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Fig. 1. Simplified power distribution hierarchy in a typical Tier-2 data center.

I. INTRODUCTION

The supplementary file of the paper is organized as follows.
Section II introduces the power distribution hierarchy used in
many data centers. Section III describes the controller design
and analysis of the PDU-level power controller. Section IV
discusses the rack-level power controller. Section VI provides
additional implementation details of our control architecture
and additional empirical results on a physical testbed. Section
VII presents our simulation results in large-scale data centers.
Section VIII discusses more related work. Section IX con-
cludes the file.

II. POWER DISTRIBUTION HIERARCHY

In this section, we mainly introduce the power distribution
hierarchy used in many data centers. The power distribution
hierarchy serves as a basis of our hierarchical power control
architecture, which was presented in the paper.

Today’s data centers commonly have a three-level power
distribution hierarchy to support hosted computer servers [1],
though the exact distribution architecture may vary from site
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to site. Figure 1 shows a simplified illustration of the three-
level hierarchy in a typical 1 MW data center. Power from the
utility grid is fed to an Automatic Transfer Switch (ATS). The
ATS connects to both the utility power grid and on-site power
generators. From there, power is supplied to Uninterruptible
Power Supplies (UPS) via multiple independent routes for fault
tolerance. Each UPS supplies a series of Power Distribution
Units (PDUs), which are rated on the order of 75 - 200 kW
each. The PDUs further transform the voltage to support a
group of server racks.

A typical data center may house tens of PDUs. Each PDU
can support approximately 20 to 60 racks while each rack can
include about 10 to 80 computer servers. We assume that the
power limit of the upper level (e.g., the data center) is lower
than the sum of the maximum power limits of all the lower-
level units (e.g., PDUs). This assumption is based on two key
observations of data center operation. First, many data centers
are rapidly increasing their number of hosted servers to support
new business in the short term, while infrastructure upgrades at
upper levels happen over much longer time scales due to cost
considerations. Second, lower level units commonly have non-
uniform workloads and so can rarely reach their power limits
simultaneously. As a result, the cost of power infrastructure
will soon be dominated by the upper-level units (PDUs and
above).

III. PDU-LEVEL POWER CONTROLLER DESIGN AND
ANALYSIS

In this section, we introduce the design and analysis of
the PDU-level power controller. The problem formulation and
system modeling are presented in the main paper. The data
center-level controller is designed in the same way.

A. MPC Controller Design

We apply Model Predictive Control (MPC) theory [2] to
design the controller. MPC is an advanced control technique
that can deal with MIMO control problems with constraints
on the plant and the actuators. This characteristic makes MPC
well suited for power control in data centers.

A model predictive controller optimizes a cost function
defined over a time interval in the future. The controller



uses a system model to predict the control behavior over
P control periods, called the prediction horizon. The control
objective is to select an input trajectory that minimizes the cost
function while satisfying the constraints. An input trajectory
includes the control inputs in the following M control periods,
Abr(k), Abr(k + 1k), ... Abr(k + M — 1]k), where M
is called the control horizon. The notation z(k + i|k) means
that the value of variable x at time (k + ¢)T}, depends on the
conditions at time £7},. Once the input trajectory is computed,
only the first element Abr(k) is applied as the control input
to the system. At the end of the next control period, the
prediction horizon slides one control period and the input
is computed again based on the feedback pp(k) from the
power monitor. Note that it is important to re-compute the
control input because the original prediction may be incorrect
due to uncertainties and inaccuracies in the system model
used by the controller. MPC combines performance prediction,
optimization, constraint satisfaction, and feedback control into
a single algorithm.

The MPC controller includes a least squares solver, a cost
function, a reference trajectory, and a system model. At the end
of every control period, the controller computes the control
input Abr(k) that minimizes the following cost function
under constraints.

V()= S pplk+ilk) — ref(k + k)2,
+ M |Abr(k + i[k) + br(k + k) — Prnax/|R g (1)

where P is the prediction horizon, and M is the control hori-
zon. Q(4) is the fracking error weight, and R.(i) is the control
penalty weight vector. The first term in the cost function
represents the tracking error, i.e., the difference between the
total power pp(k+i|k) and a reference trajectory ref(k+ilk).
The reference trajectory defines an ideal trajectory along which
the total power pp(k + i|k) should change from the current
value pp(k) to the set point Ps (i.e., power budget of the PDU).
Our controller is designed to track the following exponential
reference trajectory so that the closed-loop system behaves
like a linear system.

ref(k+ilk) = Py — e Tois (P, — pp(k)) @)

where T,..; is the time constant that specifies the speed of
system response. A smaller T;..y causes the system to converge
faster to the set point but may lead to larger overshoot. By
minimizing the tracking error, the closed-loop system will
converge to the power set point Py if the system is stable.

The second term in the cost function (1) represents the
control penalty. The control penalty term causes the controller
to optimize system performance by minimizing the differ-
ence between the estimated maximum power consumptions,
Pmax = [Pmaz1--- Pmam,N]T and the new power budgets,
br(k +i+ 1k) = Abr(k +ilk) + br(k +ilk) along the
control horizon. The control weight vector, R(i), can be tuned
to represent preference among servers. For example, a higher
weight may be assigned to a rack if it has heavier or more
important workloads, so that the controller can give preference
to increasing its power budget. As a result, the overall system
performance can be optimized. In our experiments, we use the

average CPU utilization of all the servers in each rack as an
example weight to optimize system performance.

We have established a system model (3) for the PDU-
level power consumption in Section III-B of the main paper.
However, the model cannot be directly used by the controller
because the system gains G are unknown at design time. In our
controller design, we assume that g; = 1,(1 < i < N), i.e,
all the racks can achieve their desired power budget changes
in the next control period. Hence, our controller solves the
constrained optimization based on the following estimated
system model:

pp(k+ 1) =pp(k) +[1...1] Abr(k). 3)

In a real system that has different server configurations or
is running a different workload, the actual value of g; may
become different than 1. As a result, the closed-loop system
may behave differently. In Section III-B, we prove that a sys-
tem controlled by the controller designed with the assumption
gi = 1 can remain stable as long as the actual system gain 0 <
g; < 14.8. This range is established using stability analysis of
the closed-loop system by considering the model variations. To
handle systems with an actual g; that is outside the established
stability range, an online model estimator implemented in our
previous work [3] can be adopted to dynamically correct the
system model based on the real power measurements, such
that the system stability can be guaranteed despite significant
model variations.

This control problem is subject to the three constraints
introduced in the main paper. The controller must minimize the
cost function (1) under the three constraints. This constrained
optimization problem can be transformed to a standard con-
strained least-squares problem. The transformation is similar
to that in [4] and not shown due to space limitations. The
controller can then use a standard least-squares solver to solve
the optimization problem on-line. In our system, we implement
the controller based on the 1 sglin solver in Matlab. 1sglin
uses an active set method similar to that described in [5]. The
computational complexity of 1sglin is polynomial in the
number of racks in the PDU and the control and prediction
horizons. The overhead measurement of 1sglin can be found
in [4].

B. Control Analysis for Model Variations

In this section, we analyze the system stability of the PDU-
level power controller. A fundamental benefit of the control-
theoretic approach is that it gives us confidence for system
stability, even when the estimated system model (3) may
change for different workloads. We say that a system is stable
if the total power pp(k) converges to the desired set point
P, that is, limg_,o pp (k) = Ps. Our MPC controller solves
a finite horizon optimal tracking problem. Based on optimal
control theory [6], the control decision is a linear function of
the current power value, the power set point of the PDU, and
the previous decisions for rack power budgets.

We now outline the general process of analyzing the stability
of the PDU-level power consumption when the actual system
model is different from the estimated model, i.e., g; # 1.



1) We compute the feedback and feedforward matrices for
the controller by solving the control input Abr(k) based
on the estimated system model (3) and the reference
trajectory (2). The solution is in the following form:

Abr(k) = (Kpp +Ky +Ky)pp(k)
+ KaprAbr(k —1)
+ Kpbrk—1)+H+J 4)

where Kyp, Ky, Ky, Kapr, and Ky, are parame-
ter matrices. H and J are constant matrices that are
independent of pp(k), Abr(k—1) and br(k —1).
The designed MPC controller is a dynamic controller.
Therefore, the stability analysis needs to consider the
composite system consisting of the dynamics of the

original system and the controller.

2) We then derive the closed-loop model of the composite
system by substituting the control inputs derived in Step
1 into the actual system model (2) in the main paper.
The closed-loop composite system is in the following

from:
[ pp(k+1)
Abr(k) =
br(k)
I + G(Kpp + Kv + Kw) GKAbr GKbr
Kpp + Ky + Ky Kabr Kbr
0 I I
pp(k) G G H
Abr(k—1) |+ | I I {J]7 (%)
br(k — 1) 0 0

where G = diag[g1,92,.-.,9n] and I is the identity
matrix.

3) Derive the stability condition of the closed-loop system
described by (5). According to control theory, if all poles
are located inside the unit circle in the complex space,
the system is stable. Solving this stability condition will
give the range of g; (1 <i < N) where the system will

guarantee stability.

Example. We now apply the stability analysis approach to the
emulated PDU used in our experiments, which is composed
of three server racks. We design the MPC controller by using
the nominal system matrix G = diag [1, 1, 1]. To analyze the
system stability when the designed controller is used to control
a different workload with a different system model, we derive
the range of G in which all of the poles of the composite
system are inside the unit circle.

We use three example ways to conduct this proof. First,
we can assume that all the racks in the PDU have a uniform
workload variation, i.e., , G = gl. By following the steps
stated above, we derive the range of g as 0 < g < 14.8. That
means a system controlled by the MPC controller designed
in our experiments can remain stable as long as its system
parameters are smaller than 14.8 times of the values used to
design the controller. Second, in the case that racks in a PDU
commonly have different workload variations, our second way
of analyzing the system stability is to assume that only one
rack has workload variations at a certain time. We conduct
the analysis for each rack and compute the range of g; as 0 <
gi < 42.6. Finally, we investigate the case when one or more

server racks have already reached their power constratins, i.e.,
g; = 0. For example, if one rack is saturated, we have g; as
G = [0, 1, 1]. The magnitude of the largest eigenvalue of the
composite system is 0.4876, which is inside the unit circle.
Hence, the system is stable.

Therefore, we have proven that a system controlled by our
designed controller can remain stable even if it has three
kinds of workload variations. The system stability with other
workload variation patterns can be proven in a similar way.
In addition, a Matlab program is developed by us to perform
the above stability analysis procedure automatically. In our
stability analysis, we assume the constrained optimization
problem is feasible, i.e., there exists a set of rack power
budgets within the acceptable ranges that can make the PDU-
level power consumption equal to its set point. If the problem
is infeasible, no control algorithm can guarantee the power set
point through power budget allocation. In that case, the system
may need to integrate with other adaptation mechanisms (e.g.,
workload redistribution among different racks). The integra-
tion of multiple adaptation mechanisms is part of our future
work.

IV. RACK-LEVEL POWER CONTROLLER

In this section, we briefly introduce the rack-level power
controller for the completeness of the paper.

The rack-level controller controls the power consumption of
a server rack by manipulating the CPU frequency (and voltage)
of the processors of each server in the rack. In this paper,
we implement the rack-level power controller based on the
algorithm presented in [7]. For the completeness of this paper,
we briefly introduce its design as follows.

We first introduce some notation. 7). is the control period.
tp(k) is the total power consumption of all the servers in the
rack. P, is the power set point. f;(k) is the frequency level of
the processors of Server i in the k'" control period. A f; (k) is
the frequency change, i.e., Af;(k) = fi(k+ 1) — fi(k). Ny is
the total number of servers in the rack. The control goal is to
guarantee that ¢p(k) converges to P, within a given settling
time. The total power consumption, ¢p(k + 1), is modeled as:

tp(k +1) = tp(k) + AAf(k) (6)

where Af(k) = [Afi(k)...Afn, ()", A = [a1...an,],
and a;,(1 < i < N,) is a nominal control parameter
determined based on system identification using a nominal
workload, as introduced in [7]. The controlled system is proven
to be stable even when a; varies within (0,8.8a;] due to
different workloads or server configurations [7].

This controller is also designed based on MPC control the-
ory. At the end of every control period, the controller computes
the control input Af(k) that minimizes the following cost
function under constraints.

Vi(k) =301, Nitp(k + ilk) — refr(k + k)13 )
+ M AL (k + 1K) + £(k + k) — Fraxll%, 5 (7)

where P, is the prediction horizon and M, is the control
horizon. By minimizing the first term, the closed-loop system
will converge to the power set point P, if the system is



stable. The second term causes the controller to optimize
system performance by minimizing the difference between the
highest frequency levels, F\imax, and the new frequency levels,
f(k +i+1lk) = Af(k +ilk)+f(k + ilk), along the control
horizon. This control problem is subject to three constraints.
First, the CPU frequency of each server should be within
an allowed range (e.g., Intel Xeon processor only has eight
states). Second, two or more selected servers that run the
same application service may need to have the same relative
frequency level to avoid having a performance bottleneck.
Third, the total power consumption should not be higher than
the desired power constraint. The three constraints are modeled
as:

szn,ggf](k‘i‘l)SFmafg (1SJSN) (8)
filk+1) = fj(k+1) ©)
tp(k+1) < P, (10)

Note that our control solution does not assume that servers
run independent workloads, because the rack-level controller
can handle coordinated applications running on multiple
servers by configuring server CPU frequencies based on their
application deployment [7]. Constraints can also be used to
allow servers that run more important applications (e.g., real-
time tasks) to have higher CPU frequencies, and to prevent
thermal emergency by lowering the frequencies of hot servers.

V. DISCUSSION

The key advantage of power capping is that it provides a
safe way for a data center to support more servers within the
limited cooling and power supply capacities. As a result, data
centers can gain a maximized return from their facility in-
vestment. In this section, we compare our hierarchical control
solution with centralized solutions and discuss implementation
issues.

A. Comparison with Centralized Solutions

The key advantage of the SHIP hierarchical control solution
is that it decomposes the global control problem into a set
of control subproblems at the three levels of the power
distribution hierarchy in a data center. As a result, the overhead
of each individual controller is bounded by the maximum
number of units directly controlled by a controller, which is
normally smaller than 100 in a typical data center, as discussed
in Section II. Figure 2 shows that the average execution time
of the MPC controller increases dramatically as the number
of directly controlled servers increases. For example, the MPC
controller with 100 servers takes approximately 0.39s but the
MPC controller with 1,000 servers takes about 452.1s. Given
that the control period of a data center-level power controller
usually should be shorter than several minutes, a centralized
MPC controller can only control a limited number of servers
at the data center level. In addition, a centralized controller
normally has undesired long communication delays in large-
scale systems, resulting in degraded control performance.
Therefore, centralized control solutions are not suitable to
control an entire large-scale data center. A detailed comparison

12000

B )
A
o 9000 -
E 0.39 (100)
t 6000 1 0.09 (50)
0
S 3000
3 65.9
] 0 Heo % ¢ . . .
0 500 1000 1500 2000 2500 3000

Number of servers

Fig. 2. Average execution time of the MPC controller for different numbers
of servers.

between centralized and decentralized MPC control solutions
can be found in [8].

Although a single centralized controller has poor scalability
for an entire data center or PDU, centralized solutions can be
used to control the power of each server rack independently.
In our experiments presented in Section VI-C, we compare
SHIP against a baseline called Per-Rack, which is composed
of a set of state-of-the-art centralized MPC power controllers
[7]. With Per-Rack, a separate controller is used to control
the power of each rack independently from other racks. Since
PDU- and data center-level power shifting is not the current
practice in today’s data centers, the power budget of each rack
in Per-Rack is calculated in a static way by evenly dividing
the total power budget of the PDU among all the racks in the
PDU. Our results in Section VI-C show that that SHIP can
allow different racks in a PDU to share power resource and
thus outperforms Per-Rack because server racks commonly
have non-uniform workloads.

B. Implementation Issues

Other challenges in implementing the proposed SHIP con-
trol hierarchy include communication delay and controller
failure handling. In a data center, the rack-level controller
can be implemented in service processor firmware in the
rack enclosure with separate links to communicate with the
main processor as in [9]. A PDU-level controller can also use
communication links separated from data center networks to
interact with rack-level controllers. Therefore, since controllers
do not need to compete for bandwidth with data center work-
loads and the amount of data to be transmitted is small (just
several numbers, such as power and utilization measurements
and power budgets) in each control period, communication
delay should not be a major problem. Furthermore, MPC
control can tolerate a certain degree of communication delay
as long as the delay is small compared to the control period
[2]. If a communication link fails, the controller running on
the firmware can detect the failure and then try to utilize
alternative paths for communications (e.g., via data center
networks). To handle the failure of the hardware running
the controllers, we could run a replica of each controller on
a different service processor. This replica is a hot backup
because the power and utilization measurements can be sent
to both the primary and the backup controllers. The backup
controller also conducts MPC control computation, just like
the primary controller, but will not send out the control
decisions for enforcement. As a result, the same states are
maintained between the primary and the backup controllers.



When the hardware fails, sensors can detect that power control
has failed (e.g., broken communication or unexpected power
violations). For example, some PDUs in today’s data centers
can measure branch circuit power and have the capability to
send out an alert when the branch circuit is overloaded. Upon
the receipt of the alert, the backup controller will replace
the primary controller to enforce power capping. Please note
that fault-tolerance is an active research area. Many more
advanced fault-tolerance methodologies can be integrated with
our control hierarchy to ensure the power safety of data
centers. The detailed integration is out of scope of this paper.

VI. ADDITIONAL EMPIRICAL RESULTS

In this section, we present additional empirical results that
are not presented in the main paper due to space limitations.
We first examine the capability of SHIP to provide desired
power differentiation. We then compare SHIP with a state-of-
the-art centralized control solution.

A. Testbed Implementation

Our testbed includes 9 Linux servers to run workloads and
a Linux machine to run the controllers. The 9 servers are
divided into 3 groups with 3 servers in each group. Each
group emulates a rack while the whole testbed emulates a
PDU. Server 1 to Server 4 are equipped with 2.4GHz AMD
Athlon 64 3800+ processors and run openSUSE 11.0 with
kernel 2.6.25. Server 5 to Server 8 are equipped with 2.2GHz
AMD Athlon 64 X2 4200+ processors and run openSUSE 10.3
with kernel 2.6.22. Server 9 is equipped with 2.3GHz AMD
Athlon 64 X2 4400+ processors and runs openSUSE 10.3.
All the servers have 1GB RAM and 512KB L2 cache. Rack
1 includes Server 1 to Server 3. Rack 2 includes Server 4 to
Server 6. Rack 3 includes Server 7 to Server 9. The controller
machine is equipped with 3.00GHz Intel Xeon Processor 5160
and 8GB RAM, and runs openSUSE 10.3. All the machines
are connected via an internal Ethernet switch.

We now introduce the implementation details of the power
controllers.

Power Controllers. Each rack-level power controller re-
ceives the power reading of the corresponding rack and the
CPU utilizations of all the servers in the rack in the last control
period. The controller then executes the control algorithm
introduced in Section IV to compute new CPU frequency
levels for the servers. The new levels are then sent to the
CPU frequency modulators on the servers. The PDU-level
controller receives the power measurement of the PDU and
the average CPU utilizations of all the racks in the PDU in
the last control period. The PDU controller then executes the
control algorithm presented in Section III to compute new
power budgets for the racks. The budgets are then sent to the
rack-level controllers. The MPC controller parameters used in
the experiments include the prediction horizon as 8 and the
control horizon as 2. The time constant 7T}y /T), used in (2)
is set as 2 to avoid overshoot while having a relatively short
settling time.
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Fig. 3. Power budget differentiations.

B. Power Differentiation

In many data centers, it is not uncommon for servers to have
different power budgets, especially when the available power
resource is not enough for all the servers to simultaneously run
at their highest CPU frequency levels. For example, higher
budgets can be given to servers running heavier workloads
for improved overall system performance. In addition, power
differentiation can be used to enforce desired priorities among
servers. In this section, we evaluate the differentiation func-
tions provided by the hierarchical control solution.

In the first experiment, we differentiate server racks by
giving higher weights (i.e., R(i)) in the controller’s cost
function (1) to racks that have heavier workloads. Specifically,
the weights are assigned proportionally to the racks’ average
CPU utilizations. Since running HPL on a server always leads
to a 100% CPU utilization, we slightly modify the original
HPL workload by inserting a sleep function at the end of each
iteration in its computation loop, such that we can achieve
different utilizations such as 80%, 50% for different servers.
In the modified version of HPL, the problem size is configured
to be 4, 000 x4, 000 and the block size is set as 1. Note that the
modified HPL benchmark is used only in this experiment. The
power set point of the PDU is set to 810W. At the beginning
of the run, we use the original HPL on all the servers so that
all the racks have an average CPU utilization of 100%. As a
result, all the racks are given the same weight. At time 1120s,
we dynamically change the workload only on the servers in
Racks 1 and 3 to run the modified HPL, so that the average
CPU utilizations of Racks 1 and 3 become approximately 80%
and 50%, respectively. Figure 3(a) shows that the controller
responds to the workload variations by giving a higher power
budget to a rack with a higher average CPU utilization. Rack
3 has the lowest budget because it has the lowest average
utilization (i.e., 50%). Note that application-level performance
metrics such as response time and throughput can also be used
to optimize power allocation in our solution.

In the second experiment, we differentiate server racks by
enforcing a fixed ratio among the power budgets allocated
to the racks, which is referred to as proportional power
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differentiation. As power is becoming a first-class system
resource, a commercial data center can use proportional power
differentiation to give priorities to premium clients. As dis-
cussed in Section III-A of the main paper, constraint (2) can
be used to achieve the desired fixed ratio. At the beginning of
the experiment, we disable the constraint. As a result, the three
server racks have a similar power budget allocation as before.
At time 800s, we enable the power differentiation constraint
to strictly enforce the power budget of Rack 3 to be 1.4 times
that of Rack 1. As shown in Figure 3(b), in one control period,
the power budget of Rack 3 rises to around 351.7W, which
is exactly 1.4 times that of Rack 1 (251.2W). At time 1600s,
the power set point of the PDU is dynamically reduced from
900W to 840W. Consequently, the budgets of all the racks are
reduced. However, the desired budget ratio (i.e., 1.4) has been
maintained. Note that the fixed ratio can be strictly maintained
only when all the budgets are within valid ranges.

The results of the two experiments demonstrate that SHIP
can provide power differentiation for the consideration of
system performance or client priorities. This property gives
flexibility for data-center operators to effectively achieve de-
sired differentiations in different scenarios.

C. Comparison with Per-Rack

In this experiment, we test SHIP and Per-Rack (introduced
in Section V-A) in a special situation, where we keep the 3
servers in Rack 2 idling and run the benchmarks only on
the 6 servers in Racks 1 and 3. Note that this situation is
not uncommon in data centers because racks can be rented
to different customers. As a result, some racks may have
significantly more workloads than other racks at certain times.
The power set point of the emulated testbed PDU is 810W.
Under Per-Rack, each rack evenly gets 270W as its local
power budget. Figure 4 shows that the idle rack (Rack 2)
cannot use up its 270W power budget even when all its servers
are running at their highest CPU frequency levels. On the
other hand, Racks 1 and 3 cannot get enough power so that
their servers can only run at degraded frequency levels. As a
result, the power consumption of the PDU under Per-Rack is
approximately 40W lower than the desired set point.
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Figure 5 shows the HPL performance data of SHIP and
Per-Rack when the power set point changes from 780W to
900W. Each point (with the exact number on the top of each
bar) is the sum of the HPL performance results of all the
6 servers in Racks 1 and 3. SHIP has better performance
because its total power consumption can exactly reach the
desired power set point. In contrast, the power budget of Per-
Rack is wasted by the idle rack due to the even distribution
of the total budget. The maximum performance improvement
of the hierarchical solution is 30.5% at 8 10W. Figure 6 shows
that SHIP outperforms Per-Rack also for the SPEC CPU2006
benchmarks. Note that we test this special situation just to
highlight the performance improvement SHIP can achieve.
When the workload difference of different server racks is not
so significant, SHIP can still achieve performance improve-
ment (probably less significant).

The experiments demonstrate that SHIP can allow different
racks in a PDU to share power resource, which can lead to
improved overall system performance because server racks
commonly have non-uniform workloads.

VII. SIMULATIONS IN LARGE-SCALE DATA CENTERS

We first introduce our simulation environment. We then test
SHIP in large-scale data centers using a trace file from real-
world data centers, which has the utilization data of 5,415
Servers.

A. Simulation Environment

To stress test the hierarchical control architecture in large-
scale data centers, we have developed a C++ simulator that
uses a trace file from real-world data centers to simulate
the CPU utilization variations. The trace file includes the
utilization data of 5,415 servers from ten large companies
covering manufacturing, telecommunications, financial, and
retail sectors. The trace file records the average CPU utilization
of each server in every 15 minutes from 00:00 on July
14th (Monday) to 23:45 on July 20th (Sunday) in 2008. We
randomly generate several data center configurations based on



the trace file. In each configuration, we group the servers
into 6 to 8 PDUs with each PDU including 20 to 60 racks
and each rack including 10 to 30 servers. Based on the
specifications of the real servers used in our testbed, each
server is randomly configured to have a minimum power
consumption between 90W and 110W, a maximum power
consumption between 150W and 170W, and a lowest relative
frequency level between 0.3 and 0.5.

The simulator implements all the control components of
the hierarchical control architecture, including the power and
utilization monitors, controllers, and CPU frequency modula-
tors. The controllers (at all the three levels) are implemented
using functions provided by the Matlab libraries. At the be-
ginning of each simulation, the simulator reads the data center
configuration and initializes all the controllers accordingly.
The power model of each rack is implemented based on
(6) with the system parameter a; calculated based on the
randomly generated parameters including the maximum and
minimum power consumptions and the minimum frequency
level. The system parameter a; of every server has a +£5%
random variation in every control period to simulate workload
variations in real systems.

In our simulations, all the servers start with the lowest
DVES level. In each control period of the rack-level loop, the
utilization monitor of each server reads the utilization of the
server from the trace file and sends the value to the rack-level
power controller. The computed new CPU frequency level for
each server is then used as the input of the power model (6) to
calculate the power consumption of the rack in the next control
period. The power consumption of each PDU is calculated by
summing up the power consumptions of all the racks in the
PDU. In each control period of the PDU-level loop, the power
consumption of the PDU and the average utilization of each
rack in the PDU are sent to the PDU-level power controller.
The computed new power budgets are used as the set points
for the rack-level controllers in the next control period. The
data center-level control loop is implemented in the same way
as the PDU-level loop.

B. Simulation Results

Figure 7 is a typical run of SHIP in a data center that is
generated based on the method introduced in Section VII-
A. This data center has 6 PDUs and 270 racks. The power
set point of the data center is 750kW. As shown in Figure
7, the power of the data center precisely converges to the
desired set point in two control periods of the data center-level
control loop. Figure 8 plots the average power consumptions
of three randomly generated data centers under a wide range
of power set points from 600kW to 780kW. It is clear that
SHIP can achieve the desired set point for the three large-
scale data centers. The maximum standard deviation of all the
data centers under all the power set points is only 0.72kW.

We then examine the capability of SHIP to differentiate
PDUs based on the utilization data from the trace file. Ac-
cording to the controller design in Section III-A, the data
center-level controller tries to minimize the difference between
the estimated maximum power consumption and the power
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Fig. 7. A typical run of SHIP in a simulated large-scale data center.
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Fig. 8. Average power consumptions under different data centers and power
set points.

budget for each PDU. Therefore, a PDU with a higher average
CPU utilization should have a smaller difference because of
its higher weight in the controller’s cost function. Figure
9(a) shows the average CPU utilizations of the 6 PDUs in
the experiment, while Figure 9(b) shows the difference (i.e.,
the estimated maximum power consumption minus the power
budget) for each PDU. We can see that the difference order
of the PDUs is consistent with the order of their average
CPU utilizations. For example, PDU 2 has the highest average
CPU utilization and thus the smallest difference. The results
demonstrate that SHIP can effectively achieve the desired
control objectives in large-scale data centers.

VIII. MORE RELATED WORK

In this section, we discuss more related work.
Control-theoretic approaches have been applied to a number
of computing systems. A survey of feedback performance
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control in various computing systems is presented in [10].
Feedback control scheduling algorithms have been developed
for operating systems [11] and real-time systems [8]. Control
techniques have also been applied to storage systems [12],
networks [13], and Internet servers [14].

Some prior work has been proposed to use power as a
tool for application-level performance requirements at the OS
level. For example, Horvath et al. [15] use dynamic voltage
scaling (DVS) to control end-to-end delay in multi-tier web
servers. Sharma et al. [16] effectively apply control theory
to control application-level quality of service requirements.
Chen et al. [17] also present a feedback controller to manage
the response time in a server cluster. Although they all use
control theory to manage power consumption, power is only
used as a knob to control application-level performance. As
a result, they do not provide any absolute guarantee to the
power consumption of a computing system. In this paper,
we explicitly control the power consumption to adhere to
a given constraint. Our solution is complementary to OS-
level power management schemes and can be combined for
increased adaptation capability and simultaneous control of
power and system performance.

IX. CONCLUSIONS

This supplementary file presents additional details of the
design and analysis of the PDU-level power controller, as well
as additional empirical and simulation results of the paper:
SHIP: A Scalable Hierarchical Power Control Architecture for
Large-Scale Data Centers.
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