
RC23835 (W0512-086) December 19, 2005
Computer Science

IBM Research Report

Managing Peak System-level Power with Feedback Control

Xiaorui Wang
Washington University in St. Louis

Charles Lefurgy, Malcolm Ware
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Managing Peak System-level Power with Feedback Control
Xiaorui Wang

Washington University in St. Louis

wang@cse.wustl.edu

Charles Lefurgy, and Malcolm Ware

IBM Research

{lefurgy,mware}@us.ibm.com

Abstract
Power consumption has arguably become the most

important design consideration for modern, high-density

servers, but current power management implementations

have not evolved beyond primitive responses to thermal

emergencies and do not manage to varying power and

cooling constraints.

We present a technique that manages the peak power

consumption of a high-density server by implementing a

feedback controller that uses precise, system-level power

measurement to periodically select the highest

performance state while keeping the system within a fixed

power constraint. A control theoretic methodology is

applied to systematically design this control loop with

analytic assurances of system stability and controller

performance, despite unpredictable workloads and

running environments.

This technique is particularly valuable when applied to

servers with multiple power supplies, where a partial

failure of the power supply subsystem can result in a loss

of performance in order to meet a lower power constraint.

Conventional servers use simple open-loop policies to set

a safe performance level in order to limit peak power

consumption. We show that closed-loop control can

provide a more graceful degradation of service under

these conditions and test this technique on an IBM

BladeCenter HS20 server. Experimental results

demonstrate that closed-loop control provides superior

application performance compared to open-loop policies.

1. Introduction

As modern enterprise data centers continue to increase

computing capabilities to meet their growing business

requirements, high-density servers become more and

more desirable due to space considerations and better

system management features. However, the greatest

immediate concerns about high-density servers are their

power and cooling requirements, imposed by limited

space inside the server chassis. The situation is even

worse for servers which require redundant power supplies

for increased reliability. In conventional products, system

designers must provide for worst-case operating

environments and workloads which result in servers with

over-provisioned power supplies that can far exceed the

power capacity required for the typical operation. This

leads to some potential problems:

1. In the case of a partial power-supply failure, the

system degrades performance assuming all the

server components are consuming their worst-

case power. This pessimistic estimation

unnecessarily results in low application

performance.

2. An over-provisioned power supply increases

manufacturer cost for the server and may

increase the footprint of the server.

3. In the case of blade servers, while a chassis is

designed to last for several product generations,

eventually new blade designs with higher power

consumptions may exceed the older chassis’

power capacity. Conservative solutions may be

forced to use the new blades, but at a fixed,

lower performance setting.

4. Data center operators must typically assume a

cooling infrastructure that meets the label power

of the power supplies, regardless of actual server

power consumption, which adds cost to their

operating expenses.

Each situation above would benefit from run-time

measurement and control of power to adapt to a power

constraint and reduce server performance only when

actual power consumption exceeded the power constraint.

This paper specifically focuses on the first problem to

provide a graceful degradation of performance during a

power supply fault.

Modern microprocessors commonly offer programmable

performance states, such as clock throttling or dynamic

voltage scaling (DVS), that can reduce server power

consumption. In this paper, we propose to manage the

peak system-level power consumption with a feedback

controller that uses precise system-level power

measurements to periodically select the highest

performance state and yet keep the server within the

desired power constraint. This allows fixed, design-time

constraints to be relaxed because the system safely

adheres to run-time constraints.

This paper makes the following contributions:

1. To our knowledge, we are the first to

demonstrate managing the peak system power of

a single server to a power constraint using

precision measurement with a closed-loop

control system. This differentiates our work from

 2

previous solutions that manage average power,

use ad-hoc control, or use estimations of power

in place of real measurement.

2. We present a novel control design based on

feedback control theory to manage system-level

power with theoretic guarantees on accuracy and

stability.

3. We demonstrate how to derive controller

parameters such that the controlled system is

guaranteed to achieve the desired controller

performance in the presence of run-time

variations that cause the system to behave

differently from the control model.

4. We implement our control system directly in an

IBM BladeCenter blade server and evaluate it

using industry standard benchmarks.

5. For servers with multiple power supplies, we

show that performance degrades much more

gracefully under a partial power supply failure as

compared to simpler open-loop solutions. In

some situations, performance is not noticeably

affected.

In the rest of the paper we first highlight the distinction of

our work by discussing related work. In Section 3, we

discuss system-level management of power in

conventional systems and those with feedback controllers.

We then demonstrate how we design and analyze the

controller based on feedback control theory in Section 4.

In Section 5, we describe the detailed implementation of

each component in the feedback control loop. Extensive

experimental results are presented in Section 6 and we

draw conclusions in Section 7.

2. Related work

Power consumption is one of the most important design

constraints for high-density servers. Much of the prior

work has attempted to reduce power consumption by

improving the energy-efficiency of individual server

components [1]. In contrast, our paper is focused on

providing an effective power management algorithm to

control system-level power. Previous work [2] has shown

that processors are often the dominant consumers of

power in servers. This is particularly true in dense blade

server environments. In this paper, we focus on

controlling system-level power consumption by throttling

processors.

Many researchers use expensive power measurement

equipment to instrument servers for their studies [2]. In

our work, we use an inexpensive, yet highly accurate,

power measurement circuit built-in to recent IBM HS20

blade servers which measures power consumed by the

entire blade. This enables our technique for power

management to be used in ordinary, high-volume servers.

There has been much work done on system-level power

management. Zeng et al. [3] and Lu et al. [4] have

developed power management strategies for operating

systems. In contrast, our work is at the system-

architecture level. Our feedback controller in the service

processor firmware directly controls the main host

processors to keep the system-level power within a power

constraint, while requiring no support from the OS or

workloads running on the system and is operational

during system boot. Thus, the power management is more

robust and less susceptible to software errors or malicious

threats.

Feedback control theory has proven to be an effective

way in improving performance and robustness of

computing systems [5]. Skadron et al. [6] use control

theory to dynamically manage the temperature of

microprocessors. Likewise, Wu et al. [7] manage power

using dynamic voltage scaling by controlling the

synchronizing queues in multi-clock-domain processors.

In contrast to their work, we control peak power for a

whole server instead of just the processors.

Minerick et al. [8] develop a feedback controller for

managing the average power consumption of a laptop to

prolong battery lifetime. Their study relies on experiments

to find the best control parameters. In contrast, we derive

parameters based on a systematically built control model.

In addition, we not only design our controller based on

feedback control theory, but also analytically model the

possible system variations and provide corresponding

theoretic guarantees. We believe our work is the first to

provide such insightful analyses for system-level power

management. As a result, our control method does not

assume any knowledge about potential workloads and

thus can be generally applied to any server system. In

addition, our controller is designed to meet the tighter

real-time constraints for the overload condition of server

power supplies. Femal et al. [9] present a two-level

framework for controlling cluster-wide power. The Local

Power Agent (LPA) applies the controller from Minerick

et al. to each server in order to limit the server-level

power. The Global Power Agent dynamically re-allocates

the power budgets between the local managers. Our blade

server prototype could be used in place of the LPA to

control cluster-wide power.

Sharma et al. [10] effectively apply control theory to

control application-level quality of service requirements.

Chen et al. [11] also develop a controller to manage the

response time in a server cluster. Although they both use

control theory to manage power consumption, power is

only used as a knob to control application-level service

metrics. As a result, they do not provide any absolute

guarantee to the power consumption of a computing

 3

system. In this paper, we explicitly control the power

consumption itself to adhere to a given power constraint.

3. System-level power management

This section describes portions of the current power

management solution in the BladeCenter and the

requirements that the control loop must meet in order to

satisfy power supply constraints.

3.1. BladeCenter test platform

Our test platform is an IBM BladeCenter HS20 blade

server with Intel Xeon microprocessors. The power

management architecture of BladeCenter is shown in

Figure 1. A BladeCenter chassis has two power domains

and is configured with four 2000 W power supplies total.

Each power domain is redundantly connected to two of

the power supplies so that in the event of a single supply

failure, the domain continues operating with the

remaining power supply. The first power domain provides

power for six processor blades as well as supporting

components shared by the blades including management

modules, fans, the media tray, and network switches. The

second power domain holds eight processor blades. Our

discussion and experiments use the second power domain

because its blades have a stricter power constraint.

The BladeCenter allows the user to specify the policy that

is used when a single redundant power supply fails. One

common policy is redundant. This allows the domain to

consume at most 2000 W. When a power supply fails the

remaining supply can provide 2000 W and the blades can

consume full power and run at full performance. Another

common policy setting is recoverable oversubscription

[14], which is the focus of this discussion. This policy

allows the user to install additional high-power blades

which will use more power at full-performance than one

power supply can provide, but less power than two power

supplies can provide together. The blades run at full-

performance as long as both power supplies function.

When a single power supply fails, the blade’s processors

are throttled to a predetermined performance setting so

their aggregate power is less than a single power supply.

The blades return to full performance once the failed

power supply is replaced. The BladeCenter management

module determines the unique performance setting for

each blade when the blade is initially installed in the

chassis. The setting is based upon installed blade

components and the capacity of the power supplies.

In BladeCenter, the recoverable oversubscription policy

specifies that the maximum power that two functioning

2000 W power supplies can provide is 2500 W [15]. This

is the power supply overload condition. During a single

power supply failure, the power load shifts to the

remaining supply. An engineering decision in

BladeCenter is that the load must be reduced from a

maximum of 2500 W down to 2000 W within one second

[15]. If the load remains too high on the single supply for

too long, then the remaining power supply may turn off

and remove power from all blades in the domain. In

reality, the one second target is conservative and the

power supply can sustain a power overload for even

longer periods of time.

The mechanism to throttle blade performance is processor

clock modulation (“clock throttling”) which lowers the

effective frequency of the processors. There are 8

performance states which correspond to effective

frequencies of 12.5%, 25%, 37.5%, 50%, 62.5%, 75%,

87.5%, and 100%.

3.2. Feedback control of power

We have developed a feedback control loop which

adaptively controls the power consumption of the server

by manipulating the processor clock modulation setting.

Some form of clock modulation is commonly available

across all microprocessor families used in servers, while

DVS is not supported in all server products. Therefore,

we developed a closed-loop controller using clock

throttling, the more general mechanism, so that our

technique can potentially be used across all server

platforms. DVS will be a more energy-efficient

mechanism to use for future blade power control.

However, DVS requires a different design for the closed-

loop controller, which is beyond the scope of this paper.

Figure 1: BladeCenter chassis.

BladeCenter chassis with 8 blades in second power domain

Chassis front

Chassis rear

Power

Supply

12 V power

current

voltage

Management module

(in first power domain)

Chassis-level power

management software

RS-485 link

S
ig

n
al

co
n

d
it

io
n
in

g

S
en

se

re
si

st
o

rs

HS20 blade

All blade components

(processors, memory, disks,

service processor, etc.)

12 V

H8S Service

Processor

Power

measurement

and control

A/D

A/D

 4

There are two reasons for us to use processor throttling as

our actuation method. First, processors typically have

well-documented interfaces to adjust performance levels.

Second, processors commonly contribute the majority of

total power consumption of small form-factor servers. As

a result, the processor power difference between the

highest and lowest performance states is large enough to

compensate for the power variation of other components

and to provide an effective way to support a power budget

reduction in the event of power supply failure. The

control loop always sets all processors to the same

performance state. Asymmetric throttling would violate

the assumption made by many commercial operating

systems that all processors run at the same speed.

During normal operation, the power budget for the control

system on each blade is 312 W (2500 W / 8 blades).

When a power supply fails, each blade simultaneously

detects the event and changes its power budget to 250 W

(2000 W / 8 blades). The control systems respond to this

new budget and reduce the load on the remaining supply

within one second.

The key components in the control loop include the

monitor, the controller, and the actuator. The control loop

is invoked periodically and its period is decided based on

the trade-off between actuation overhead and system

settling time. At each control period, a precision

measurement of the real system-level power consumption

is input to the controller. The controller computes the new

performance state and sends it to the actuator. The

actuator throttles the processors to the new performance

state. A detailed description of each component is given

in Section 5. The photo in Figure 2 shows our HS20 blade

with the power measurement circuitry and sense resistors

used for closed-loop control.

4. Controller Design and Analysis

The core of our feedback control loop is the controller.

First, we mathematically model the system through the

process of system identification. Based on the system

model, the controller is then designed systematically

using feedback control theory. Finally, the control

performance of the model is analyzed and the impact of

variation between the model and real systems is

discussed.

We first introduce the following notation:

T: The control period

p(k): The power consumption of the server in the k
th

control period. Its Z-transform is P(z).

Ps: The power set point of the server, namely, the

desired power constraint.

t(k): The performance state of the processors in the k
th

control period. Its Z-transform is T(z).

d(k): The difference between t(k+1) and t(k).

Specifically d(k)= t(k+1)-t(k). Its Z-transform is D(z).

The goal of the controller is to guarantee that p(k)

converges to Ps within a given settling time.

4.1. System Modeling

In order to have an effective controller design, it is crucial

to model the dynamics of the controlled system, namely

the relationship between the control input (i.e.

performance state of the processors) and the control

output (i.e. power consumption of the server). Therefore,

we use a standard approach to this problem, called system

identification [12]. We infer the relationship between the

control input and control output by collecting data on a

controlled system and establish a statistical model based

on the measured data.

In order to ascertain the response of system power to a

change in performance state, we run each of the

workloads at every performance state and record the

maximum power attained over a 1 second interval. Our

workloads, described in Section 6.1, are P4MAX,

LINPACK, SPECjbb2005, and SPEC CPU2000 (1 and 2

threads). In traditional system identification, the input is

varied to find the relationship between the sequence of

past input values and the output response. This is

unnecessary here as we have observed the power

consumption changes immediately (within a millisecond)

as the performance state changes without regard to the

previous performance state. That means the power

consumption of the server for a given workload is

determined exclusively by the performance setting and is

independent of the power consumption in previous

control periods. Although temperature also affects

system-level power, it operates on a much slower

timescale and can be modeled as a disturbance input to

the controller. Figure 3 plots the relationship between the

processor performance setting and the maximum 1 second

power consumption. A linear model fits well (R
2
 > 99%)

Figure 2: IBM BladeCenter HS20 blade.

Controller firmware on
service processor (H8
2166)

Power
measurement circuit

Sense resistors

 5

for all workloads. Hence, our system model of power

consumption is:

BkAtkp +=)()((1)

The dynamic model of the system as a difference equation

is:

)()()1(kAdkpkp +=+ (2)

4.2. Controller Design

We now apply feedback control theory [12] to design the

controller based on the dynamic system model (Equation

2). The goal of the controller design is to meet the

following requirements:

Stability: The power should finally settle into a bounded

range in response to a bounded reference input.

Zero steady state error: The power should settle to the

set point which is the power constraint.

Short settling time: The system should settle to the set

point by a specified deadline.

Following standard control theory, we design a

proportional (P) controller [12], which has a Z-transform

of:

A
zC

1
)(=

 (3)

It is easy to prove that the controller is stable and has zero

steady state error. Satisfying these requirements means

that when the power level or set point is changed, the

controller will converge precisely to the desired set point.

In addition, the settling time is one control period. Due to

space limitations, we skip the detailed derivation which

can be found in standard control textbooks [12].

The time-domain form of our proportional controller

(Equation 3) is:

))((
1

)(kpP
A

kd s −= (4)

Based on the definition of d(k), the desired performance

setting at the (k+1)
th

 control period is:

)()()1(kdktkt +=+ (5)

The pseudo code of the controller is given in Figure 5.

4.3. Control Performance Analysis

Our controller is designed to achieve the control

performance specified in Section 4.2 when the system

model is accurate. However, the real system model is

usually different from the nominal model (Equation 1) we

used to design the controller. This variation could have

several causes. For example, the server may have

different components and configurations from the

modeled system, the workload could be different from the

ones used in system identification, or manufacturing

differences in the microprocessors may cause them to

have different power levels. Since developing a different

controller for every server and every workload is

130

150

170

190

210

230

250

270

12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5% 100.0%

Processor performance setting (effective frequency)

P
o

w
e

r
(W

)

SPECCPU 2-threads

SPECCPU 1-thread

LINPACK

SPECJBB 2005

P4MAX

Idle

Figure 3: Maximum system-level power for each processor performance state.

 6

infeasible, it is very important to analyze the impact of

model variation to control performance, before we deliver

any theoretical guarantees.

An important observation from our measurements is that

the workloads always exhibit a linear relationship

between power consumption and the performance state,

even running on different servers. Based on this

observation, we mathematically analyze the impact of

model variation on control performance. Without loss of

generality, we model the real system as

BgkAtgkp 21)()(+= (6)

where AAg '1 = and BBg '2 = are system gains and

are used to model the variation between the real system

model (Equation 6) and the nominal model (Equation 1).

Since our controller is designed based on the difference

equation (Equation 2) of the system model, g2 has no

effect on the performance of the controller. The closed-

loop transfer function for the real system is

)1()1/(

)(

1

1

gz

g

zzP

zP

s −−

=

−

 (7)

Now we investigate each control performance metric.

1. Stability

The closed-loop system pole in Equation 7 is 1- g1. In

order for the system to be stable (i.e. converge to the

desired set point), the pole must be within unit circle [12],

namely |1- g1| < 1. Hence the system will remain stable as

long as 0 < g1 < 2. This result means that if the slope (i.e.

A’ or g1A in Equation 6) of the real model is less than

twice that of the nominal model, the system is still stable.

The stability range serves as an important reference when

applying our controller to different systems and running

different workloads.

2. Steady state error

The steady state error of the real system can derived as

ss
zz

PP
gz

zg
zPz =

−−

=−
→→)1(

lim)()1(lim
1

1

11

 (8)

Equation 8 means that as the system proceeds, the power

will settle to Ps which is exactly the set point. Hence, as

long as the system is stable (i.e. 0<g1<2), we can achieve

the desired power value.

3. Settling time

By transforming the closed-loop response (Equation 7) to

the time-domain, the power variation model becomes

sPgkpgkp 11)()1()1(+−=+ (9)

As commonly defined in control theory, the system settles

when p(k) converges into the 2% range around the desired

set point Ps. Hence, the required number of sampling

periods, k, for the system to settle can be calculated as:

11ln

02.0ln

g
k

−

≥
 (10)

Based on our required settling time of 1 second from

Section 3.1, we can use Equation 10 to derive a range of

g1. As long as g1 is within this range, the system is

guaranteed to achieve the required settling time.

4.4. Controller parameters

For this paper, we construct a control loop that can be

used for our particular blade at nominal temperatures.

Constructing a control loop for an actual product is

similar, but involves taking measurements from many

blades to account for manufacturing variation and taking

the measurements of the BladeCenter under thermal stress

to account for different machine room environments,

which is beyond the scope of this paper.

The lower bound to which power can be controlled is

constrained by the most power consuming benchmark,

running at the lowest performance state. For our blade,

the maximum power consumed by any workload at the

12.5% performance state was 170 W. This means that the

power budget for the control loop cannot be set below 170

W, without risking a violation of the power constraint.

The value for A is chosen by considering the range for A’

as shown in Figure 4. The maximum value for A’ is the

slope of P4MAX, from Figure 3, which is 125.7, the

maximum of all workloads. The minimum value for A’

depends upon the minimum set point value discussed

above. We can estimate a safe lower bound for A’ within

which the control loop will work. For the minimum A’ we

take the slope of the imaginary line connecting (138 W,

0%) to (170W, 100%). The reasoning is that if the

processor were to slow down to near 0% speed, then the

power of the workload would be near that of the idle

power of 138 W. Therefore, a workload that can go

beyond 170W must have a slope greater than 32.

Workloads that have slopes less than 32 cannot reach 170

W and therefore, always run at full-performance as the

control loop selects the 100% performance state in an

attempt to raise the power to the set point. We calculate A

as the average between the minimum and maximum

slopes to guarantee stability even in extreme cases.

Therefore, A is 78.85 and 0.406 < g1 < 1.594.

Our goal is for system power to settle within 1 second to

the set point power. If we use the conventional 2% target

for the set point in Equation 10, then power could still be

several Watts away from the set point, given that the

maximum power measured by P4MAX is 273 W.

Therefore, we modify Equation 10 to consider how many

intervals are required for the power to settle within 0.5 W:

 7

11ln

273

5.0
ln

g
k

−

≥
 (11)

Equation 11 uses 0.5 W out of 273 W to calculate the

minimum percentage of the set point to which we need to

converge. We calculate that k is at least 12.1 which means

the power will settle in 13 periods. Dividing 1 second by

13 periods tells us the control period should be less than

76.9 ms. For this set of experiments, we use an interval of

64ms.

5. System Implementation

This section describes each component in our feedback

control loop.

5.1. Power monitor

The HS20 blade, contains a signal conditioning circuit

attached to sense resistors that allows for monitoring of

the current and voltage of the power supply’s 12V

interface to the blade. This conditioning circuit attaches to

analog-to-digital converters on the service processor. The

service processor (a 29 MHz Renesas H8S) converts the

signals into a calibrated power measurement that

represents the power consumed by the entire blade as a

function of time.

The absolute measurement is accurate to within 2% due to

a calibration feature realized between the hardware and

service processor firmware and due to the 1% accuracy

rating of the sense resistors. The calibration step reduces a

number of additional circuit thermal, aging, and precision

issues that would otherwise have led to measurements that

varied by 5% or worse as temperatures changed inside the

chassis and as a blade’s components aged over time. It is

fundamental to the entire server system to build its power

measurement and management around precision dynamic

measurements. The quality of the power measurement is

constrained by the cost the measurement circuit. For a

high-volume, low-cost server, we use a low-cost circuit

that meets a 2% maximum error goal and a 1 Watt digital

resolution representation of the discrete power signal.

5.2. Controller

We sample the system power at a high frequency and

average it over the control period to provide power values

for 64 ms intervals to the P controller. In control theory,

this is equivalent to having a low pass filter in front of the

controller, which effectively reduces the random noise of

the system. Shorter control periods could be used to cover

a wider range of system gain at the cost of actuating more

often.

5.3. Actuator

The pseudo code including the controller and the

saturation handling is shown in Figure 5. The service

processor affects the actuation by activating a BIOS

routine on the host processor which sets the

IA32_CLOCK_MODULATION register in the Xeon

processor to set the performance state. In the worst case,

the controller may actuate every control period. In our

system it takes less than 1 ms to change the performance

state. Therefore, the effect of actuation overhead on

system performance is no more than 1.5% (1ms/64ms). In

situations where the performance state does not change

(e.g. system requires less than the power constraint), there

is no actuation overhead.

5.4. Power budget

In Section 4.4, we derived the minimum value for the

controller set point to be 170 W. Considering we have a

2% maximum error in power measurement, we must

0

20

40

60

80

100

120

140
P

4
M

A
X

L
IN

P
A

C
K

S
P

E
C

J
B

B
g
z
ip

-2
v
p
r-

2
g
c
c
-2

m
c
f-

2
c
ra

ft
y
-2

p
a
rs

e
r-

2
e
o
n
-2

p
e
rl
b
m

k
-2

g
a
p
-2

v
o
rt

e
x
-2

b
z
ip

2
-2

tw
o
lf
-2

w
u
p
w

is
e
-

s
w

im
-2

m
g
ri
d
-2

a
p
p
lu

-2
m

e
s
a
-2

g
a
lg

e
l-
2

a
rt

-2
e
q
u
a
k
e
-2

fa
c
e
re

c
-2

a
m

m
p
-2

lu
c
a
s
-2

fm
a
3
d
-2

s
ix

tr
a
c
k
-2

a
p
s
i-
2

g
z
ip

v
p
r

g
c
c

m
c
f

c
ra

ft
y

p
a
rs

e
r

e
o
n

p
e
rl
b
m

k
g
a
p

v
o
rt

e
x

b
z
ip

2
tw

o
lf

w
u
p
w

is
e

s
w

im
m

g
ri
d

a
p
p
lu

m
e
s
a

g
a
lg

e
l

a
rt

e
q
u
a
k
e

fa
c
e
re

c
a
m

m
p

lu
c
a
s

fm
a
3
d

s
ix

tr
a
c
k

a
p
s
i

Workload

S
lo

p
e
 f

ro
m

 F
ig

u
re

 3

A'=125.7

A'=32

A=78.85

g = A'/A

0.406 < g < 1.594

Figure 4: Selection of A and g1. “2” denotes 2 threads. Y-axis is the slope of the lines from Figure 3.

 8

subtract 2% from the desired power budget to form the set

point used in the controller. For example, if the desired

power budget is 250 W, then we use 245 W as the

controller set point to ensure that the real power is below

the budget even with the worst case measurement error.

Accounting for the worst-case measurement error means

the lowest power budget we can guarantee is 174 W.

When the server power consumption is below the set

point the controller saturates at the highest performance

state which allows the system to operate at full

performance. Selection of the highest performance state is

desired because we want the system to run at full

performance in normal situations.

6. Results

In this section, we present the experimental results of

using closed-loop control of power on an IBM

BladeCenter blade. We first describe the experimental

environment and benchmarks used in our experiments.

Then we introduce the baseline open-loop controller to

compare with our P controller. Finally we present results

evaluating common benchmarks under fixed power

budgets.

6.1. Experimental Environment
Our test environment is an IBM BladeCenter HS20 blade

which was introduced in Section 3.1. This server is fully

populated with two 3.6GHz Intel Xeon Irwindale SMP

processors with hyper-threading, 8GB memory, two 36

GB SCSI hard-disks, dual 1 Gb Ethernet interfaces, and a

Fibre Channel daughter card.

We evaluate each power management policy under two

budgets. The first budget is 250 W, which corresponds to

the case in which the BladeCenter has lost a single

redundant 2000 W power supply. The second budget is

230 W, which is similar to the loss of a 1875 W power

supply, which was used by the previous generation of

blade servers. Each measurement presented is the average

value of three runs.

Our evaluation workloads are listed in Table 1. Some of

the workloads are run under SUSE Linux Enterprise

Server 9 SP 2 and others are run under Windows Server

2003 Enterprise x64 Edition. In our evaluation, we do not

show results for single thread SPEC CPU2000 because

the power consumption is typically below the power

budgets we evaluate and would result in no application

slowdown. The P4MAX workload is a program designed

to produce the maximum power consumption on the Intel

Xeon microprocessors [13].

6.2. Baseline
Our baseline is an open-loop policy, referred to as open-

loop which selects a fixed performance setting for a given

power budget. It is designed to be suitable for typical

system conditions and is derived from our power

measurements of P4MAX. The baseline assumes that

under the loss of a power supply, the system could be

running any workload and therefore must lower the

performance setting to the point that even the most

power-consuming workload could be run. For the 230 W

budget, open-loop uses the 62.5% performance state and

at 250 W budget it uses the 75% performance state. The

BladeCenter product currently uses an open-loop policy,

but instead estimates the proper performance setting

based on blades’ run-time component configurations [14].

Since we limit our evaluation of the closed-loop controller

to nominal conditions, the BladeCenter open-loop control

is not suitable for comparison in this study.

It is interesting to consider how much more our open-loop

policy could be improved. As a thought experiment, we

also consider the best-open policy which is an open loop

that knows a priori the highest performance state for each

workload that does not violate the power budget. This

policy is impossible to implement in practice because it

Figure 5: Pseudo code of the control loop.

Workload Environment Notes

P4MAX Windows Run for 1 minute on

both processors using

100% setting (4

threads total).

SPEC

CPU2000

Linux Compiled with Intel

Compiler 9.0 (32-bit).

Performance results

are only shown for

rate (2 users) mode.

SPECjbb2005 Windows JVM is BEA JRockit

JRE 5.0 Update 3

(RR25.2.0-28). Run 4

warehouses only.

Intel

Optimized

LINPACK

Linux Version 2.1.2. Run

with two threads.

15000x15000 matrix.

Table 1: Workloads.

//controller code

error = Ps – current power output;

ideal_throttle = throttle + (1/A) * error;

throttle = truncate(ideal_throttle);

//actuator saturation handling

 if (throttle > MAX_throttle)

 throttle = MAX_throttle;

 if (throttle < MIN_throttle)

 throttle = MIN_throttle;

 9

requires foreknowledge of the workload to be run, its

power demand on the processors, and the thermal

environment of the facility. We consider this policy to

represent an upper bound for any open-loop controller

that could be developed and show that our closed-loop

controller can still make impressive performance gains

over it.

6.3. Experiment I: Constant power-level workload
First we examine the ability of the controllers to keep a

workload with a steady power load at a fixed power

budget. We run the P4MAX workload on each controller

at each power budget for one minute and show the results

in Table 2.

Since the open-loop policy is based on P4MAX, it allows

the processors to run at the same speed as the best-open

policy. A 230 W power budget causes the processors to

be statically set to a performance state of 62.5%. A 250 W

power budget causes the processors to be statically set to

a performance state of 75%. For the 250 W budget, the

open-loop maximum power over a 1 second interval is

several Watts lower than the power budget, even when

accounting for measurement error. This illustrates the

wasted opportunity to further increase the processor speed

without violating the power constraint.

The P controller keeps the workload’s average power and

the maximum power over an 8 second interval at

precisely the controller set point. The maximum power

over a 1 second interval is 1 W above the set point of 225

W because the power occasionally goes over the set point

before the controller takes action and corrects it. For all

workloads we studied, the maximum power in a 1 second

interval never exceeds the set point by 2 W. These small,

short excursions above the set point are negligible to the

BladeCenter power supply, which can handle much

higher overload conditions for longer periods of time

[15]. These excursions could be reduced by either

shortening the control period at the cost of more actuation

overhead, or lowering the set point. At the 230 W budget,

the P controller has a small performance advantage over

the open-loop controllers. At the 250 W budget, which

corresponds to a single power supply failure, the P

controller runs the processors at 8% faster than the open-

loop or best-open policy. Therefore, the P controller can

make performance improvements over even the best

open-loop controllers.

Accurate power measurement is a vital part of our closed-

loop controller and is required to achieve good

performance. For instance, if the measurement error was

10% instead of 2%, then the P controller would need to

use a 225 W set point for the 250 W budget case. This is

the same set point we used for the 230 W budget case

with a 2% measurement error. Therefore, a 10%

measurement error would cause the processors for the 250

W budget case to run at 64.7% speed instead of 81.2%

speed. Additionally, it is clear that in some cases an open-

loop controller can achieve a higher performance than a

close-loop controller when its measurements are more

accurate. For this reason, we assume the same

measurement accuracy of 2% for all controllers to make

fair comparisons.

6.4. Experiment II: Application Performance
In this section, we investigate the impact of closed-loop

power control on the performance on common

microprocessor benchmarks. We ran the open-loop, best-

open, and P controller under each power budget and

recorded the throughput achieved. In Table 3, we present

the benchmark performance as a fraction of the

throughput at full-performance. For example, a measure

of 1.0 means the application ran at the same rate as it

would in the 100% performance state. A measure of 0.5

means that the workload achieved half of the throughput

as it would the 100% performance state. The throughput

for LINPACK is measured in GFLOP/S, the throughput

for SPECjbb2005 is measured in business operations per

second, and SPEC CPU2000 is run with 2 user threads

and recorded as number of runs per second.

Controller Statistic
230 W

budget

250 W

budget

fixed speed 62.5% 75.0%

avg. power 224.5 W 240.1 W

max power 1s 225 W 241 W

Open-loop
or

Best-open

max power 8s 225 W 240 W

P controller set point power 225 W 245 W

avg. speed 64.7% 81.2%

avg. power 225.4 W 245.5 W

max power 1s 226 W 246 W

P controller

max power 8s 225 W 245 W

Table 2: Results for P4MAX.

 10

For the 250 W budget, open-loop achieved 70%-79% of

full performance throughput, while best-open achieved

83%-100% and P controller achieved 92%-100%. For the

230 W budget, open-loop ran at 56%-70%, best-open ran

at 60%-91% and P controller ran at 72%-97% of full

throughput. For some runs, the best-open policy

outperforms the P controller by 1% or 2%. We believe

this is due to the 1.5% actuation overhead. At the 250 W

budget, the P controller ran most benchmarks near full

performance. Not surprisingly, LINPACK, which is one

of the hottest workloads, experiences the most slowdown

under all controllers. Figure 6 shows the P controller has

large speedups from 1.2 to 1.4 over the open-loop. At the

250 W budget, the P controller achieves performance

similar to best-open, which is not surprising, given that

few workloads are power-constrained at this level. The

difference is more dramatic at the 230 W budget, where

the P controller shows 3% to 35% better application

performance. Although best-open, which uses an ideal

fixed performance state, can sometimes approach the

application performance of the P controller, it is important

to remember that it cannot be implemented in practice.

Power budget and control policy

230 W budget 250 W budget

Open-loop Best-open P controller Open-loop Best-open P controller Workload

Perf.
Fixed

speed
Perf.

Avg.

Speed

Perf

.
Perf.

Fixed

speed
Perf.

Avg.

Speed
Perf.

164.gzip 0.60 75.0% 0.74 80.3% 0.83 0.74 100.0% 1.00 99.2% 1.00

175.vpr 0.62 75.0% 0.74 88.9% 0.88 0.74 100.0% 1.00 100.0% 1.00

176.gcc 0.61 75.0% 0.74 89.6% 0.83 0.74 100.0% 1.00 100.0% 1.00

181.mcf 0.64 62.5% 0.64 88.8% 0.89 0.76 87.5% 0.89 99.0% 1.00

186.crafty 0.61 75.0% 0.73 93.6% 0.88 0.73 100.0% 1.00 100.0% 1.00

197.parser 0.62 75.0% 0.74 80.7% 0.82 0.74 100.0% 1.00 100.0% 1.00

252.eon 0.61 75.0% 0.73 95.4% 0.95 0.73 100.0% 1.00 100.0% 1.00

253.perlbmk 0.61 75.0% 0.74 81.1% 0.77 0.74 87.5% 0.88 97.3% 0.97

254.gap 0.63 75.0% 0.75 78.7% 0.77 0.75 87.5% 0.89 94.7% 0.95

255.vortex 0.61 75.0% 0.74 90.3% 0.89 0.74 100.0% 1.00 100.0% 1.00

256.bzip2 0.58 75.0% 0.75 79.8% 0.83 0.75 87.5% 0.89 99.6% 1.00

300.twolf 0.61 87.5% 0.87 91.5% 0.91 0.73 100.0% 1.00 100.0% 1.00

168.wupwise 0.65 75.0% 0.76 79.9% 0.80 0.76 87.5% 0.89 98.6% 0.99

171.swim 0.70 87.5% 0.91 92.3% 0.96 0.79 100.0% 1.00 100.0% 1.00

172.mgrid 0.68 75.0% 0.78 85.5% 0.86 0.78 100.0% 1.00 99.9% 1.00

173.applu 0.67 87.5% 0.90 90.9% 0.93 0.77 100.0% 1.00 100.0% 1.00

177.mesa 0.61 87.5% 0.88 92.4% 0.92 0.74 100.0% 1.00 100.0% 1.00

178.galgel 0.62 75.0% 0.73 83.5% 0.78 0.73 87.5% 0.83 96.9% 0.96

179.art 0.66 87.5% 0.88 94.1% 0.94 0.76 100.0% 1.00 100.0% 0.99

183.equake 0.67 75.0% 0.78 85.8% 0.88 0.78 100.0% 1.00 100.0% 1.00

187.facerec 0.69 75.0% 0.79 85.6% 0.87 0.79 100.0% 1.00 97.3% 0.98

188.ammp 0.61 87.5% 0.88 92.9% 0.97 0.73 100.0% 1.00 100.0% 0.99

189.lucas 0.67 75.0% 0.78 90.0% 0.90 0.78 100.0% 1.00 100.0% 1.00

191.fma3d 0.66 75.0% 0.77 85.6% 0.88 0.77 100.0% 1.00 99.1% 1.00

200.sixtrack 0.61 87.5% 0.88 95.3% 0.91 0.74 100.0% 1.00 100.0% 1.00

301.apsi 0.62 87.5% 0.88 86.7% 0.87 0.74 100.0% 1.00 99.0% 1.00

SPEC CPU2000

INT (rate 2) avg.
 0.61 75.0% 0.74 86.8% 0.85 0.74 95.8% 0.96 98.9% 0.99

SPEC CPU2000

FP (rate 2) avg.
 0.65 81.2% 0.83 88.6% 0.89 0.76 98.2% 0.98 99.3% 0.99

SPECJBB 0.60 62.5% 0.60 81.8% 0.81 0.73 100.0% 1.00 98.7% 0.99

LINPACK 0.56 75.0% 0.70 78.8% 0.72 0.70 87.5% 0.86 95.8% 0.92

Table 3: Application performance as a fraction of full-performance throughput. Perf columns show the fraction of full-
performance throughput of the workload (1=full performance). Fixed speed indicates the processor speed used by the best-
open controller. Avg speed indicates the effective speed of the processors as the P controller changes performance state
over the workload. Open-loop always runs at 62.5% speed at 230 W and 75% speed at 250 W.

 11

The P controller’s ability to use measure power and adapt

to the workload as it changes allows it to outperform fixed

performance state policies in most situations.

7. Conclusions

In this paper we present a control-theoretic power

management system for managing peak power. As an

advantage of theoretical design, we can quantitatively

analyze system performance and choose the best control

parameters, even when the system model has significant

variations. Specifically, we determine the change in

power consumption caused by workload variation in order

to select the controller gain parameter. We use the gain

parameter to select a control period that corresponds to

the requirements of the overload condition of a power

supply. This guarantees that when a power supply fails,

under any workload, the power drawn by the remaining

supply can be reduced to a nominal level within 1 second.

Feedback control of power is useful for improving server

reliability. Specifically, closed-loop control provides less

performance loss under a partial power supply failure than

by using simpler open-loop solutions found in

conventional servers. Since the closed-loop controller

measures the actual power the system consumes, it can

react to workload changes and adapt the performance

state to meet the requested power budget. This results in a

1.2 to 1.4 speedup in application performance. A key

factor in realizing this performance improvement is

having accurate power measurement which reduces

controller design margins and utilizes the available power

supply effectively.

Feedback control of power has many implications for the

future design and operation of servers. Enforcing a run-

time power constraint with closed-loop control, rather

than a design-time power constraint with open-loop

control, will allow servers to flexibly adapt to their power

and thermal environments. System designers could save

cost by using power supplies that have just enough

capacity to run important applications at full-performance

for a target market, but are under-provisioned for worst-

case power benchmarks with hardware components that

consume worst-case power. New blade servers would be

more likely to run at full-performance within the power

capacity of the prior generation of blade server chassis.

Data center administrators could slightly reduce the

power consumption of their servers to match individual

rack-level power and cooling requirements, with little

impact on application performance. In general, feedback

control power allows servers to run at the highest

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Power budget and controller

S
p

e
e
d

u
p

 c
o

m
p

a
re

d
 t

o
 o

p
e
n

-l
o

o
p

 (
2
3
0
W

 o
r

2
5
0
W

)

SPECINT

SPECFP

SPECJBB

LINPACK

SPECINT 1.21 1.39 1.30 1.34

SPECFP 1.27 1.37 1.29 1.31

SPECJBB 1.00 1.35 1.36 1.35

LINPACK 1.25 1.29 1.23 1.32

230 W, best-open 230 W, P control 250 W, best-open 250 W, P control

Figure 6: Speedup of controllers compared to open-loop. 1.0 = open-loop throughput at either 230 W or 250 W budget.

 12

performance level possible under a given system-level

power constraint.

8. References

[1] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes

Felter, Mike Kistler and Tom W. Keller, “Energy Management

for Commercial Servers”, Computer, volume 36, number 12,

December, 2004, pages 39-48.

[2] P. Bohrer, M. Elnozahy, M. Kistler, C. Lefurgy, C.

McDowell, and R. Rajamony. The Case for Power Management

in Web Servers. In R. Graybill and R. Melhem, editors, Power

Aware Computing. Kluwer Academic Publishers, 2002.

[3] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat.

Ecosystem: Managing energy as a first class operating system

resource. In International Conference on Architectural Support

for Programming Languages and Operating Systems, 2002.

[4] Y. H. Lu, L. Benini, and G. De Micheli. Operating-system

directed power reduction. In International Symposium on Low

Power Electronics and Design (ISLPED), 2000, pages 37–42.

[5] J. Hellerstein, Y. Diao, S. Parech, and D. Tilbury, Feedback

Control of Computing Systems, John Wiley & Sons, 2004.

[6] K. Skadron, T. Abdelzaher, and M. Stan. "Control-Theoretic

Techniques and Thermal-RC Modeling for Accurate and

Localized Dynamic Thermal Management." In Proceedings of

the Eighth International Symposium on High-Performance

Computer Architecture, Feb. 2002, pages 17-28.

[7] Q. Wu, P. Juang, M. Martonosi, L. Peh, and D. W. Clark.

Formal control techniques for power-performance management.

IEEE Micro, 25(5):52-62, 2005.

[8] R. J. Minerick, V. W. Freeh, and P. M. Kogge, “Dynamic

Power Management Using Feedback”, In Proceedings of

Workshop on Compilers and Operating Systems for Low Power

(COLP), September, 2002, pages 6-1—6-10.

[9] M. E. Femal and V. W. Freeh, “Boosting Data Center

Performance Through Non-Uniform Power Allocation”, In

Proceedings of Second International Conference on Autonomic

Computing (ICAC), June, 2005, pp 250-262.

[10] V. Sharma, A. Thomas, T. Abdelzaher, Z. Lu, and K.

Skadron. Power-Aware QoS Management on Web Servers. the

24th International Real-Time Systems Symposium (RTSS), Dec.

2003.

[11] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang,

N. Gautam. Managing Server Energy and Operational Costs in

Hosting Centers. In Proceedings of the ACM SIGMETRICS

International Conference on Measurement and Modeling of

Computer Systems, June 2005.

[12] G. F. Franklin, J. D. Powell, and M. Workman. Digital

Control of Dynamic Systems, 3rd edition. Addition-Wesley,

1997.

[13] Intel, Maximum Power Program User Guide Version 2.0

for Nocona/Irwindale Processor, 2004.
[14] T. Brey et al., “BladeCenter Chassis Management”, IBM

J. Res. & Dev., vol. 49, no. 6, November, 2005.
[15] J. Hughes et al., “BladeCenter Processor Blades, I/O

Expansion Adapters, and Units”, IBM J. Res. & Dev., vol. 49,

no. 6, November, 2005.

