
Using on-line power modeling for server power capping

Madhu Saravana Sibi Govidan
1
, Charles Lefurgy

2
, and Ajay Dholakia

2

University of Texas at Austin
1
 and IBM

2

sibi@cs.utexas.edu, lefurgy@us.ibm.com, adholak@us.ibm.com

Abstract-- We have developed a self-tuning feedback

controller that caps the power consumed by a server to a

user-defined budget. The controller’s parameters are tuned

dynamically by computing an internal model of the

server’s power consumption and how it changes with

frequency. This allows the controller to adapt in response

to changing workload and changing system configuration.
The power model encompasses both clock modulation and

voltage-frequency scaling actuators so they can be used

together for power capping. We show the self-tuning

controller achieves acceptable settling times and has

application performance similar to a controller based on

fixed parameters that are determined off-line. The self-

tuning controller saves the vendor time in determining

good controller parameters and adjusts to unforeseen

workloads and server configurations.

1. Introduction

The increasing power consumption of server systems

is a serious problem in Internet Data Centers (IDC),

leading to increased cooling costs, reduced performance

and availability of the servers. One response from industry

has been the development of power capping, a mechanism

to control a server’s power consumption to fit within a

particular operating power budget. In the last few years

IBM, HP, and Intel have offered a power capping feature in
their products [4][5][6]. Current power capping solutions

work by adjusting the microprocessor speed to keep the

overall server power within the available power budget.

An important use of power capping is as a safety net

that allows system designers to use cheaper, smaller power

supplies that do not provide complete redundancy during

failure. If a supply fails, the remaining one can usually run

the server at full performance. However, some demanding

workloads will require too much power and in this case,

the power capping controller slows the system to a safe

power consumption level. It is important that a power
capping controller settle to a new power budget or adapt to

a new workload quickly so that a redundant supply does

not experience overload and thereby fail. A prior study [8]

placed the power supply time constraint at the order of 1

second for blade servers. Application performance under a

power cap is a less important metric, since failures are rare

and some degradation in performance is an acceptable

alternative to turning off the server completely.

Power capping controllers based on control theory take

parameters that determine the controller’s settling time

under specific loads. These parameters are set based on

power consumption models for the server – models that
predict the relationship between the actuators for

controlling microprocessor speed and the resulting power

consumption. The precise relationship depends on multiple

dimensions, including the demand of the workload, the

configuration of the server (hot-plug components), and

environmental conditions (temperature and airflow).

It is typical today for power capping controllers to use

static parameters that do not change as the server operates.
The parameters may be fixed at manufacturing time, which

can add to design and validation time. Alternatively, the

firmware runs a calibration workload at boot time, taking

power measurements at fast and slow speed settings, and

determining the parameters. A static controller that is

optimized for a particular workload on a typical hardware

configuration, running under typical environmental

conditions, is practical only if the server is used in this

limited manner. In practice, each of these multi-

dimensional parameters can change and it is often possible

for multiple parameters to change together. Therefore, a
fixed controller is likely not to have acceptable settling

time and provide good performance all the time. This is the

appeal for a self-tuning controller that learns the server

power model dynamically as it changes.

It is important to note that an optimal static controller

for a given set of operating parameters may still achieve

better metrics than a self-tuning controller which must take

some time to learn its parameters. The value of a self-

tuning controller is in shortening the vendor’s product

schedule by eliminating the need for long periods of pre-

production and manufacturing time characterization across

a large set of workloads, configurations, and environmental
conditions. Additionally, the self-tuning controller may

deal more appropriately with situations not covered during

characterization and testing of fixed controllers.

In this paper, we describe an on-line, power modeling

methodology that can be implemented at the system level

in a self-tuning power-capping controller. Our results show

that the controller achieves acceptable settling times, but

without off-line effort to find appropriate fixed parameters.

This paper makes the following contributions:

1. We present the design of a piece-wise power

controller that can use both dynamic voltage and frequency
scaling (P-states) and clock modulation (T-states) to meet a

requested power cap. In section 3, we describe the system

under test and its power controller.

2. We present an on-line method of deriving a system-

level power model that can be used to tune the power

capping controller. In section 4, we discuss the design and

operation of the on-line modeler.

3. We directly measure the settling time of the power

capping controller and present the first published results.

120

140

160

180

200

220

240

260

280

0 1000 2000 3000 4000

Frequency (MHz)

M
a

x
1
 s

e
c
o
n

d
 m

o
v
in

g
 a

v
e
ra

g
e

 p
o

w
e
r
(W

)

LINPACK

STREAM triad

galgel

ssj2008_70

DAXPY

P-state region

T-state region

Figure 1: Power consumption of Server X.

4. Our results in section 5 show that an on-line power

model can be as effective as an off-line, static model for

capping power on our server. The main benefit is to save

the manufacturer time in exhaustively searching for good,

static controller parameters that work over many workloads

and configurations, and guard against unforeseen cases.

2. Related work

Previous power capping studies [1][2][3][10] use fixed

constants for the parameters of proportional or

proportional-integral controllers and have not fully

evaluated settling time for a wide range of application and

configurations. We directly measure how settling time

changes with a fixed-parameter controller and compare it
to a self-tuning controller.

A different type of controller, called “ad-hoc

controller”, works by incrementing or decrementing the

performance state of the processor by one unit to move

measured power towards the power cap. Ad-hoc control is

not recommended since it exhibits steady-state error that

prevents it from settling precisely [1]. However, we find

that the ad-hoc controller has useful properties for deriving

a new power model when the present model fails. One of

the major contributions of our work is to combine an ad-

hoc controller together with a standard P-controller to
create a self-tuning, power-capping controller.

Another study [2] has looked at using piece-wise linear

models characterized off-line for dynamic voltage and

frequency scaling (DVFS) and clock modulation actuators.

We extend this by developing a method for on-line

modeling and demonstrate its operation.

Prior off-line power models of servers relate

component utilization to power [7]. We believe our work is

unique in that it uses actual power measurements, instead

of performance counters or utilization, to compute on-line

power models to relate frequency to power.

3. Piece-wise controller

A prior study [1] designs and evaluates a P-controller

that maintains the power supply load of a server. The

controller’s parameter is determined using off-line

modeling. This controller only uses the clock modulation

actuator of the microprocessor. For our study, we borrow

this controller and build on it. In this section, we extend the

controller to account for the different system power-
performance response seen under clock modulation and

DVFS controls. This allows our controller to work on

systems that provide both types of control or only one type

of control.

3.1. Power actuators
Our primary experiments are performed on an IBM

HS21 blade server called “Server X”. This server has two

3.0 GHz Intel 5160 dual-core (80 W) processors, 4GB

memory, 1 disk, and two 1 Gb/s Ethernet ports. We utilize

two mechanisms to control power consumption. First, we

use P-states (DVFS) that set both the processor voltage and
frequency. Server X has P-states of 2.000, 2.333, 2.667,

and 3.000 GHz. The higher the frequency, the higher the

corresponding voltage level. Second, we use T-states

(“clock modulation” or “clock throttling”) to operate the

system below 2.0 GHz to extend the power capping range.

The T-states use the voltage level of the 2.0 GHz P-state.

There are 8 states that modulate the operation of the clock

in steps of 12.5%. Table 1 shows how P-states and T-states

are combined to provide 11 natural effective frequencies

that the controller can select during a control interval.

Server X has no actuators to directly control memory
power (20 W maximum). The processors are the primary

consumers of power in the system and controlling the

processor frequency alone provides a wide range for the

power cap setting. Slowing the frequency indirectly affects

memory power by slowing the request rate. Prior work in

power control has reached similar conclusions [1][2][3].

Figure 1 shows power consumption of Server X for 30

workloads. The maximum 1 second moving average of

power for fixed-frequency runs is plotted. We observe 1)

the relationship between processor frequency and server

power is piece-wise linear (correlation coefficient R2 values
> 0.99 in each region) and it is predictable and 2) the

specific power-to-frequency ratio varies across workloads.

Above 2 GHz, is the P-state region, and below 2 GHz, is

the T-state region. In this server, the use of T-states

significantly extends the power capping range of the server

over using P-states alone. By using T-states, the minimum

server power cap setting is about 150 W. If only P-states

Controller selected
performance state

Processor
P-state

Processor
T-state

Effective
frequency

 0 3.000 GHz 100.0% 3.000 GHz

 1 2.667 GHz 100.0% 2.667 GHz

 2 2.333 GHz 100.0% 2.333 GHz

 3 2.000 GHz 100.0% 2.000 GHz

 4 2.000 GHz 87.5% 1.750 GHz

 5 2.000 GHz 75.0% 1.500 GHz

 6 2.000 GHz 62.5% 1.250 GHz

 7 2.000 GHz 50.0% 1.000 GHz

 8 2.000 GHz 37.5% 0.750 GHz

 9 2.000 GHz 25.0% 0.500 GHz

 10 2.000 GHz 12.5% 0.250 GHz

Table 1: Available performance states

were used, then the minimum setting would be about 190

W, limited by the LINPACK workload.

3.2. Prior static controller
The prior controller is a P-controller that selects an

ideal frequency for each control period. The ideal
frequency is realized by a delta-sigma modulator that

modulates between natural frequencies over several control

periods. The controller relies on the following simple, but

effective model that relates power “P” and frequency “f”:

P = A*f + c (1)

This simple model has also proven effective for

DVFS-based capping controllers in other studies

[2][3][7][10]. The power model for the controller is a

single parameter “A” expressing the power-to-frequency

ratio. The constant c is not material to the controller’s

operation or performance [1].
During each control period, the controller measures the

current power Pcurrent and frequency fcurrent and calculates a

new frequency fnew to move the system power toward the

set point (power cap) Ps according to the equation:

fnew = 1/A*(Ps – Pcurrent) + fcurrent (2)

3.3. Piece-wise controller
In Server X, the P-state range and the T-state range

have very different power-to-frequency ratios. Our

modified controller takes two parameters, Ap and At, using

A=Ap, when operating in the P-state range and A= At, when

operating in the T-state range.
When the current frequency and new frequency are in

the same linear region, or the server only has actuators for

one region, then our controller operates like the prior

controller. When the final frequency is not in the same

region, we use a piece-wise linear approach to controlling

power. Our current implementation uses two piece-wise

linear regions, but it could be adapted to handle more

regions if new actuators were added to servers, or to

approximate non-linearity in the power consumption.

Figure 2 shows how the piece-wise controller crosses

between linear regions. Assume that the system is currently
operating at 2.67 GHz and the power cap is suddenly

changed from 240 W to 160 W. First, the controller uses

A= Ap and equation 2. Since the result is below 2 GHz (the

end of the P-state region), the controller notes that the P-

state will change to 2 GHz and now it tries to find the

appropriate T-state. This is done by applying equation 2

again using A= At, fcurrent = 2 GHz (the crossover

frequency), and Pcurrent = P(2 GHz) estimated by using

equation 3.

P(f) = (2 GHz – f)*Ap + Pcurrent (3)

Since our system only has two regions, we simplify
our implementation a bit. The controller first uses the

current region model to estimate the power at the crossover

point of 2 GHz using equation 3 and the appropriate choice

for A. Using the crossover power and the desired set point,

the controller chooses either Ap or At to go in the desired

direction from 2 GHz. This works even if the current and

new frequencies are in the same region.

3.4. Implementation
Our power controller prototype is implemented in

firmware running on the service processor that already
exists on the blade server for remote management. The

controller uses existing power measurement circuits in the

server to read the 12V bulk DC power supply consumption

every 1 ms with a precision of 0.1 W. We use this to create

the 1 second moving average and 64 ms moving average of

power used by the controller. The service processor sets the

P-state and T-state used by the microprocessors.

4. On-line power modeling

The prior work on power control for servers has done

extensive off-line characterization of the servers to set the

power model parameters used by the controller

[1][2][3][10]. Selecting good parameters is extremely

important to ensure that the system settles to a given power

cap within the desired time. If this requirement is not met,

then the system will not be stable, and could even oscillate

between the highest and lowest frequencies. In this section,

we extend the controller introduced in Section 3 to learn an

appropriate model that will allow the power to settle

quickly.

4.1. Data collection
Prior studies that use off-line models generate them by

running the system at different frequencies or utilizations

and measuring the resulting power consumption. Our

insight for on-line model creation is that the power capping

controller itself can provide this data. As the controller is

running, it measures power consumed during the last

control interval and knows the frequency state of the

processors. We use this stream of data for refining the

power model and keeping it up-to-date as the workload and
system configuration change. This means that the system

does not need to spend any overhead time probing different

performance states to find their power consumption.

4.2. Algorithm and implementation
Figure 3 illustrates the on-line power model and

controller interaction. It operates as follows:

1. Every 64 ms control interval, the current performance

state and 64 ms moving average power measurement are

recorded into a table in the service processor. This table

Frequency (GHz)

Power

2.0

1

2.67

160 W

fnew

2

Pcurrent=240 W

Pcrossover

Figure 2: Controller driven by on-line power model.

holds up to four recent samples for a given performance
state. As we assume that recent past is a good predictor

of the near future, power samples older than 512 ms are

discarded.

2. After updating the table, we perform two linear

regressions with the current table values to update Ap

and At. If the correlation coefficient R2 > 0.9, the new

power model is accepted for use.

3. Normally, our system uses the piece-wise P-Controller

for power capping. Under the following two scenarios,

our system discards the table data and starts using the ad-

hoc controller:
a. When the correlation coefficient of the regression

R2 is < 0.9. This occurs when the workload

demand changes quickly.

b. If the 1 second average power has remained above

or below the power budget by 1 Watt for the last 6

control periods (empirically found to work well).

4. The ad-hoc controller works as follows: it lowers the

processors by 1 performance state if either the 1

second or 64 ms average power is above the power

budget. Otherwise, if the 64 ms average power is

below the power cap, the ad-hoc controller raises the
processors by 1 performance state.

5. While the ad-hoc controller is being used, power and

performance state data is collected into the table.

When the correlation coefficient (for either Ap or At)

> 0.9, we use the piece-wise P-controller.

After most regressions, R2 is greater than 0.9 and the

power model is accepted for use. However, when certain

scenarios, as described in 3a and 3b, occur, we fall back to

the ad-hoc controller because the power models via

regression are not accurate enough. Using the ad-hoc

controller achieves two things: 1) the ad-hoc controller
helps hold the power cap for two control intervals until the

new power model is determined and 2) it guarantees a

change in processor frequency, which in turn provides new

measurement points for rebuilding an accurate power

model. Two control intervals after falling back to the ad-

hoc controller, the table has two recent power

measurements at two different frequencies and regression

can proceed. This yields R2 = 1 which triggers use of the

piece-wise P-controller. Using the ad-hoc controller for

longer periods would result in steady-state error. Thus, our

algorithm combines the ad-hoc and P-controllers to achieve

better robustness than using either alone.

In real deployments we suggest using a filtering stage
before storing the 64 ms power samples in the table. It is

important that the power and frequency data points be

correlated with each other to derive an accurate model. If

the frequency changed in the middle of a 64 ms control

interval for a reason besides capping (due to user control,

emergency temperature reduction, etc.), then the data point

is discarded since it is not correlated with the desired

frequency used by the controller. In our experiments, no

data points were filtered out because the frequency was

only changed by the power capping controller.

5. Results

Three identical runs are used to determine each

experimental value reported. For settling time results, the

maximum value was picked (to be conservative). For

power measurement results, the average value was used.

In addition to running experiments on Server X, we also

introduce Server Y which has half the processors and

memory of Server X. Our benchmark set is comprised of
30 workloads, including SPEC CPU2000 (rate mode),

DAXPY, LINPACK, the triad phase of STREAM, and the

SPECpower_ssj2008 70% load phase.

Table 2 shows the range of power models across all

workloads on each server. The data for Server X comes

from the slopes in Figure 1. The Average column shows

the average model. The P-controller “A” parameter in [1] is

selected using this average. This choice provides similar

control performance (settling time) for the minimum and

maximum workloads.

5.1. Workload variation
Now we examine how different workloads respond to

different choices of static power model. In this experiment

we exercise Server X in the P-state region using a broad

range of values for Ap and graph the settling time in for

power caps of 190, 200, and 210 W. The range of Ap is

selected to span the range of models for Server X and

server Y in Table 2. At is fixed to be 18.4 W/GHz which is

the average from Table 2.

Our firmware tracks each episode when the power

overshoots the cap and measures the time to return to the

cap. The firmware measures settling time by incrementing
a counter for each 64 ms control period that the 1 second

Figure 3: Controller driven by on-line power model.

Server Region Minimum
(W/GHz)

Maximum
(W/GHz)

Average
(W/GHz)

X T-state 8.2 28.6 18.4
 P-state 41.5 86.3 63.9

Y T-state 4.1 13.6 8.8
 P-state 19.8 41.2 30.5

Table 2: Range of power model across configurations.

moving average power is 1 W above the cap. Once the

power is under the 1 W guard band, then the value of the

counter is recorded as the settling time and the counter is

reset for the next overshoot episode. The maximum settling

time observed across 3 identical runs for each workload

run is shown in Figure 4.

0

500

1000

1500

2000

2500

3000

1
6

.3

2
2

.8

2
9

.3

3
5

.8

4
2

.3

4
8

.8

5
5

.3

6
1

.8

6
3

.9

6
8

.4

7
4

.9

8
1

.4

8
7

.9

Ap (W/GHz)

S
e

tt
lin

g
 t
im

e
 (

m
s
)

Linpack

Acceptable range for

static controller

Static controller

in fig. 5-7

gcc

fma3d

Figure 4: Settling time for Server X with static model.

Our goal is for the 1 second moving average power to

settle within 1 second to within 1 W of the power cap. We

choose a 1 W target because it is an amount of power that

can have a measurable performance impact (~1%) on an

application [1]. This aggressive target will become more
meaningful as power capping and power shifting is

deployed inside future servers to move power between

processors and other components on demand as in [9].

Enforcing such precise power budgets ensures every Watt

of available power may be used.

The results show that only a narrow range of Ap (61.8

– 68.4 W/GHz) allows the settling time to be 1 second or

less across all 30 workloads on Server X. For LINPACK,

when Ap is small, the controller exhibits oscillations in

frequency and does not settle within 5 seconds. In the

worst case, it overshoots a 190 W cap by up to 80 W and

on average runs 22% faster than required to meet the cap.
Finding the acceptable range is time consuming and error

prone for vendors. It took 1 week to collect the data for the

single configuration shown in Figure 4. The vendor must

additionally understand the range of possible workloads

and numerous upgrade configurations over the server’s

expected lifetime of 3-5 years to have confidence in static

parameters.

5.2. Configuration variation
Server configuration has a large effect on acceptable

values of At and Ap. In general, the model parameters
learned for one server configuration do not apply to other

server configurations.

For example, Table 2 shows that workloads on Server

Y correspond to Ap between 19.8 W/GHz and 41.2 W/GHz.

However, if this range were to be used on Server X, it is

clear from that LINPACK would fail to settle in time due

to oscillation in the controller. The reason for this is that

LINPACK on Server X has a maximum power-to-

frequency ratio of 86.3 W/GHz, which corresponds to a

controller gain of over 2 (86.3 / 41.2). The P-controller

must have a gain less than 2 to avoid oscillation [1].

Otherwise, the frequency will change by double the

amount required to settle to the cap.

To avoid large differences in gain, a controller using a

static model would need to re-evaluate it every time the
server is booted or every time hot-plug components are

added or removed.

Section 5.1, shows using an average Ap=63.9 W/GHz

for Server X provides acceptable settling time. However, it

is not clear this method of using an average power-to-

frequency ratio will work for all future servers. If the

minimum and maximum values for the ratio span a wider

range, then a single value of Ap cannot prevent oscillations.

We expect this will be the case for large, many-core

servers. The promise of the self-tuning controller is that it

should adapt with change in core utilization and workload.

5.3. Comparison between static and on-line models
In figures 5-7 we compare a piece-wise controller

using the on-line model to a piece-wise controller that uses

acceptable, average static parameters (At = 18.4 W/Ghz, Ap

= 63.9 W/GHz) as suggested by [1].

Since the range for Server X in Table 2 is not

extremely wide, a static model can have very good control

performance across workloads on this configuration.

Therefore, we do not expect the on-line modeling to have

better settling time or application performance on Server X.

Instead, we are looking to see if it can have substantially
similar performance without the effort involved in finding

and validating fixed controller parameters.

Figure 5 shows the maximum settling time that

occurred. Both achieve the desired settling time of 1

second. LINPACK is a difficult workload for the on-line

model. LINPACK is a non-steady workload that has

dramatic power swings on the order of about 1 second. As

soon as the on-line model adjusts to one phase, the phase

ends and the model no longer works for the next phase and

must be relearned. During the run we observe the controller

using values for Ap that span the range in Table 2. The
good news is that the controller rejects poor models before

settling time becomes too great. For this server, a controller

with an average static value for Ap settles better and does

not suffer a penalty for temporarily using bad power

models found as phases are changing. In the worst-case

analysis, across all runs, the maximum settling time for

self-tuning (LINPACK @ 190 W) is only 13% longer than

the static controller (CFP2000 @ 190 W). We feel this is

an acceptable trade-off for reducing vendor testing time.

Figure 6 shows the time the controller spends

overshooting the cap by more than 1 W. The on-line model

shows improvement for nearly all of the 30 workloads. On
average across 30 workloads, this overshoot happens less

than 1% of the time.

Figure 7 shows results for workload performance in

terms of speedup of the on-line model workloads over the

static model workloads. Results greater than 1 mean the

on-line controller yielded better workload performance

than the static controller. On average, across 30 workloads,

the two controllers have workload performance within

0.5% of each other. This shows that the self-tuning

controller can achieve workload performance similar to the

fixed parameter controller.

Our results show that we have succeeded in
automatically finding controller parameters that achieve

acceptable settling time and yield application performance

similar to a controller using tuned static parameters. The

important point is that the on-line modeling saves the

vendor from doing exhaustive testing to find and validate

the right static parameters and is expected to deal better

with unforeseen workloads or configurations.

6. Conclusion

We developed a self-tuning piece-wise power capping

controller that accounts for different behavior of clock

modulation and DVFS actuators found in servers. It works

by combining a P-controller and an ad-hoc controller in a

novel way to adjust controller parameters as the system

changes behavior. The ad-hoc controller acts as a

temporary backup for the P-controller and provides new

measurement data to form a new power model for the P-

controller to use. The controller settles within 1 second and

achieves application performance within 0.5% of a
controller with tuned static parameters, which is acceptable

for the scenarios under which power capping is used. Most

importantly, the controller saves the vendor time in finding

good, fixed controller parameters.

7. References

[1] C. Lefurgy et al., “Power capping: a prelude to power
shifting”, Cluster Computing, Springer Netherlands, 2007.
[2] Z. Wang et al., “Feedback Control Algorithms for Power
Management of Servers”, Third International Workshop on

Feedback Control Implementation and Design in Computing

Systems and Networks (FeBID), 2008.
[3] R. Raghavendra et al., “No Power Struggles: A Unified Multi-
level Power Management Architecture for the Data Center”,

Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems
(ASPLOS), 2008.
[4] P. Ainsworth et al., Going Green with IBM Systems Director

Active Energy Manager, IBM, 2008.
[5] Hewlett-Packard Development Company, Dynamic Power

Capping TCO and Best Practices White Paper, 2008.
[6] Intel, Dynamic Power Optimization for Higher Server Density

Racks – A Baidu Case Study with Intel Dynamic Power

Technology, 2008.
[7] S. Rivoire et al., “A Comparison of High-Level Full-system
Power Models”, Workshop on Power Aware Computing and
Systems (HotPower), 2008.
[8] T. Brey et al., “BladeCenter Chassis Management”, IBM J.

Res. & Dev., vol. 49, no. 6, November, 2005.
[9] W. Felter et al., "A Performance-Conserving Approach for

Reducing Peak Power Consumption in Server Systems",
Proceedings of the International Conf. on Supercomputing, 2005.
[10] X. Wang and M. Chen, “Cluster-level Feedback Power
Control for Performance Optimization”, IEEE Intl. Symp. on

High-Performance Computer Architecture (HPCA), 2008.

0 500 1000 1500

CINT2000
CFP2000

DAXPY
LINPACK

ssj2008_70
triad

CINT2000
CFP2000

DAXPY
LINPACK

ssj2008_70
triad

CINT2000
CFP2000

DAXPY
LINPACK

ssj2008_70
triad

1
9

0
 W

 c
a

p
2

0
0

 W
 c

a
p

2
1

0
 W

 c
a

p

C
a

p
 a

n
d

 w
o

rk
lo

a
d

Max time for overshoot to settle (ms)

Static

On-line

Note: 0 ms means no overshoot

Figure 5: Settling time for Server X using on-line modeling

with DVFS and throttling actuators

0% 2% 4% 6% 8% 10% 12%

CINT2000

CFP2000

DAXPY

LINPACK

Power_ssj 70%

STREAM triad

All workloads

CINT2000

CFP2000

DAXPY

LINPACK

Power_ssj 70%

STREAM triad

All workloads

CINT2000

CFP2000

DAXPY

LINPACK

Power_ssj 70%

STREAM triad

All workloads

1
9
0
 W

 c
a
p

2
0
0
 W

 c
a
p

2
1
0
 W

 c
a
p

C
a

p
 a

n
d

 w
o

rk
lo

a
d

Average time spent in overshoot (% of workload runtime)

Static

On-line

Note: 0% means no overshoot occurred

Figure 6: Average time spent in overshoot episodes

0.97 0.98 0.99 1 1.01

CINT2000

CFP2000

DAXPY

LINPACK

ssj2008_70

STREAM triad

Avg workload

W
o
rk

lo
a
d

Speedup of on-line controller compared to static controller

190 W cap

200 W cap

210 W cap

Figure 7: Speedup of on-line model compared to static model

