

IBM Research and University of Texas at Austin

Using on-line power modeling for server power capping

Madhu Saravana Sibi Govindan, Charles Lefurgy, and Ajay Dholakia

Power capping for servers

Control power consumption of server

- Constrained by power supply
- Constrained by data center

Example: redundant power supply failure

- Redundant supply fails load shifts to remaining supply
- Power supply sees 125% load
- Must reduce supply load from 125% to 100% in 1 second

Prior work and opportunities

- Capping in literature (2006-2008)
 - Use processor frequency to control system power
 - Use static, off-line power models
 - No direct measurement of settling time on real workloads
- What happens when conditions dynamically change?
 - Is an off-line power model enough?
- Can power capping controller learn to adapt?
 - Is on-line power model as good as off-line model?
 - Goal: reduce development time searching for good power model

Contributions

- Develop on-line power models
 - Continuously measure behavior of system at run-time
 - Enable self-tuning controller
- Self-tuning controller performance is acceptable
 - Directly measure settling time of power controllers
- No hand-tuning → saves development time
 - Adapt to different server configurations

Measure power

- Entire power of blade is measured
- Every 64 ms (1 control period)

IBM HS21 blade server

Measure 12V bulk power

0.1 W precision, 2% error

Measure settling time

- Firmware tracks each overshoot of power cap
- Record maximum settling time

HS21 blade (2 - 5160 x86, 4 GB, 1 disk)

Two types of controllers

Settles to 216.0 W CPU speed: 68.8% 5 W Violation

Settles to 211.0 W

No violation

CPU speed: 65.8%

How proportional capping works

- 1. Measure Δ power = $(P_{cap} P_{current})$
- 2. Use power model to find Δ frequency
 - A = expected slope
 - $F_{new} = F_{current} + \Delta P / A$

Using two actuators

- When crossing actuator domains:
 - Estimate power at crossover frequency (2 GHz)
 - Estimate frequency change from crossover frequency

Affect of control parameter A_p on settling time

Affect of control parameter A_p on settling time

June 20, 2009

Our capping controller

Results: settling time

Results: workload performance

Conclusions

- On-line power model achieved results close to best offline power model
- More work required for Linpack
 - Oscillating workloads can be difficult
- Ad-hoc control
 - Useful when power model is unknown
- Future capping studies
 - Would like to see more measurement of settling time and overshoot
 - Improve direct comparisons between capping methods