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Abstract 
Power consumption has arguably become the most 

important design consideration for modern, high-density 

servers, but current power management implementations 

have not evolved beyond primitive responses to thermal 

emergencies and do not manage to varying power and 

cooling constraints. 

We present a technique that manages the peak power 

consumption of a high-density server by implementing a 

feedback controller that uses precise, system-level power 

measurement to periodically select the highest 

performance state while keeping the system within a fixed 

power constraint. A control theoretic methodology is 

applied to systematically design this control loop with 

analytic assurances of system stability and controller 

performance, despite unpredictable workloads and 

running environments. 

This technique is particularly valuable when applied to 

servers with multiple power supplies, where a partial 

failure of the power supply subsystem can result in a loss 

of performance in order to meet a lower power constraint. 

Conventional servers use simple open-loop policies to set 

a safe performance level in order to limit peak power 

consumption. We show that closed-loop control can 

provide a more graceful degradation of service under 

these conditions and test this technique on an IBM 

BladeCenter HS20 server. Experimental results 

demonstrate that closed-loop control provides superior 

application performance compared to open-loop policies. 

1. Introduction 

As modern enterprise data centers continue to increase 

computing capabilities to meet their growing business 

requirements, high-density servers become more and 

more desirable due to space considerations and better 

system management features. However, the greatest 

immediate concerns about high-density servers are their 

power and cooling requirements, imposed by limited 

space inside the server chassis. The situation is even 

worse for servers which require redundant power supplies 

for increased reliability. In conventional products, system 

designers must provide for worst-case operating 

environments and workloads which result in servers with 

over-provisioned power supplies that can far exceed the 

power capacity required for the typical operation. This 

leads to some potential problems: 

1. In the case of a partial power-supply failure, the 

system degrades performance assuming all the 

server components are consuming their worst-

case power. This pessimistic estimation 

unnecessarily results in low application 

performance.  

2. An over-provisioned power supply increases 

manufacturer cost for the server and may 

increase the footprint of the server. 

3. In the case of blade servers, while a chassis is 

designed to last for several product generations, 

eventually new blade designs with higher power 

consumptions may exceed the older chassis’ 

power capacity. Conservative solutions may be 

forced to use the new blades, but at a fixed, 

lower performance setting. 

4. Data center operators must typically assume a 

cooling infrastructure that meets the label power 

of the power supplies, regardless of actual server 

power consumption, which adds cost to their 

operating expenses. 

Each situation above would benefit from run-time 

measurement and control of power to adapt to a power 

constraint and reduce server performance only when 

actual power consumption exceeded the power constraint. 

This paper specifically focuses on the first problem to 

provide a graceful degradation of performance during a 

power supply fault.  

Modern microprocessors commonly offer programmable 

performance states, such as clock throttling or dynamic 

voltage scaling (DVS), that can reduce server power 

consumption. In this paper, we propose to manage the 

peak system-level power consumption with a feedback 

controller that uses precise system-level power 

measurements to periodically select the highest 

performance state and yet keep the server within the 

desired power constraint. This allows fixed, design-time 

constraints to be relaxed because the system safely 

adheres to run-time constraints. 

This paper makes the following contributions: 

1.  To our knowledge, we are the first to 

demonstrate managing the peak system power of 

a single server to a power constraint using 

precision measurement with a closed-loop 

control system. This differentiates our work from 
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previous solutions that manage average power, 

use ad-hoc control, or use estimations of power 

in place of real measurement. 

2.  We present a novel control design based on 

feedback control theory to manage system-level 

power with theoretic guarantees on accuracy and 

stability.  

3.  We demonstrate how to derive controller 

parameters such that the controlled system is 

guaranteed to achieve the desired controller 

performance in the presence of run-time 

variations that cause the system to behave 

differently from the control model. 

4.  We implement our control system directly in an 

IBM BladeCenter blade server and evaluate it 

using industry standard benchmarks. 

5.  For servers with multiple power supplies, we 

show that performance degrades much more 

gracefully under a partial power supply failure as 

compared to simpler open-loop solutions. In 

some situations, performance is not noticeably 

affected. 

In the rest of the paper we first highlight the distinction of 

our work by discussing related work. In Section 3, we 

discuss system-level management of power in 

conventional systems and those with feedback controllers. 

We then demonstrate how we design and analyze the 

controller based on feedback control theory in Section 4. 

In Section 5, we describe the detailed implementation of 

each component in the feedback control loop. Extensive 

experimental results are presented in Section 6 and we 

draw conclusions in Section 7. 

2. Related work 

Power consumption is one of the most important design 

constraints for high-density servers. Much of the prior 

work has attempted to reduce power consumption by 

improving the energy-efficiency of individual server 

components [1]. In contrast, our paper is focused on 

providing an effective power management algorithm to 

control system-level power. Previous work [2] has shown 

that processors are often the dominant consumers of 

power in servers. This is particularly true in dense blade 

server environments. In this paper, we focus on 

controlling system-level power consumption by throttling 

processors. 

Many researchers use expensive power measurement 

equipment to instrument servers for their studies [2]. In 

our work, we use an inexpensive, yet highly accurate, 

power measurement circuit built-in to recent IBM HS20 

blade servers which measures power consumed by the 

entire blade. This enables our technique for power 

management to be used in ordinary, high-volume servers. 

There has been much work done on system-level power 

management. Zeng et al. [3] and Lu et al. [4] have 

developed power management strategies for operating 

systems. In contrast, our work is at the system-

architecture level. Our feedback controller in the service 

processor firmware directly controls the main host 

processors to keep the system-level power within a power 

constraint, while requiring no support from the OS or 

workloads running on the system and is operational 

during system boot. Thus, the power management is more 

robust and less susceptible to software errors or malicious 

threats. 

Feedback control theory has proven to be an effective 

way in improving performance and robustness of 

computing systems [5]. Skadron et al. [6] use control 

theory to dynamically manage the temperature of 

microprocessors. Likewise, Wu et al. [7] manage power 

using dynamic voltage scaling by controlling the 

synchronizing queues in multi-clock-domain processors. 

In contrast to their work, we control peak power for a 

whole server instead of just the processors.  

Minerick et al. [8] develop a feedback controller for 

managing the average power consumption of a laptop to 

prolong battery lifetime. Their study relies on experiments 

to find the best control parameters. In contrast, we derive 

parameters based on a systematically built control model. 

In addition, we not only design our controller based on 

feedback control theory, but also analytically model the 

possible system variations and provide corresponding 

theoretic guarantees. We believe our work is the first to 

provide such insightful analyses for system-level power 

management. As a result, our control method does not 

assume any knowledge about potential workloads and 

thus can be generally applied to any server system. In 

addition, our controller is designed to meet the tighter 

real-time constraints for the overload condition of server 

power supplies. Femal et al. [9] present a two-level 

framework for controlling cluster-wide power. The Local 

Power Agent (LPA) applies the controller from Minerick 

et al. to each server in order to limit the server-level 

power. The Global Power Agent dynamically re-allocates 

the power budgets between the local managers. Our blade 

server prototype could be used in place of the LPA to 

control cluster-wide power.  

Sharma et al. [10] effectively apply control theory to 

control application-level quality of service requirements. 

Chen et al. [11] also develop a controller to manage the 

response time in a server cluster. Although they both use 

control theory to manage power consumption, power is 

only used as a knob to control application-level service 

metrics. As a result, they do not provide any absolute 

guarantee to the power consumption of a computing 
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system. In this paper, we explicitly control the power 

consumption itself to adhere to a given power constraint. 

3. System-level power management 

This section describes portions of the current power 

management solution in the BladeCenter and the 

requirements that the control loop must meet in order to 

satisfy power supply constraints. 

3.1. BladeCenter test platform 

Our test platform is an IBM BladeCenter HS20 blade 

server with Intel Xeon microprocessors. The power 

management architecture of BladeCenter is shown in 

Figure 1. A BladeCenter chassis has two power domains 

and is configured with four 2000 W power supplies total. 

Each power domain is redundantly connected to two of 

the power supplies so that in the event of a single supply 

failure, the domain continues operating with the 

remaining power supply. The first power domain provides 

power for six processor blades as well as supporting 

components shared by the blades including management 

modules, fans, the media tray, and network switches. The 

second power domain holds eight processor blades. Our 

discussion and experiments use the second power domain 

because its blades have a stricter power constraint. 

The BladeCenter allows the user to specify the policy that 

is used when a single redundant power supply fails. One 

common policy is redundant. This allows the domain to 

consume at most 2000 W. When a power supply fails the 

remaining supply can provide 2000 W and the blades can 

consume full power and run at full performance. Another 

common policy setting is recoverable oversubscription 

[14], which is the focus of this discussion. This policy 

allows the user to install additional high-power blades 

which will use more power at full-performance than one 

power supply can provide, but less power than two power 

supplies can provide together. The blades run at full-

performance as long as both power supplies function. 

When a single power supply fails, the blade’s processors 

are throttled to a predetermined performance setting so 

their aggregate power is less than a single power supply. 

The blades return to full performance once the failed 

power supply is replaced. The BladeCenter management 

module determines the unique performance setting for 

each blade when the blade is initially installed in the 

chassis. The setting is based upon installed blade 

components and the capacity of the power supplies.  

In BladeCenter, the recoverable oversubscription policy 

specifies that the maximum power that two functioning 

2000 W power supplies can provide is 2500 W [15]. This 

is the power supply overload condition. During a single 

power supply failure, the power load shifts to the 

remaining supply. An engineering decision in 

BladeCenter is that the load must be reduced from a 

maximum of 2500 W down to 2000 W within one second 

[15]. If the load remains too high on the single supply for 

too long, then the remaining power supply may turn off 

and remove power from all blades in the domain. In 

reality, the one second target is conservative and the 

power supply can sustain a power overload for even 

longer periods of time. 

The mechanism to throttle blade performance is processor 

clock modulation (“clock throttling”) which lowers the 

effective frequency of the processors. There are 8 

performance states which correspond to effective 

frequencies of 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 

87.5%, and 100%.  

3.2. Feedback control of power 

We have developed a feedback control loop which 

adaptively controls the power consumption of the server 

by manipulating the processor clock modulation setting. 

Some form of clock modulation is commonly available 

across all microprocessor families used in servers, while 

DVS is not supported in all server products. Therefore, 

we developed a closed-loop controller using clock 

throttling, the more general mechanism, so that our 

technique can potentially be used across all server 

platforms. DVS will be a more energy-efficient 

mechanism to use for future blade power control. 

However, DVS requires a different design for the closed-

loop controller, which is beyond the scope of this paper.  

 

Figure 1: BladeCenter chassis. 
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There are two reasons for us to use processor throttling as 

our actuation method. First, processors typically have 

well-documented interfaces to adjust performance levels. 

Second, processors commonly contribute the majority of 

total power consumption of small form-factor servers. As 

a result, the processor power difference between the 

highest and lowest performance states is large enough to 

compensate for the power variation of other components 

and to provide an effective way to support a power budget 

reduction in the event of power supply failure. The 

control loop always sets all processors to the same 

performance state. Asymmetric throttling would violate 

the assumption made by many commercial operating 

systems that all processors run at the same speed. 

During normal operation, the power budget for the control 

system on each blade is 312 W (2500 W / 8 blades). 

When a power supply fails, each blade simultaneously 

detects the event and changes its power budget to 250 W 

(2000 W / 8 blades). The control systems respond to this 

new budget and reduce the load on the remaining supply 

within one second. 

The key components in the control loop include the 

monitor, the controller, and the actuator. The control loop 

is invoked periodically and its period is decided based on 

the trade-off between actuation overhead and system 

settling time. At each control period, a precision 

measurement of the real system-level power consumption 

is input to the controller. The controller computes the new 

performance state and sends it to the actuator. The 

actuator throttles the processors to the new performance 

state. A detailed description of each component is given 

in Section 5. The photo in Figure 2 shows our HS20 blade 

with the power measurement circuitry and sense resistors 

used for closed-loop control. 

4. Controller Design and Analysis 

The core of our feedback control loop is the controller. 

First, we mathematically model the system through the 

process of system identification. Based on the system 

model, the controller is then designed systematically 

using feedback control theory. Finally, the control 

performance of the model is analyzed and the impact of 

variation between the model and real systems is 

discussed.  

We first introduce the following notation: 

T:   The control period 

p(k):  The power consumption of the server in the k
th

 

control period. Its Z-transform is P(z). 

Ps:   The power set point of the server, namely, the 

desired power constraint.  

t(k): The performance state of the processors in the k
th

 

control period. Its Z-transform is T(z). 

d(k): The difference between t(k+1) and t(k). 

Specifically d(k)= t(k+1)-t(k). Its Z-transform is D(z). 

The goal of the controller is to guarantee that p(k) 

converges to Ps within a given settling time.  

4.1. System Modeling 

In order to have an effective controller design, it is crucial 

to model the dynamics of the controlled system, namely 

the relationship between the control input (i.e. 

performance state of the processors) and the control 

output (i.e. power consumption of the server). Therefore, 

we use a standard approach to this problem, called system 

identification [12]. We infer the relationship between the 

control input and control output by collecting data on a 

controlled system and establish a statistical model based 

on the measured data. 

In order to ascertain the response of system power to a 

change in performance state, we run each of the 

workloads at every performance state and record the 

maximum power attained over a 1 second interval. Our 

workloads, described in Section 6.1, are P4MAX, 

LINPACK, SPECjbb2005, and SPEC CPU2000 (1 and 2 

threads). In traditional system identification, the input is 

varied to find the relationship between the sequence of 

past input values and the output response. This is 

unnecessary here as we have observed the power 

consumption changes immediately (within a millisecond) 

as the performance state changes without regard to the 

previous performance state. That means the power 

consumption of the server for a given workload is 

determined exclusively by the performance setting and is 

independent of the power consumption in previous 

control periods. Although temperature also affects 

system-level power, it operates on a much slower 

timescale and can be modeled as a disturbance input to 

the controller. Figure 3 plots the relationship between the 

processor performance setting and the maximum 1 second 

power consumption. A linear model fits well (R
2
 > 99%) 

 

Figure 2: IBM BladeCenter HS20 blade. 
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for all workloads. Hence, our system model of power 

consumption is: 

BkAtkp += )()(  (1) 

The dynamic model of the system as a difference equation 

is: 

)()()1( kAdkpkp +=+  (2)  

4.2. Controller Design 

We now apply feedback control theory [12] to design the 

controller based on the dynamic system model (Equation 

2). The goal of the controller design is to meet the 

following requirements: 

Stability: The power should finally settle into a bounded 

range in response to a bounded reference input. 

Zero steady state error: The power should settle to the 

set point which is the power constraint. 

Short settling time: The system should settle to the set 

point by a specified deadline. 

Following standard control theory, we design a 

proportional (P) controller [12], which has a Z-transform 

of: 

A
zC

1
)( =

 (3) 

It is easy to prove that the controller is stable and has zero 

steady state error. Satisfying these requirements means 

that when the power level or set point is changed, the 

controller will converge precisely to the desired set point. 

In addition, the settling time is one control period. Due to 

space limitations, we skip the detailed derivation which 

can be found in standard control textbooks [12]. 

The time-domain form of our proportional controller 

(Equation 3) is:  

))((
1

)( kpP
A

kd s −=  (4) 

Based on the definition of d(k), the desired performance 

setting at the (k+1)
th

 control period is: 

)()()1( kdktkt +=+  (5) 

The pseudo code of the controller is given in Figure 5. 

4.3. Control Performance Analysis 

Our controller is designed to achieve the control 

performance specified in Section 4.2 when the system 

model is accurate. However, the real system model is 

usually different from the nominal model (Equation 1) we 

used to design the controller. This variation could have 

several causes. For example, the server may have 

different components and configurations from the 

modeled system, the workload could be different from the 

ones used in system identification, or manufacturing 

differences in the microprocessors may cause them to 

have different power levels. Since developing a different 

controller for every server and every workload is 
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infeasible, it is very important to analyze the impact of 

model variation to control performance, before we deliver 

any theoretical guarantees. 

An important observation from our measurements is that 

the workloads always exhibit a linear relationship 

between power consumption and the performance state, 

even running on different servers. Based on this 

observation, we mathematically analyze the impact of 

model variation on control performance. Without loss of 

generality, we model the real system as 

BgkAtgkp 21 )()( +=  (6) 

where AAg '1 =  and BBg '2 =  are system gains and 

are used to model the variation between the real system 

model (Equation 6) and the nominal model (Equation 1). 

Since our controller is designed based on the difference 

equation (Equation 2) of the system model, g2 has no 

effect on the performance of the controller. The closed-

loop transfer function for the real system is 

)1()1/(

)(

1

1

gz

g

zzP

zP

s −−

=

−

 (7) 

Now we investigate each control performance metric.  

1. Stability 

The closed-loop system pole in Equation 7 is 1- g1. In 

order for the system to be stable (i.e. converge to the 

desired set point), the pole must be within unit circle [12], 

namely |1- g1| < 1. Hence the system will remain stable as 

long as 0 < g1 < 2. This result means that if the slope (i.e. 

A’ or g1A in Equation 6) of the real model is less than 

twice that of the nominal model, the system is still stable. 

The stability range serves as an important reference when 

applying our controller to different systems and running 

different workloads. 

2. Steady state error 

The steady state error of the real system can derived as 

ss
zz

PP
gz

zg
zPz =









−−

=−
→→ )1(

lim)()1(lim
1

1

11

 (8) 

Equation 8 means that as the system proceeds, the power 

will settle to Ps which is exactly the set point. Hence, as 

long as the system is stable (i.e. 0<g1<2), we can achieve 

the desired power value. 

3. Settling time 

By transforming the closed-loop response (Equation 7) to 

the time-domain, the power variation model becomes 

sPgkpgkp 11 )()1()1( +−=+  (9) 

As commonly defined in control theory, the system settles 

when p(k) converges into the 2% range around the desired 

set point Ps. Hence, the required number of sampling 

periods, k, for the system to settle can be calculated as: 

11ln

02.0ln

g
k

−

≥
 (10) 

Based on our required settling time of 1 second from 

Section 3.1, we can use Equation 10 to derive a range of 

g1. As long as g1 is within this range, the system is 

guaranteed to achieve the required settling time. 

4.4. Controller parameters 

For this paper, we construct a control loop that can be 

used for our particular blade at nominal temperatures. 

Constructing a control loop for an actual product is 

similar, but involves taking measurements from many 

blades to account for manufacturing variation and taking 

the measurements of the BladeCenter under thermal stress 

to account for different machine room environments, 

which is beyond the scope of this paper.  

The lower bound to which power can be controlled is 

constrained by the most power consuming benchmark, 

running at the lowest performance state. For our blade, 

the maximum power consumed by any workload at the 

12.5% performance state was 170 W. This means that the 

power budget for the control loop cannot be set below 170 

W, without risking a violation of the power constraint. 

The value for A is chosen by considering the range for A’ 

as shown in Figure 4. The maximum value for A’ is the 

slope of P4MAX, from Figure 3, which is 125.7, the 

maximum of all workloads. The minimum value for A’ 

depends upon the minimum set point value discussed 

above. We can estimate a safe lower bound for A’ within 

which the control loop will work. For the minimum A’ we 

take the slope of the imaginary line connecting (138 W, 

0%) to (170W, 100%). The reasoning is that if the 

processor were to slow down to near 0% speed, then the 

power of the workload would be near that of the idle 

power of 138 W. Therefore, a workload that can go 

beyond 170W must have a slope greater than 32. 

Workloads that have slopes less than 32 cannot reach 170 

W and therefore, always run at full-performance as the 

control loop selects the 100% performance state in an 

attempt to raise the power to the set point. We calculate A 

as the average between the minimum and maximum 

slopes to guarantee stability even in extreme cases. 

Therefore, A is 78.85 and 0.406 < g1 < 1.594. 

Our goal is for system power to settle within 1 second to 

the set point power. If we use the conventional 2% target 

for the set point in Equation 10, then power could still be 

several Watts away from the set point, given that the 

maximum power measured by P4MAX is 273 W. 

Therefore, we modify Equation 10 to consider how many 

intervals are required for the power to settle within 0.5 W:  
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11ln

273

5.0
ln

g
k

−

≥
 (11) 

Equation 11 uses 0.5 W out of 273 W to calculate the 

minimum percentage of the set point to which we need to 

converge. We calculate that k is at least 12.1 which means 

the power will settle in 13 periods. Dividing 1 second by 

13 periods tells us the control period should be less than 

76.9 ms. For this set of experiments, we use an interval of 

64ms. 

5. System Implementation 

This section describes each component in our feedback 

control loop. 

5.1. Power monitor 

The HS20 blade, contains a signal conditioning circuit 

attached to sense resistors that allows for monitoring of 

the current and voltage of the power supply’s 12V 

interface to the blade. This conditioning circuit attaches to 

analog-to-digital converters on the service processor. The 

service processor (a 29 MHz Renesas H8S) converts the 

signals into a calibrated power measurement that 

represents the power consumed by the entire blade as a 

function of time.  

The absolute measurement is accurate to within 2% due to 

a calibration feature realized between the hardware and 

service processor firmware and due to the 1% accuracy 

rating of the sense resistors. The calibration step reduces a 

number of additional circuit thermal, aging, and precision 

issues that would otherwise have led to measurements that 

varied by 5% or worse as temperatures changed inside the 

chassis and as a blade’s components aged over time. It is 

fundamental to the entire server system to build its power 

measurement and management around precision dynamic 

measurements. The quality of the power measurement is 

constrained by the cost the measurement circuit. For a 

high-volume, low-cost server, we use a low-cost circuit 

that meets a 2% maximum error goal and a 1 Watt digital 

resolution representation of the discrete power signal.  

5.2. Controller 

We sample the system power at a high frequency and 

average it over the control period to provide power values 

for 64 ms intervals to the P controller. In control theory, 

this is equivalent to having a low pass filter in front of the 

controller, which effectively reduces the random noise of 

the system. Shorter control periods could be used to cover 

a wider range of system gain at the cost of actuating more 

often. 

5.3. Actuator 

The pseudo code including the controller and the 

saturation handling is shown in Figure 5. The service 

processor affects the actuation by activating a BIOS 

routine on the host processor which sets the 

IA32_CLOCK_MODULATION register in the Xeon 

processor to set the performance state. In the worst case, 

the controller may actuate every control period. In our 

system it takes less than 1 ms to change the performance 

state. Therefore, the effect of actuation overhead on 

system performance is no more than 1.5% (1ms/64ms). In 

situations where the performance state does not change 

(e.g. system requires less than the power constraint), there 

is no actuation overhead. 

5.4. Power budget 

In Section 4.4, we derived the minimum value for the 

controller set point to be 170 W. Considering we have a 

2% maximum error in power measurement, we must 
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subtract 2% from the desired power budget to form the set 

point used in the controller. For example, if the desired 

power budget is 250 W, then we use 245 W as the 

controller set point to ensure that the real power is below 

the budget even with the worst case measurement error. 

Accounting for the worst-case measurement error means 

the lowest power budget we can guarantee is 174 W. 

When the server power consumption is below the set 

point the controller saturates at the highest performance 

state which allows the system to operate at full 

performance. Selection of the highest performance state is 

desired because we want the system to run at full 

performance in normal situations.  

6. Results 

In this section, we present the experimental results of 

using closed-loop control of power on an IBM 

BladeCenter blade. We first describe the experimental 

environment and benchmarks used in our experiments. 

Then we introduce the baseline open-loop controller to 

compare with our P controller. Finally we present results 

evaluating common benchmarks under fixed power 

budgets. 

6.1. Experimental Environment 
Our test environment is an IBM BladeCenter HS20 blade 

which was introduced in Section 3.1. This server is fully 

populated with two 3.6GHz Intel Xeon Irwindale SMP 

processors with hyper-threading, 8GB memory, two 36 

GB SCSI hard-disks, dual 1 Gb Ethernet interfaces, and a 

Fibre Channel daughter card.  

We evaluate each power management policy under two 

budgets. The first budget is 250 W, which corresponds to 

the case in which the BladeCenter has lost a single 

redundant 2000 W power supply. The second budget is 

230 W, which is similar to the loss of a 1875 W power 

supply, which was used by the previous generation of 

blade servers. Each measurement presented is the average 

value of three runs. 

Our evaluation workloads are listed in Table 1. Some of 

the workloads are run under SUSE Linux Enterprise 

Server 9 SP 2 and others are run under Windows Server 

2003 Enterprise x64 Edition. In our evaluation, we do not 

show results for single thread SPEC CPU2000 because 

the power consumption is typically below the power 

budgets we evaluate and would result in no application 

slowdown. The P4MAX workload is a program designed 

to produce the maximum power consumption on the Intel 

Xeon microprocessors [13].  

6.2. Baseline 
Our baseline is an open-loop policy, referred to as open-

loop which selects a fixed performance setting for a given 

power budget. It is designed to be suitable for typical 

system conditions and is derived from our power 

measurements of P4MAX. The baseline assumes that 

under the loss of a power supply, the system could be 

running any workload and therefore must lower the 

performance setting to the point that even the most 

power-consuming workload could be run. For the 230 W 

budget, open-loop uses the 62.5% performance state and 

at 250 W budget it uses the 75% performance state. The 

BladeCenter product currently uses an open-loop policy, 

but instead estimates the proper performance setting 

based on blades’ run-time component configurations [14]. 

Since we limit our evaluation of the closed-loop controller 

to nominal conditions, the BladeCenter open-loop control 

is not suitable for comparison in this study. 

It is interesting to consider how much more our open-loop 

policy could be improved. As a thought experiment, we 

also consider the best-open policy which is an open loop 

that knows a priori the highest performance state for each 

workload that does not violate the power budget. This 

policy is impossible to implement in practice because it 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Pseudo code of the control loop. 

Workload Environment Notes 

P4MAX Windows Run for 1 minute on 

both processors using 

100% setting (4 

threads total). 

SPEC 

CPU2000 

Linux Compiled with Intel 

Compiler 9.0 (32-bit). 

Performance results 

are only shown for 

rate (2 users) mode. 

SPECjbb2005 Windows JVM is BEA JRockit 

JRE 5.0 Update 3 

(RR25.2.0-28). Run 4 

warehouses only. 

Intel 

Optimized 

LINPACK 

Linux Version 2.1.2. Run 

with two threads. 

15000x15000 matrix. 

Table 1: Workloads. 

//controller code 

error = Ps – current power output; 

ideal_throttle = throttle + (1/A) * error; 

throttle = truncate(ideal_throttle); 

 

//actuator saturation handling 

 if (throttle > MAX_throttle) 

   throttle = MAX_throttle; 

 if (throttle < MIN_throttle) 

   throttle = MIN_throttle; 
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requires foreknowledge of the workload to be run, its 

power demand on the processors, and the thermal 

environment of the facility. We consider this policy to 

represent an upper bound for any open-loop controller 

that could be developed and show that our closed-loop 

controller can still make impressive performance gains 

over it.  

6.3. Experiment I: Constant power-level workload 
First we examine the ability of the controllers to keep a 

workload with a steady power load at a fixed power 

budget. We run the P4MAX workload on each controller 

at each power budget for one minute and show the results 

in Table 2. 

Since the open-loop policy is based on P4MAX, it allows 

the processors to run at the same speed as the best-open 

policy. A 230 W power budget causes the processors to 

be statically set to a performance state of 62.5%. A 250 W 

power budget causes the processors to be statically set to 

a performance state of 75%. For the 250 W budget, the 

open-loop maximum power over a 1 second interval is 

several Watts lower than the power budget, even when 

accounting for measurement error. This illustrates the 

wasted opportunity to further increase the processor speed 

without violating the power constraint.  

The P controller keeps the workload’s average power and 

the maximum power over an 8 second interval at 

precisely the controller set point. The maximum power 

over a 1 second interval is 1 W above the set point of 225 

W because the power occasionally goes over the set point 

before the controller takes action and corrects it. For all 

workloads we studied, the maximum power in a 1 second 

interval never exceeds the set point by 2 W. These small, 

short excursions above the set point are negligible to the 

BladeCenter power supply, which can handle much 

higher overload conditions for longer periods of time 

[15]. These excursions could be reduced by either 

shortening the control period at the cost of more actuation 

overhead, or lowering the set point. At the 230 W budget, 

the P controller has a small performance advantage over 

the open-loop controllers. At the 250 W budget, which 

corresponds to a single power supply failure, the P 

controller runs the processors at 8% faster than the open-

loop or best-open policy. Therefore, the P controller can 

make performance improvements over even the best 

open-loop controllers. 

Accurate power measurement is a vital part of our closed-

loop controller and is required to achieve good 

performance. For instance, if the measurement error was 

10% instead of 2%, then the P controller would need to 

use a 225 W set point for the 250 W budget case. This is 

the same set point we used for the 230 W budget case 

with a 2% measurement error. Therefore, a 10% 

measurement error would cause the processors for the 250 

W budget case to run at 64.7% speed instead of 81.2% 

speed. Additionally, it is clear that in some cases an open-

loop controller can achieve a higher performance than a 

close-loop controller when its measurements are more 

accurate. For this reason, we assume the same 

measurement accuracy of 2% for all controllers to make 

fair comparisons. 

6.4. Experiment II: Application Performance 
In this section, we investigate the impact of closed-loop 

power control on the performance on common 

microprocessor benchmarks. We ran the open-loop, best-

open, and P controller under each power budget and 

recorded the throughput achieved. In Table 3, we present 

the benchmark performance as a fraction of the 

throughput at full-performance. For example, a measure 

of 1.0 means the application ran at the same rate as it 

would in the 100% performance state. A measure of 0.5 

means that the workload achieved half of the throughput 

as it would the 100% performance state. The throughput 

for LINPACK is measured in GFLOP/S, the throughput 

for SPECjbb2005 is measured in business operations per 

second, and SPEC CPU2000 is run with 2 user threads 

and recorded as number of runs per second. 

Controller Statistic 
230 W 

budget 

250 W 

budget 

fixed speed  62.5%  75.0% 

avg. power  224.5 W  240.1 W 

max power 1s  225 W  241 W 

Open-loop 
or 

Best-open 

max power 8s  225 W  240 W 

P controller set point power  225 W  245 W 

avg. speed  64.7%  81.2% 

avg. power  225.4 W  245.5 W 

max power 1s  226 W  246 W 

P controller 

max power 8s  225 W  245 W 

Table 2: Results for P4MAX. 
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For the 250 W budget, open-loop achieved 70%-79% of 

full performance throughput, while best-open achieved 

83%-100% and P controller achieved 92%-100%. For the 

230 W budget, open-loop ran at 56%-70%, best-open ran 

at 60%-91% and P controller ran at 72%-97% of full 

throughput. For some runs, the best-open policy 

outperforms the P controller by 1% or 2%. We believe 

this is due to the 1.5% actuation overhead. At the 250 W 

budget, the P controller ran most benchmarks near full 

performance. Not surprisingly, LINPACK, which is one 

of the hottest workloads, experiences the most slowdown 

under all controllers. Figure 6 shows the P controller has 

large speedups from 1.2 to 1.4 over the open-loop. At the 

250 W budget, the P controller achieves performance 

similar to best-open, which is not surprising, given that 

few workloads are power-constrained at this level. The 

difference is more dramatic at the 230 W budget, where 

the P controller shows 3% to 35% better application 

performance. Although best-open, which uses an ideal 

fixed performance state, can sometimes approach the 

application performance of the P controller, it is important 

to remember that it cannot be implemented in practice. 

Power budget and control policy 

230 W budget 250 W budget 

Open-loop Best-open P controller Open-loop Best-open P controller Workload 

Perf. 
Fixed 

speed 
Perf. 

Avg. 

Speed 

Perf

. 
Perf. 

Fixed 

speed 
Perf. 

Avg. 

Speed 
Perf. 

164.gzip  0.60 75.0% 0.74 80.3% 0.83 0.74 100.0% 1.00 99.2% 1.00 

175.vpr  0.62 75.0% 0.74 88.9% 0.88 0.74 100.0% 1.00 100.0% 1.00 

176.gcc  0.61 75.0% 0.74 89.6% 0.83 0.74 100.0% 1.00 100.0% 1.00 

181.mcf  0.64 62.5% 0.64 88.8% 0.89 0.76 87.5% 0.89 99.0% 1.00 

186.crafty  0.61 75.0% 0.73 93.6% 0.88 0.73 100.0% 1.00 100.0% 1.00 

197.parser  0.62 75.0% 0.74 80.7% 0.82 0.74 100.0% 1.00 100.0% 1.00 

252.eon  0.61 75.0% 0.73 95.4% 0.95 0.73 100.0% 1.00 100.0% 1.00 

253.perlbmk  0.61 75.0% 0.74 81.1% 0.77 0.74 87.5% 0.88 97.3% 0.97 

254.gap  0.63 75.0% 0.75 78.7% 0.77 0.75 87.5% 0.89 94.7% 0.95 

255.vortex  0.61 75.0% 0.74 90.3% 0.89 0.74 100.0% 1.00 100.0% 1.00 

256.bzip2  0.58 75.0% 0.75 79.8% 0.83 0.75 87.5% 0.89 99.6% 1.00 

300.twolf  0.61 87.5% 0.87 91.5% 0.91 0.73 100.0% 1.00 100.0% 1.00 

168.wupwise  0.65 75.0% 0.76 79.9% 0.80 0.76 87.5% 0.89 98.6% 0.99 

171.swim  0.70 87.5% 0.91 92.3% 0.96 0.79 100.0% 1.00 100.0% 1.00 

172.mgrid  0.68 75.0% 0.78 85.5% 0.86 0.78 100.0% 1.00 99.9% 1.00 

173.applu  0.67 87.5% 0.90 90.9% 0.93 0.77 100.0% 1.00 100.0% 1.00 

177.mesa  0.61 87.5% 0.88 92.4% 0.92 0.74 100.0% 1.00 100.0% 1.00 

178.galgel  0.62 75.0% 0.73 83.5% 0.78 0.73 87.5% 0.83 96.9% 0.96 

179.art  0.66 87.5% 0.88 94.1% 0.94 0.76 100.0% 1.00 100.0% 0.99 

183.equake  0.67 75.0% 0.78 85.8% 0.88 0.78 100.0% 1.00 100.0% 1.00 

187.facerec  0.69 75.0% 0.79 85.6% 0.87 0.79 100.0% 1.00 97.3% 0.98 

188.ammp  0.61 87.5% 0.88 92.9% 0.97 0.73 100.0% 1.00 100.0% 0.99 

189.lucas  0.67 75.0% 0.78 90.0% 0.90 0.78 100.0% 1.00 100.0% 1.00 

191.fma3d  0.66 75.0% 0.77 85.6% 0.88 0.77 100.0% 1.00 99.1% 1.00 

200.sixtrack  0.61 87.5% 0.88 95.3% 0.91 0.74 100.0% 1.00 100.0% 1.00 

301.apsi  0.62 87.5% 0.88 86.7% 0.87 0.74 100.0% 1.00 99.0% 1.00 

SPEC CPU2000 

INT (rate 2) avg. 
 0.61 75.0% 0.74 86.8% 0.85 0.74 95.8% 0.96 98.9% 0.99 

SPEC CPU2000 

FP (rate 2) avg. 
 0.65 81.2% 0.83 88.6% 0.89 0.76 98.2% 0.98 99.3% 0.99 

SPECJBB  0.60 62.5% 0.60 81.8% 0.81 0.73 100.0% 1.00 98.7% 0.99 

LINPACK  0.56 75.0% 0.70 78.8% 0.72 0.70 87.5% 0.86 95.8% 0.92 

Table 3: Application performance as a fraction of full-performance throughput. Perf columns show the fraction of full-
performance throughput of the workload (1=full performance). Fixed speed indicates the processor speed used by the best-
open controller. Avg speed indicates the effective speed of the processors as the P controller changes performance state 
over the workload. Open-loop always runs at 62.5% speed at 230 W and 75% speed at 250 W. 
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The P controller’s ability to use measure power and adapt 

to the workload as it changes allows it to outperform fixed 

performance state policies in most situations.  

7. Conclusions  

In this paper we present a control-theoretic power 

management system for managing peak power. As an 

advantage of theoretical design, we can quantitatively 

analyze system performance and choose the best control 

parameters, even when the system model has significant 

variations. Specifically, we determine the change in 

power consumption caused by workload variation in order 

to select the controller gain parameter. We use the gain 

parameter to select a control period that corresponds to 

the requirements of the overload condition of a power 

supply. This guarantees that when a power supply fails, 

under any workload, the power drawn by the remaining 

supply can be reduced to a nominal level within 1 second. 

Feedback control of power is useful for improving server 

reliability. Specifically, closed-loop control provides less 

performance loss under a partial power supply failure than 

by using simpler open-loop solutions found in 

conventional servers. Since the closed-loop controller 

measures the actual power the system consumes, it can 

react to workload changes and adapt the performance 

state to meet the requested power budget. This results in a 

1.2 to 1.4 speedup in application performance. A key 

factor in realizing this performance improvement is 

having accurate power measurement which reduces 

controller design margins and utilizes the available power 

supply effectively. 

Feedback control of power has many implications for the 

future design and operation of servers. Enforcing a run-

time power constraint with closed-loop control, rather 

than a design-time power constraint with open-loop 

control, will allow servers to flexibly adapt to their power 

and thermal environments. System designers could save 

cost by using power supplies that have just enough 

capacity to run important applications at full-performance 

for a target market, but are under-provisioned for worst-

case power benchmarks with hardware components that 

consume worst-case power. New blade servers would be 

more likely to run at full-performance within the power 

capacity of the prior generation of blade server chassis. 

Data center administrators could slightly reduce the 

power consumption of their servers to match individual 

rack-level power and cooling requirements, with little 

impact on application performance. In general, feedback 

control power allows servers to run at the highest 
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Figure 6: Speedup of controllers compared to open-loop. 1.0 = open-loop throughput at either 230 W or 250 W budget. 
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performance level possible under a given system-level 

power constraint. 
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