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Abstract-- We have developed a self-tuning feedback 

controller that caps the power consumed by a server to a 

user-defined budget. The controller’s parameters are tuned 

dynamically by computing an internal model of the 

server’s power consumption and how it changes with 

frequency. This allows the controller to adapt in response 

to changing workload and changing system configuration. 
The power model encompasses both clock modulation and 

voltage-frequency scaling actuators so they can be used 

together for power capping. We show the self-tuning 

controller achieves acceptable settling times and has 

application performance similar to a controller based on  

fixed parameters that are determined off-line. The self-

tuning controller saves the vendor time in determining 

good controller parameters and adjusts to unforeseen 

workloads and server configurations. 

1. Introduction 

The increasing power consumption of server systems 

is a serious problem in Internet Data Centers (IDC), 

leading to increased cooling costs, reduced performance 

and availability of the servers. One response from industry 

has been the development of power capping, a mechanism 

to control a server’s power consumption to fit within a 

particular operating power budget. In the last few years 

IBM, HP, and Intel have offered a power capping feature in 
their products [4][5][6]. Current power capping solutions 

work by adjusting the microprocessor speed to keep the 

overall server power within the available power budget. 

An important use of power capping is as a safety net 

that allows system designers to use cheaper, smaller power 

supplies that do not provide complete redundancy during 

failure. If a supply fails, the remaining one can usually run 

the server at full performance. However, some demanding 

workloads will require too much power and in this case, 

the power capping controller slows the system to a safe 

power consumption level. It is important that a power 
capping controller settle to a new power budget or adapt to 

a new workload quickly so that a redundant supply does 

not experience overload and thereby fail. A prior study [8] 

placed the power supply time constraint at the order of 1 

second for blade servers. Application performance under a 

power cap is a less important metric, since failures are rare 

and some degradation in performance is an acceptable 

alternative to turning off the server completely. 

Power capping controllers based on control theory take 

parameters that determine the controller’s settling time 

under specific loads. These parameters are set based on 

power consumption models for the server – models that 
predict the relationship between the actuators for 

controlling microprocessor speed and the resulting power 

consumption. The precise relationship depends on multiple 

dimensions, including the demand of the workload, the 

configuration of the server (hot-plug components), and 

environmental conditions (temperature and airflow).  

It is typical today for power capping controllers to use 

static parameters that do not change as the server operates. 
The parameters may be fixed at manufacturing time, which 

can add to design and validation time. Alternatively, the 

firmware runs a calibration workload at boot time, taking 

power measurements at fast and slow speed settings, and 

determining the parameters. A static controller that is 

optimized for a particular workload on a typical hardware 

configuration, running under typical environmental 

conditions, is practical only if the server is used in this 

limited manner. In practice, each of these multi-

dimensional parameters can change and it is often possible 

for multiple parameters to change together. Therefore, a 
fixed controller is likely not to have acceptable settling 

time and provide good performance all the time. This is the 

appeal for a self-tuning controller that learns the server 

power model dynamically as it changes. 

It is important to note that an optimal static controller 

for a given set of operating parameters may still achieve 

better metrics than a self-tuning controller which must take 

some time to learn its parameters. The value of a self-

tuning controller is in shortening the vendor’s product 

schedule by eliminating the need for long periods of pre-

production and manufacturing time characterization across 

a large set of workloads, configurations, and environmental 
conditions. Additionally, the self-tuning controller may 

deal more appropriately with situations not covered during 

characterization and testing of fixed controllers. 

In this paper, we describe an on-line, power modeling 

methodology that can be implemented at the system level 

in a self-tuning power-capping controller. Our results show 

that the controller achieves acceptable settling times, but 

without off-line effort to find appropriate fixed parameters. 

This paper makes the following contributions: 

1. We present the design of a piece-wise power 

controller that can use both dynamic voltage and frequency 
scaling (P-states) and clock modulation (T-states) to meet a 

requested power cap. In section 3, we describe the system 

under test and its power controller. 

2. We present an on-line method of deriving a system-

level power model that can be used to tune the power 

capping controller. In section 4, we discuss the design and 

operation of the on-line modeler. 

3. We directly measure the settling time of the power 

capping controller and present the first published results. 
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Figure 1: Power consumption of Server X. 

4. Our results in section 5 show that an on-line power 

model can be as effective as an off-line, static model for 

capping power on our server. The main benefit is to save 

the manufacturer time in exhaustively searching for good, 

static controller parameters that work over many workloads 

and configurations, and guard against unforeseen cases. 

2. Related work 

Previous power capping studies [1][2][3][10] use fixed 

constants for the parameters of proportional or 

proportional-integral controllers and have not fully 

evaluated settling time for a wide range of application and 

configurations. We directly measure how settling time 

changes with a fixed-parameter controller and compare it 
to a self-tuning controller.  

A different type of controller, called “ad-hoc 

controller”, works by incrementing or decrementing the 

performance state of the processor by one unit to move 

measured power towards the power cap. Ad-hoc control is 

not recommended since it exhibits steady-state error that 

prevents it from settling precisely [1]. However, we find 

that the ad-hoc controller has useful properties for deriving 

a new power model when the present model fails. One of 

the major contributions of our work is to combine an ad-

hoc controller together with a standard P-controller to 
create a self-tuning, power-capping controller. 

Another study [2] has looked at using piece-wise linear 

models characterized off-line for dynamic voltage and 

frequency scaling (DVFS) and clock modulation actuators. 

We extend this by developing a method for on-line 

modeling and demonstrate its operation.  

Prior off-line power models of servers relate 

component utilization to power [7]. We believe our work is 

unique in that it uses actual power measurements, instead 

of performance counters or utilization, to compute on-line 

power models to relate frequency to power. 

3. Piece-wise controller 

A prior study [1] designs and evaluates a P-controller 

that maintains the power supply load of a server. The 

controller’s parameter is determined using off-line 

modeling. This controller only uses the clock modulation 

actuator of the microprocessor. For our study, we borrow 

this controller and build on it. In this section, we extend the 

controller to account for the different system power-
performance response seen under clock modulation and 

DVFS controls. This allows our controller to work on 

systems that provide both types of control or only one type 

of control. 

3.1. Power actuators 
Our primary experiments are performed on an IBM 

HS21 blade server called “Server X”. This server has two 

3.0 GHz Intel 5160 dual-core (80 W) processors, 4GB 

memory, 1 disk, and two 1 Gb/s Ethernet ports. We utilize 

two mechanisms to control power consumption. First, we 

use P-states (DVFS) that set both the processor voltage and 
frequency. Server X has P-states of 2.000, 2.333, 2.667, 

and 3.000 GHz. The higher the frequency, the higher the 

corresponding voltage level. Second, we use T-states 

(“clock modulation” or “clock throttling”) to operate the 

system below 2.0 GHz to extend the power capping range.  

The T-states use the voltage level of the 2.0 GHz P-state.  

There are 8 states that modulate the operation of the clock 

in steps of 12.5%. Table 1 shows how P-states and T-states 

are combined to provide 11 natural effective frequencies 

that the controller can select during a control interval. 

Server X has no actuators to directly control memory 
power (20 W maximum). The processors are the primary 

consumers of power in the system and controlling the 

processor frequency alone provides a wide range for the 

power cap setting. Slowing the frequency indirectly affects 

memory power by slowing the request rate. Prior work in 

power control has reached similar conclusions [1][2][3]. 

Figure 1 shows power consumption of Server X for 30 

workloads. The maximum 1 second moving average of 

power for fixed-frequency runs is plotted. We observe 1) 

the relationship between processor frequency and server 

power is piece-wise linear (correlation coefficient R2 values 
> 0.99 in each region) and it is predictable and 2) the 

specific power-to-frequency ratio varies across workloads. 

Above 2 GHz, is the P-state region, and below 2 GHz, is 

the T-state region. In this server, the use of T-states 

significantly extends the power capping range of the server 

over using P-states alone. By using T-states, the minimum 

server power cap setting is about 150 W. If only P-states 

Controller selected 
performance state 

Processor 
P-state 

Processor 
T-state 

Effective 
frequency 

 0 3.000 GHz 100.0% 3.000 GHz 

 1 2.667 GHz 100.0% 2.667 GHz 

 2 2.333 GHz 100.0% 2.333 GHz 

 3 2.000 GHz 100.0% 2.000 GHz 

 4 2.000 GHz 87.5% 1.750 GHz 

 5 2.000 GHz 75.0% 1.500 GHz 

 6 2.000 GHz 62.5% 1.250 GHz 

 7 2.000 GHz 50.0% 1.000 GHz 

 8 2.000 GHz 37.5% 0.750 GHz 

 9 2.000 GHz 25.0% 0.500 GHz 

 10 2.000 GHz 12.5% 0.250 GHz 

Table 1: Available performance states 



were used, then the minimum setting would be about 190 

W, limited by the LINPACK workload.  

3.2. Prior static controller 
The prior controller is a P-controller that selects an 

ideal frequency for each control period. The ideal 
frequency is realized by a delta-sigma modulator that 

modulates between natural frequencies over several control 

periods. The controller relies on the following simple, but 

effective model that relates power “P” and frequency “f”:  

P = A*f + c (1) 

This simple model has also proven effective for 

DVFS-based capping controllers in other studies 

[2][3][7][10]. The power model for the controller is a 

single parameter “A” expressing the power-to-frequency 

ratio. The constant c is not material to the controller’s 

operation or performance [1]. 
During each control period, the controller measures the 

current power Pcurrent and frequency fcurrent and calculates a 

new frequency fnew to move the system power toward the 

set point (power cap) Ps according to the equation: 

fnew = 1/A*(Ps – Pcurrent) + fcurrent (2) 

3.3. Piece-wise controller 
In Server X, the P-state range and the T-state range 

have very different power-to-frequency ratios. Our 

modified controller takes two parameters, Ap and At, using 

A=Ap, when operating in the P-state range and A= At, when 

operating in the T-state range. 
When the current frequency and new frequency are in 

the same linear region, or the server only has actuators for 

one region, then our controller operates like the prior 

controller. When the final frequency is not in the same 

region, we use a piece-wise linear approach to controlling 

power. Our current implementation uses two piece-wise 

linear regions, but it could be adapted to handle more 

regions if new actuators were added to servers, or to 

approximate non-linearity in the power consumption. 

Figure 2 shows how the piece-wise controller crosses 

between linear regions. Assume that the system is currently 
operating at 2.67 GHz and the power cap is suddenly 

changed from 240 W to 160 W. First, the controller uses 

A= Ap and equation 2. Since the result is below 2 GHz (the 

end of the P-state region), the controller notes that the P-

state will change to 2 GHz and now it tries to find the 

appropriate T-state. This is done by applying equation 2 

again using A= At, fcurrent = 2 GHz (the crossover 

frequency), and Pcurrent = P(2 GHz) estimated by using 

equation 3. 

P(f) = (2 GHz – f)*Ap + Pcurrent  (3) 

Since our system only has two regions, we simplify 
our implementation a bit. The controller first uses the 

current region model to estimate the power at the crossover 

point of 2 GHz using equation 3 and the appropriate choice 

for A. Using the crossover power and the desired set point, 

the controller chooses either  Ap or At to go in the desired 

direction from 2 GHz. This works even if the current and 

new frequencies are in the same region. 

3.4. Implementation 
Our power controller prototype is implemented in 

firmware running on the service processor that already 
exists on the blade server for remote management. The 

controller uses existing power measurement circuits in the 

server to read the 12V bulk DC power supply consumption 

every 1 ms with a precision of 0.1 W. We use this to create 

the 1 second moving average and 64 ms moving average of 

power used by the controller. The service processor sets the 

P-state and T-state used by the microprocessors. 

4. On-line power modeling 

The prior work on power control for servers has done 

extensive off-line characterization of the servers to set the 

power model parameters used by the controller 

[1][2][3][10]. Selecting good parameters is extremely 

important to ensure that the system settles to a given power 

cap within the desired time. If this requirement is not met, 

then the system will not be stable, and could even oscillate 

between the highest and lowest frequencies. In this section, 

we extend the controller introduced in Section 3 to learn an 

appropriate model that will allow the power to settle 

quickly. 

4.1. Data collection 
Prior studies that use off-line models generate them by 

running the system at different frequencies or utilizations 

and measuring the resulting power consumption. Our 

insight for on-line model creation is that the power capping 

controller itself can provide this data. As the controller is 

running, it measures power consumed during the last 

control interval and knows the frequency state of the 

processors. We use this stream of data for refining the 

power model and keeping it up-to-date as the workload and 
system configuration change. This means that the system 

does not need to spend any overhead time probing different 

performance states to find their power consumption. 

4.2. Algorithm and implementation 
Figure 3 illustrates the on-line power model and 

controller interaction. It operates as follows: 

1. Every 64 ms control interval, the current performance 

state and 64 ms moving average power measurement are 

recorded into a table in the service processor. This table 

 

Frequency (GHz) 

Power 

2.0 

1 

2.67 

160 W 

fnew 

2 

Pcurrent=240 W 

Pcrossover 

Figure 2: Controller driven by on-line power model. 



holds up to four recent samples for a given performance 
state.  As we assume that recent past is a good predictor 

of the near future, power samples older than 512 ms are 

discarded. 

2. After updating the table, we perform two linear 

regressions with the current table values to update Ap 

and At. If the correlation coefficient R2 > 0.9, the new 

power model is accepted for use. 

3. Normally, our system uses the piece-wise P-Controller 

for power capping. Under the following two scenarios, 

our system discards the table data and starts using the ad-

hoc controller: 
a. When  the correlation coefficient of the regression 

R2 is < 0.9. This occurs when the workload 

demand changes quickly. 

b. If the 1 second average power has remained above 

or below the power budget by 1 Watt for the last 6 

control periods (empirically found to work well). 

4. The ad-hoc controller works as follows: it lowers the 

processors by 1 performance state if either the 1 

second or 64 ms average power is above the power 

budget.  Otherwise, if the 64 ms average power is 

below the power cap, the ad-hoc controller raises the 
processors by 1 performance state. 

5. While the ad-hoc controller is being used, power and 

performance state data is collected into the table. 

When the correlation coefficient (for either Ap or At ) 

> 0.9, we use the piece-wise P-controller. 

 

After most regressions, R2 is greater than 0.9 and the 

power model is accepted for use. However, when certain 

scenarios, as described in 3a and 3b, occur, we fall back to 

the ad-hoc controller because the power models via 

regression are not accurate enough. Using the ad-hoc 

controller achieves two things: 1) the ad-hoc controller 
helps hold the power cap for two control intervals until the 

new power model is determined and 2) it guarantees a 

change in processor frequency, which in turn provides new 

measurement points for rebuilding an accurate power 

model. Two control intervals after falling back to the ad-

hoc controller, the table has two recent power 

measurements at two different frequencies and regression 

can proceed. This yields R2 = 1 which triggers use of the 

piece-wise P-controller. Using the ad-hoc controller for 

longer periods would result in steady-state error. Thus, our 

algorithm combines the ad-hoc and P-controllers to achieve 

better robustness than using either alone. 

In real deployments we suggest using a filtering stage 
before storing the 64 ms power samples in the table. It is 

important that the power and frequency data points be 

correlated with each other to derive an accurate model. If 

the frequency changed in the middle of a 64 ms control 

interval for a reason besides capping (due to user control, 

emergency temperature reduction, etc.), then the data point 

is discarded since it is not correlated with the desired 

frequency used by the controller. In our experiments, no 

data points were filtered out because the frequency was 

only changed by the power capping controller. 

5. Results 

Three identical runs are used to determine each 

experimental value reported. For settling time results, the 

maximum value was picked (to be conservative). For 

power measurement results, the average value was used.  

In addition to running experiments on Server X, we also 

introduce Server Y which has half the processors and 

memory of Server X. Our benchmark set is comprised of 
30 workloads, including SPEC CPU2000 (rate mode), 

DAXPY, LINPACK, the triad phase of STREAM, and the 

SPECpower_ssj2008 70% load phase. 

Table 2 shows the range of power models across all 

workloads on each server. The data for Server X comes 

from the slopes in Figure 1. The Average column shows 

the average model. The P-controller “A” parameter in [1] is 

selected using this average. This choice provides similar 

control performance (settling time) for the minimum and 

maximum workloads. 

5.1. Workload variation 
Now we examine how different workloads respond to 

different choices of static power model. In this experiment 

we exercise Server X in the P-state region using a broad 

range of values for Ap and graph the settling time in  for 

power caps of 190, 200, and 210 W. The range of Ap is 

selected to span the range of models for Server X and 

server Y in Table 2. At is fixed to be 18.4 W/GHz which is 

the average from Table 2.  

Our firmware tracks each episode when the power 

overshoots the cap and measures the time to return to the 

cap. The firmware measures settling time by incrementing 
a counter for each 64 ms control period that the 1 second 

 
Figure 3: Controller driven by on-line power model. 

Server Region Minimum 
(W/GHz) 

Maximum 
(W/GHz) 

Average 
(W/GHz) 

     

X T-state 8.2 28.6 18.4 
 P-state 41.5 86.3 63.9 
     

Y T-state 4.1 13.6 8.8 
 P-state 19.8 41.2 30.5 
     

Table 2: Range of power model across configurations. 

 



moving average power is 1 W above the cap. Once the 

power is under the 1 W guard band, then the value of the 

counter is recorded as the settling time and the counter is 

reset for the next overshoot episode. The maximum settling 

time observed across 3 identical runs for each workload 

run is shown in Figure 4.  
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Figure 4: Settling time for Server X with static model.  

Our goal is for the 1 second moving average power to 

settle within 1 second to within 1 W of the power cap. We 

choose a 1 W target because it is an amount of power that 

can have a measurable performance impact (~1%) on an 

application [1]. This aggressive target will become more 
meaningful as power capping and power shifting is 

deployed inside future servers to move power between 

processors and other components on demand as in [9]. 

Enforcing such precise power budgets ensures every Watt 

of available power may be used. 

The results show that only a narrow range of Ap (61.8 

– 68.4 W/GHz) allows the settling time to be 1 second or 

less across all 30 workloads on Server X. For LINPACK, 

when Ap is small, the controller exhibits oscillations in 

frequency and does not settle within 5 seconds. In the 

worst case, it overshoots a 190 W cap by up to 80 W and 

on average runs 22% faster than required to meet the cap. 
Finding the acceptable range is time consuming and error 

prone for vendors. It took 1 week to collect the data for the 

single configuration shown in Figure 4. The vendor must 

additionally understand the range of possible workloads 

and numerous upgrade configurations over the server’s 

expected lifetime of 3-5 years to have confidence in static 

parameters. 

5.2. Configuration variation 
Server configuration has a large effect on acceptable 

values of At and Ap. In general, the model parameters 
learned for one server configuration do not apply to other 

server configurations.  

For example, Table 2 shows that workloads on Server 

Y correspond to Ap between 19.8 W/GHz and 41.2 W/GHz. 

However, if this range were to be used on Server X, it is 

clear from  that LINPACK would fail to settle in time due 

to oscillation in the controller. The reason for this is that 

LINPACK on Server X has a maximum power-to-

frequency ratio of 86.3 W/GHz, which corresponds to a 

controller gain of over 2 (86.3 / 41.2). The P-controller 

must have a gain less than 2 to avoid oscillation [1]. 

Otherwise, the frequency will change by double the 

amount required to settle to the cap. 

To avoid large differences in gain, a controller using a 

static model would need to re-evaluate it every time the 
server is booted or every time hot-plug components are 

added or removed. 

Section 5.1, shows using an average Ap=63.9 W/GHz 

for Server X provides acceptable settling time. However, it 

is not clear this method of using an average power-to-

frequency ratio will work for all future servers. If the 

minimum and maximum values for the ratio span a wider 

range, then a single value of Ap cannot prevent oscillations. 

We expect this will be the case for large, many-core 

servers. The promise of the self-tuning controller is that it 

should adapt with change in core utilization and workload.  

5.3. Comparison between static and on-line models 
In figures 5-7 we compare a piece-wise controller 

using the on-line model to a piece-wise controller that uses 

acceptable, average static parameters (At = 18.4 W/Ghz, Ap 

= 63.9 W/GHz) as suggested by [1]. 

Since the range for Server X in Table 2 is not 

extremely wide, a static model can have very good control 

performance across workloads on this configuration. 

Therefore, we do not expect the on-line modeling to have 

better settling time or application performance on Server X. 

Instead, we are looking to see if it can have substantially 
similar performance without the effort involved in finding 

and validating fixed controller parameters. 

Figure 5 shows the maximum settling time that 

occurred. Both achieve the desired settling time of 1 

second. LINPACK is a difficult workload for the on-line 

model. LINPACK is a non-steady workload that has 

dramatic power swings on the order of about 1 second. As 

soon as the on-line model adjusts to one phase, the phase 

ends and the model no longer works for the next phase and 

must be relearned. During the run we observe the controller 

using values for Ap that span the range in Table 2. The 
good news is that the controller rejects poor models before 

settling time becomes too great. For this server, a controller 

with an average static value for Ap settles better and does 

not suffer a penalty for temporarily using bad power 

models found as phases are changing. In the worst-case 

analysis, across all runs, the maximum settling time for 

self-tuning (LINPACK @ 190 W) is only 13% longer than 

the static controller (CFP2000 @ 190 W). We feel this is 

an acceptable trade-off for reducing vendor testing time. 

Figure 6 shows the time the controller spends 

overshooting the cap by more than 1 W. The on-line model 

shows improvement for nearly all of the 30 workloads.  On 
average across 30 workloads, this overshoot happens less 

than 1% of the time. 

Figure 7 shows results for workload performance in 

terms of speedup of the on-line model workloads over the 

static model workloads. Results greater than 1 mean the 

on-line controller yielded better workload performance 



than the static controller. On average, across 30 workloads, 

the two controllers have workload performance within 

0.5% of each other. This shows that the self-tuning 

controller can achieve workload performance similar to the 

fixed parameter controller. 

Our results show that we have succeeded in 
automatically finding controller parameters that achieve 

acceptable settling time and yield application performance 

similar to a controller using tuned static parameters. The 

important point is that the on-line modeling saves the 

vendor from doing exhaustive testing to find and validate 

the right static parameters and is expected to deal better 

with unforeseen workloads or configurations. 

6. Conclusion 

We developed a self-tuning piece-wise power capping 

controller that accounts for different behavior of clock 

modulation and DVFS actuators found in servers. It works 

by combining a P-controller and an ad-hoc controller in a 

novel way to adjust controller parameters as the system 

changes behavior. The ad-hoc controller acts as a 

temporary backup for the P-controller and provides new 

measurement data to form a new power model for the P-

controller to use. The controller settles within 1 second and 

achieves application performance within 0.5% of a 
controller with tuned static parameters, which is acceptable 

for the scenarios under which power capping is used. Most 

importantly, the controller saves the vendor time in finding 

good, fixed controller parameters. 
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Figure 5: Settling time for Server X using on-line modeling 

with DVFS and throttling actuators 
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Figure 6: Average time spent in overshoot episodes 
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Figure 7: Speedup of on-line model compared to static model 


