0,vt,b

�0kw0k2 +
�1

T

TX

t=1

kvtk2+

17

High Memory

GPUs
SSDs

Regularized Multi-Task Learning*

wt = w0 + vt

w0

wgpu

wssd

whm
18 SDM’15, JMLR’16

Proposed Formulation

19

Common across the tasks in
a group, denoted by g

wt = w0 + vt + wg

wt = w0 + vt +wgpu +wssd + ...

SDM’15, JMLR’16

Proposed Formulation

20

All tasks belong to the same
group

Each task is its own group

wt = w0 + vt + wg

Weight vector of the g-th group
of the p-th partition

wt = w0 + vt +
PX

p=1

wp,gp(t)

wt =
PX

p=1

wp,gp(t)

SDM’15, JMLR’16

Proposed Formulation

21

min
wp,g,b

PX

p=1

GpX

g=1

�p,gkwp,gk2 + Loss function

SDM’15, JMLR’16

Proposed Formulation: Predicting Stragglers

22

The corresponding training problem is then,

xmin
w,b

�0kw0k2 +
⌫

N

NX

n=1

kwnk2 +
!

L

LX

l=1

kwlk2 +
⌧

T

TX

t=1

kvtk2 + Loss function

SDM’15, JMLR’16

Evaluation: MTL used in Real-world setting

23

üReduced data collection time by 6x

üBetter Generalization - Improved prediction accuracy by up to 7%

ü Improved job completions – 99th percentile improved by 57.8%

SDM’15, JMLR’16

ML for Systems - Guidelines

#1 Explore multiple domain-specific ways to formulate a problem

#2 Develop mechanisms to guard the system state from modeling errors

#3 Beware of the differences between similar-looking learning tasks

#4 When obtaining data is expensive, utilize existing data by exploring domain-specific
correlation structures between learning tasks

24

Two Problem Instances

q Job scheduling in datacenter environments
q Problem - Long tail of job completions

q Resource allocation in public cloud environments
q Problem - Right-sizing resources for workloads

25

WorkloadA

m1.xlarge m1.large

m1.medium

m2.xlargem2.2xlarge

m2.4xlarge

c1.xlarge

c1.medium

What VM type should I
use for my workload?

Answer is workload specific
and depends on

Cost and performance goals

A1
A2

A3A4
A5

F2

F4

F8 D11v2

D12v2D13v2

n1-standard-1

n1-standard-4

n1-highmem-2 n1-highcpu-8

f1-micro

Deploying a workload to the Cloud…

PARIS SoCC’1726

Specify cost/performance goals

VMI VMII

Run user-workload task

… VMk

Trivial! but expensive!

Run on all VM types?

x
√

Cost Efficient

Accurate

VM Types

Key Ingredient: Cost-Perf Trade-off Map

Objective: Enable informed cost-perf trade-off decisions

27 PARIS SoCC’17

However, learning them
simultaneously
makes it expensive…

Attempting to learn:
• VM type behavior, and
• Workload behaviorVMI VMII

Run user-workload task

… VMk

Trivial! but expensive!

Run on all VM types?

x
√

Cost Efficient

Accurate

VM Types

Our Proposal: PARIS

28 PARIS SoCC’17

Learn
Workload
behaviour

Learn
VM Type
behaviour Attempting to learn:

• VM type behavior, and
• Workload behavior

However, learning them
simultaneously
makes it expensive…

Our Proposal: PARIS

Key Insight: De-couple learning of VM types and workloads
29 PARIS SoCC’17

VM1

Extensive benchmarking to model
relationship between VM types

Light-weight fingerprinting to model
the relationship between user workloads
and benchmark workloads

VM2 VM100…

Run Benchmark Workloads

Run User
-Workload

Cost Efficient AccurateVM Types

Key Insight: De-couple learning of VM types and workloads

Our Proposal: PARIS

g:{Benchmark Data, Fingerprint} à Performance and variability

30 PARIS SoCC’17

ML for Systems - Guidelines

#1 Explore multiple domain-specific ways to formulate a problem

#2 Develop mechanisms to guard the system state from modeling errors

#3 Beware of the differences between similar-looking learning tasks

#4 When obtaining data is expensive, utilize existing data by exploring domain-specific
correlation structures between learning tasks

#5 Develop triggers for re-learning to avoid biased predictions

#6 For cost-efficiency and generalizability, decouple learning of different systemic aspects

ML for Systems - Guidelines

#1 Explore multiple domain-specific ways to formulate a problem

#2 Develop mechanisms to guard the system state from modeling errors

#3 Beware of the differences between similar-looking learning tasks

#4 When obtaining data is expensive, utilize existing data by exploring domain-specific
correlation structures between learning tasks

#5 Develop triggers for re-learning to avoid biased predictions

#6 For cost-efficiency and generalizability, decouple learning of different systemic aspects

Neeraja J. Yadwadkar
neeraja@cs.stanford.edu

Machine Learning for Resource Management
in the Datacenter and the Cloud

