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Chapter 1

Introduction

Embedded microprocessors are highly constrained by cost, power, and size. 

control oriented embedded applications, the most common type, a significant portion

the circuitry is used for instruction memory. Since the cost of an integrated circuit is

strongly related to die size, and memory size is proportional to die size, smaller prog

sizes imply that smaller, cheaper dies can be used in embedded systems. An additi

pressure on program memory is the relatively recent adoption of high-level language

embedded systems. As typical code sizes have grown, high-level languages are bein

to control development costs. However, compilers for these languages often produce

that is much larger than hand-optimized assembly code. Thus, the ability to compile

grams to a small representation is important to reduce both software development c

and manufacturing costs.

High performance systems are also impacted by program size due to the del

incurred by instruction cache misses. A study at Digital [Perl96] measured the perfo

mance of an SQL server on a DEC 21064 Alpha. Due to instruction cache misses, t

application could have used twice as much instruction bandwidth as the processor w

able to provide. This problem is exacerbated by the growing gap between the cycle tim

microprocessors and the access time of commodity DRAM. Reducing program size is

way to reduce instruction cache misses and provide higher instruction bandwidth

[Chen97a].

Our contribution
Both low-cost embedded systems and high-performance microprocessors ca

efit from small program sizes. This thesis proposal focuses on program representati

embedded applications, where execution speed can be traded for code size. Our pr
1
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nary work borrows concepts from the field of text compression and applies them to t

compression of instruction sequences. We present an experiment that examines mo

tions at the microarchitecture level to support compressed programs. A post-compila

analyzer examines a program and replaces common sequences of instructions with

gle instruction codeword. A microprocessor executes the compressed instruction

sequences by fetching codewords from the instruction memory, expanding them bac

the original sequence of instructions in the decode stage, and issuing them to the exe

stages. We demonstrate our technique by applying it to the PowerPC, ARM, i386, a

MIPS-16 instruction sets. Finally, we use our results to propose another efficient pro

representation that explicitly communicates the patterns of computation common to 

program.

This chapter concludes with an introduction to data compression and its appl

tion to program compression.

1.1 Data compression

The goal of data compression is to represent information in the smallest form

still holds the information content. Traditional data compression methods make seve

assumptions about the data being compressed. First, it is assumed that the compre

must be done in a single sequential pass over the data because typical data may be

large to contain in storage (main memory or disk) at one time. One example of such d

a continuous stream of video. Second, this single pass approach takes advantage of

of recent symbols in the data stream. History information allows compressors to utili

repetition in the data and modify the compression technique in response to the chan

characteristics of the data stream. This constrains the decompressor to start at the b

ning of the data stream. The decompressor cannot begin decompressing at an arbit

point in the data stream because it will not have the history information that the deco

pression algorithm depends upon. Third, most data compression methods use bit-al

output to obtain the smallest possible representations.

In contrast, compression algorithms for computer programs can use a significa

different set of assumptions. First, programs are small enough to contain in storage, s
2
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compressor can optimize the final compressed representation based on the entire pr

instead of using only recent history information. Second, if decompression will occur

the program is executing, then it is desirable to begin decompression at arbitrary poin

the program. Program execution can be redirected at branch instructions which mak

necessary for the decompression to begin at any branch target. The unpredictable na

the execution path between program runs is likely to constrain the length of history i

mation available to the compressor. Third, most microprocessors have alignment re

tions which imposes a minimum size on instructions.

One advantage that programs have over typical data is that portions of the pro

(statements, instructions, etc.) can re-arranged to form an equivalent program. This 

assist the compressor in finding more compressible patterns.

1.2 Text compression

Text compression refers to a class ofreversiblecompression methods that allow

the compressed text to be decompressed into a message identical to the original. Th

particularly tailored to use a linear data stream. These properties make text compre

applicable to computer programs. Text compression methods fall into two general ca

ries: statistical and dictionary [Bell90].

Statistical compression uses the frequency of singleton characters to choose

size of the codewords that will replace them. Frequent characters are encoded usin

shorter codewords so that the overall length of the compressed text is minimized. Huf

encoding of text is a well-known example.

Dictionary compression selects entire phrases of common characters and rep

them with a single codeword. The codeword is used as an index into the dictionary e

which contains the original characters. Compression is achieved because the codew

use fewer bits than the characters they replace.

There are several criteria used to select between using dictionary and statisti

compression techniques. Two very important factors are thedecode efficiency and the

overallcompression ratio. The decode efficiency is a measure of the work required to 

expand a compressed text. The compression ratio is defined by the formula:
3
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(Eq. 1)

Dictionary decompression uses a codeword as an index into the dictionary ta

then inserts the dictionary entry into the decompressed text stream. If codewords ar

aligned with machine words, the dictionary lookup is a constant time operation. Statis

compression, on the other hand, uses codewords that have different bit sizes, so the

not align to machine word boundaries. Since codewords are not aligned, the statistic

decompression stage must first establish the range of bits comprising a codeword b

text expansion can proceed.

It can be shown that for every dictionary method there is an equivalent statist

method which achieves equal compression and can be improved upon to give bette

pression [Bell90]. Thus statistical methods can always achieve better compression t

dictionary methods albeit at the expense of additional computation requirements for

decompression. It should be noted, however, that dictionary compression yields goo

results in systems with memory and time constraints because one entry expands to s

characters. In general, dictionary compression provides for faster (and simpler) deco

while statistical compression yields a better compression ratio.

1.3 Repetition in object code

Object code generated by compilers mostly contains instructions from a sma

highly used subset of the instruction set. This causes a high degree of repetition in t

encoding of the instructions in a program. In the programs we examined, only a sma

number of instructions had bit pattern encodings that were not repeated elsewhere i

same program. Indeed, we found that a small number of instruction encodings are h

reused in most programs.

To illustrate the repetition of instruction encodings, we profiled the SPEC CINT

benchmarks [SPEC95]. The benchmarks were compiled for PowerPC with GCC 2.7

using -O2 optimization. In Figure 1.1, the results for thego benchmark show that 1% of

the most frequent instruction words account for 30% of the program size, and 10% o

most frequent instruction words account for 66% of the program size. On average, m

compression ratio
compressed size

original size
--------------------------------------=
4
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than 80% of the instructions in CINT95 have bit pattern encodings which are used m

ple times in the program. In addition to the repetition of single instructions, we also

observed that programs contain numerous repeated sequences of instructions. It is 

that the repetition of instruction encodings provides a great opportunity for reducing 

gram size through compression techniques.

1.4 Organization

The organization of this thesis proposal is as follows. Chapter 2 reviews prev

work to obtain small program sizes. Chapter 3 contains the results of a preliminary e

iment that applies text compression techniques to programs. Finally, Chapter 4 discu

possible directions for future work.

Figure 1.1: Unique instruction bit patterns in a program as a percentage of static
program instructions.

The data is from the go benchmark compiled for PowerPC. The x-axis is sorted by the frequency of bit
patterns in the static program.
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Chapter 2

Background

This chapter provides background information on previous work in the repres

tion of programs for small size. Since there are many techniques used to make code

we will focus this review on current research trends.

The first technique tries to improve the encoding of native instructions in com

piled-program environments. In our experiments, we have observed that the size of 

grams encoded in conventional instruction sets can differ by a factor of 2. This shows

instruction set design is important to achieve a small program size.

The second technique uses interpreted-program environments. Programs ca

translated to a small intermediate form. An interpreter, compiled to native instruction

interprets the intermediate form into native instructions that accomplish the required

putation. Because the intermediate code does not need to be concerned with host li

tions (instruction word size and alignment), the intermediate instructions can be quit

small.

The third technique uses Ziv-Lempel coding to reduce program size. LZ com

sion cannot be applied to the program as a whole, because it would be necessary to d

press the entire program at once to execute it – invalidating any execution-time size

advantage. However, it can be applied to individual procedures and cache lines bec

when decompressed they are less than the size of the original program.

Finally, the fourth way to make programs small is to use hardware-independe

techniques. There are many well known compiler optimizations that produce small c

A separate line of research focuses on reducing the time to transfer a program

a network or load it from a disk. These techniques are not directly applicable to small

cutable representations of programs, because at execution time, they are expanded
6
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size native instruction programs. Although they do not save space at execution time

pared to conventional native instruction programs, the techniques used provide som

the smallest program representations.

2.1 Improved encodings for native instructions

Although a RISC instruction set is easy to decode, its fixed-length instruction

mats are wasteful of program memory. Thumb [ARM95, Turley95] and MIPS-16

[Kissell97] are two recently proposed instruction set modifications which define redu

instruction word sizes in an effort to reduce the overall size of compiled programs.

Thumb and MIPS-16 are defined as subsets of the ARM and MIPS-III archite

tures. A wide range of applications were analyzed to determine the composition of t

subsets. The instructions included in the subsets are either frequently used, do not r

a full 32-bits, or are important to the compiler for generating small object code. The o

nal 32-bit wide instructions have been re-encoded to be 16-bits wide. Thumb and M

16 are reported to achieve code reductions of 30% and 40%, respectively [ARM95,

Kissell97].

Thumb and MIPS-16 instructions have a one-to-one correspondence to instru

tions in the base architectures. In each case, a 16-bit instruction is fetched from the

instruction memory, decoded to the equivalent 32-bit wide instruction, and passed to

base processor core for execution. The 16-bit instructions retain use of the 32-bit da

paths in the base architectures.

The Thumb and MIPS-16 implementations are unable to use the full capabilitie

the underlying processor. The instruction widths are shrunk at the expense of reducin

number of bits used to represent register designators and immediate value fields. Th

fines programs to 8 registers of the base architecture and significantly reduces the ra

immediate values. In addition, conditional execution is not available in Thumb and fl

ing-point instructions are not available in MIPS-16.

Compression in Thumb and MIPS-16 occurs on a per procedure basis. There

special branch instructions to toggle between 32-bit and 16-bit modes.
7
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Thumb and MIPS-16 instructions are less expressive than their base architec

Therefore, programs require more instructions to accomplish the same tasks. This req

a program to execute more instructions, which reduces performance. For example, T

code runs 15% - 20% slower on systems with ideal instruction memories (32-bit buses

no wait states) [ARM95].

2.2 Interpreted programs

2.2.1 Directly Executed Languages

Flynn introduced the notion of Directly Executed Languages (DELs) whose re

sentation could be specifically tailored to a particular application and language [Flynn

A DEL is program representation that is between the level of the source language a

machine language. DEL programs are executed by a DEL-interpreter which is writte

the machine language. The advantage of DELs are that they provide an efficient meth

represent programs. The DEL representation is small for several reasons. First, the 

representation uses the operators of the source language. Assuming that the high lev

guage is an ideal representation of the program, then these are obviously the correc

ators to choose. Second, the DEL does not use conventional load/store instructions

directly refers to objects in the source language. For example, if a program specifies a

able, the DEL-interpreter is responsible for finding the storage location of the variable

loading it into a machine register. Third, all operators and operands are aligned to 1

boundaries. The field size of operands changes depending on the number of objects

current scope can reference. Fields are  bits in length for a scope with  obj

For example, if a procedure references 8 variables, each variable would be represente

3-bit operand. The interpreter tracks scope information to know which set of variables

legal operands at any point in the program.

Flynn measured conventional machine language representations of programs

found them to be between 2.6 to 5.5 times larger than the DEL representation.

N2log N
8
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2.2.2 Custom instruction sets

Whereas Flynn used the high level language as a basis for the operators in D

Fraser [Fraser95] used a bottom-up approach and created macro-instructions from in

tions in the compiler intermediate representation (IR). He found repeating patterns in

IR tree and used these as macro-instructions in his compressed code. The code ge

emits byte code which is interpreted when executed. The overhead for this interpret

only 4-8 KB. Fraser showed that this compression method is able to reduce the size o

grams by half when compared to SPARC representation. However, the programs ex

20 times slower than the original SPARC representations.

2.2.3 BRISC

Ernst et al. [Ernst97] developed BRISC which is an interpretable compressed

gram format for the Omniware virtual machine (OmniVM). BRISC adds macro-instru

tions to the OmniVM RISC instruction set. BRISC achieves small code size by repla

repeated sequences of instructions in the OmniVM RISC code with a byte codeword

refers to a macro-instruction. Macro-instructions that differ slightly may be represent

using the same codeword and different arguments. Such macro-instructions are tem

that have fields which are supplied by the arguments. The argument values are loca

the instruction stream after the codeword. The codewords are encoded using a orde

Markov scheme. This allows more opcodes to be represented with fewer bits. Howe

decoding becomes more complicated since decoding the current instruction is now a

tion of the previous instruction opcode and the current opcode. When BRISC is inte

preted, programs run an average of 12.6 times slower than if the program was compi

native x86 instructions. When BRISC is compiled to native x86 instructions and execu

the program (including time for the compilation) is only 1.08 times slower than execut

the original C program which has been compiled to x86 instructions.

Since the compressed program is interpreted, there is a size cost (either hard

or software) for the interpreter. If the size of the interpreter is small enough so that th

interpreter and the BRISC program are smaller than a native version of the program

this system could be useful for achieving small code size in embedded systems.
9
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2.3 Frequency-based coding

2.3.1 Procedure Compression

Kirovski et al. [Kirovski97] describes a compression method that works at the

granularity of procedures. Each procedure in the program is compressed using a Ziv

pel compression algorithm. A segment of memory is reserved as aprocedure cache for

decompressed procedures. On a procedure call, a directory service locates the proc

in compressed space and decompresses it into the procedure cache. The directory 

procedures between compressed and decompressed address space. For this schem

small map with one entry per procedure is sufficient. When there is no room in the p

dure cache, a memory management routine evicts procedures to free the resource. 

dures are placed in the procedure cache at an arbitrary address. Intra-procedural PC

relative branches, the most frequent type, will automatically find their branch targets

the usual way. Procedure calls, however, must use the directory service to find their

gets since they may be located anywhere in the procedure cache.

The authors obtained a 60% compression ratio on SPARC instructions. Howe

it is not clear if this compression ratio accounts for the directory overhead, decompres

software, procedure cache management software, and the size of the procedure cach

problem is that procedure calls can become expensive since they may invoke the de

pression each time they are used. When using a 64 KB procedure cache, the autho

sured an average run time penalty of 166%. When the two programs,go andgcc, were

excluded from the measurement, the average run time penalty was only 11%. One a

ing point of this technique is that it can use existing instruction sets and be impleme

with minimal hardware support (an on-chip RAM for the procedure cache).

2.3.2 Compressed Code RISC Processor

The Compressed Code RISC Processor (CCRP) [Wolfe92, Kozuch94] is an i

esting approach that employs an instruction cache that is modified to run compresse

grams. At compile-time, the cache line bytes are Huffman encoded. At run-time, cac

lines are fetched from main memory, decompressed, and put in the instruction cach
10
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Instructions fetched from the cache have the same addresses as in the uncompress

gram. Therefore, the core of the processor does not need modification to support com

sion. However, cache misses are problematic because missed instructions in the ca

not reside at the same address in main memory. CCRP uses a Line Address Table (L

map missed instruction cache addresses to main memory addresses where the comp

code is located. The LAT limits compressed programs to only execute on processor

have the same line size for which they were compiled.

The authors report a 73% compression ratio for MIPS instructions. A working

demonstration of CCRP has been completed [Benes97]. Implemented in 0.8µ CMOS, it

occupies 0.75 mm2, and can decompress 560 Mbit/s.

2.4 Procedurization

2.4.1 Procedure abstraction

Procedure abstraction [Standish76] is a program optimization for procedure o

ented languages that replaces repeated sequences of common code with function ca

single function that performs the required computation. This is an optimization that t

programmer can apply to the source language. Compilers could do this with an inter

ate representation or at the level of native instructions. Sequences of code that are i

cal, except for the values used, can be bound to the same abstracted function and su

with arguments for the appropriate values.

2.4.2 Mini-subroutines

Liao et al. propose a software method for supporting compressed code [Liao9

Liao96]. They findmini-subroutines which are common sequences of instructions in th

program. Each instance of a mini-subroutine is removed from the program and repla

with a call instruction. The mini-subroutine is placed once in the text of the program 

ends with a return instruction. Mini-subroutines are not constrained to basic blocks a

may contain branch instructions under restricted conditions. The prime advantage o

compression method is that it requires no hardware support. However, the subroutin
11
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overhead will slow program execution. This method is similar to procedure abstracti

the level of native instructions, but without the use of procedure arguments.

A hardware modification is proposed to support code compression consisting

marily of acall-dictionary instruction. This instruction takes two arguments:locationand

length. Common instruction sequences in the program are saved in a dictionary, and

sequence is replaced in the program with thecall-dictionaryinstruction. During execution,

the processor jumps to the point in the dictionary indicated bylocation and executes

length instructions before implicitly returning. The advantage of this method over the

purely software approach is that it eliminates the return instruction from the mini-sub

tine. However, it also limits the dictionary to sequences of instructions within basic

blocks.

A potential problem with this compression method is that it introduces many

branch instructions into a program thus reducing overall performance.

The authors report a 88% compression ratio for the mini-subroutine method an

84% compression ratio for the call-dictionary method. Their compression results are b

on benchmarks compiled for the Texas Instruments TMS320C25 DSP.

2.5 Load-time representations

2.5.1 Slim Binaries

Franz and Kistler developed a machine-independent distribution format calledslim

binaries [Franz94, Franz97]. The slim binary format is a compressed version of the

abstract syntax tree (AST) in the compiler. The compression is done by using a dictio

of sub-trees previously seen in the AST. When the program is run, the loader reads 

slim binary and generates native code on-the-fly. The benefit of slim binaries is that

abstract syntax trees compress well so that the distribution format is very small. This

reduces the time to load the program into memory. The time for code-generation is p

tially hidden because it can be done at the same time that the program is being load

Franz and Kistler have reported that loading and generating code for a slim binary is

nearly as fast as loading a native binary [Franz97].
12
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Even though the slim binary format represents programs in a very small form

(smaller than 1/3 the size of a PowerPC binary), this size does not include the cost o

code generator. Slim binaries may work well to reduce network transmission time of

grams, but they are not suitable for embedded systems that typically run a single pro

because the slim binary format is not directly executable. There is no program size be

at run-time because a full size native binary must be created to run the program. The

size benefit is during the time the program is stored on disk or being transmitted ove

network.

2.5.2 Wire Codes

Ernst et al. [Ernst97] also introduced an encoding scheme that is suitable for t

mitting programs over networks. The authors compress the abstract syntax tree of th

gram in the following manner. First, the tree is linearized and split into separate stream

operators and literal operands. The literal operand stream is further separated into st

for each operand type. Second, each stream is move-to-front encoded. Move-to-fron

ing works by moving symbols to the front of the stream as they are referenced. Assum

that the symbols have temporal-locality, the indices used to address the symbols in 

stream will tend to have small values. The indices are coded with a variable-length sch

that assigns short codes to the indices with small values and long codes to the indice

large values. This results in a compact representation for the frequently used symbo

the front of the stream. In the wire code, the move-to-front indices are Huffman-code

Finally, the results are passed through thegzip program. They achieve very small code

sizes (1/5 the size of a SPARC executable). When the program is received, it must b

uncompressed and compiled before running. Therefore, this is not a representation 

can be used at execution-time.

2.6 Conclusion

It is clear that there are many opportunities on several levels to reduce the siz

programs. However, it is difficult to compare the results of the research efforts to dat

Each study uses a different compiler, instruction set, and compiler optimizations. It i
13
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meaningful to say that a program was compressed 20% or 50% without knowing wh

standard this was measured against. Poorly written programs with no optimization m

compress very well because they are full of unnecessary repetition while programs 

already have an efficient encoding will seem not to compress very well. The value o

techniques presented here is that they represent a range of solutions to program rep

tation. These techniques are not mutually exclusive – it is possible to combine them

they take advantage of different levels of representation.

Flynn assumes that the high level language is an ideal representation of a prog

While particular languages are chosen to write particular programs, it is usually the 

that languages are not tailored to specific programs. Languages may be good repre

tions for a particular class of programs, but they are not are ideal representations for

program that is written in them.

One way that we approach ideal representations using existing languages is 

write procedures for the operations that the language cannot express. The procedur

built using the operators of the language. Procedurization methods [Standish76, Fras

Fraser97, Liao95] try to discover the appropriate functions to specify that will yield a

space-efficient representation. They are useful in cases where the repetition in a pro

is not obvious to the programmer. In addition, if the microprocessor has support for 

pressed code, the compression methods may be able to identify repetition at a level

cannot be represented in the high level language. For example, function prologues an

logues are not represented in the high level language. There may be fine-grain repetit

the machine instruction level that cannot be captured with the coarse granularity of f

tion calls.

The methods presented here that use LZ coding apply it using algorithms (gzip in

particular) that analyze data on byte boundaries. These compression algorithms can

quite well with data that is aligned to byte boundaries, such as ASCII text. However,

native instruction field boundaries are not usually byte widths. Analyzing bytes in na

instructions will mix some bits from different fields and lose the semantic meaning o

instruction fields. It is interesting to consider what improvements might be seen if the

coding algorithms accounted for the width of fields in instructions.
14
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Chapter 3

Preliminary Work

3.1 Introduction

This chapter details an experiment to analyze one method of compression. We

with a method similar to [Liao95]. We find common sequences of native instructions

object code and replace them with a codeword. We extend this work by considering

advantages from using smaller instruction (codeword) sizes. In [Liao95], thecall-dictio-

nary instruction is considered to be the size of 1 or 2 instruction words. This requires

dictionary to contain sequences with at least 2 or 3 instructions, respectively, since sh

sequences would be no bigger than thecall-dictionary instruction and no compression

would result. This method misses an important compression opportunity. We will sho

that there is a significant advantage for compressing patterns consisting of one instru

Also the authors do not explore the trade-off of the field widths for thelocationand

length arguments in thecall-dictionary instruction. We vary the parameters ofdictionary

size (the number of entries in the dictionary) and thedictionary entry length (the number

of instructions at each dictionary entry) thus allowing us to examine the efficacy of c

pressing instruction sequences of any length.

This chapter is organized as follows. First, we describe the compression meth

Second, we present our experimental results. Finally, we draw conclusions about our

pression method and propose how it might be improved.

3.2 Overview of compression method

Our compression method finds sequences of instructions that are frequently

repeated throughout a single program and replaces the entire sequence with a sing
15
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word. All rewritten (or encoded) sequences of instructions are kept in a dictionary wh

in turn, is used at program execution time to expand the singleton codewords in the

instruction stream back into the original sequence of instructions. Codewords assign

the compression algorithm are indices into the instruction dictionary.

The final compressed program consists of codewords interspersed with unco

pressed instructions. Figure 3.1 illustrates the relationship between the uncompress

code, the compressed code, and the dictionary. A complete description of our compre

method is presented in Figure 3.

3.2.1 Algorithm

Our compression method is based on the technique introduced in [Bird96,

Chen97b]. A dictionary compression algorithm is applied after the compiler has gener

the program. We search the program object modules to find common sequences of in

tions to place in the dictionary. Our algorithm has 3 parts:

1. Building the dictionary
2. Replacing instruction sequences with codewords
3. Encoding codewords

Building the dictionary
For an arbitrary text, choosing those entries of a dictionary that achieve maxim

compression is NP-complete in the size of the text [Storer77]. As with most dictiona

methods, we use a greedy algorithm to quickly determine the dictionary entries. On e

iteration of the algorithm, we examine each potential dictionary entry and find the one

results in the largest immediate savings. The algorithm continues to pick dictionary en

until some termination criteria has been reached; this is usually the exhaustion of the

word space. The maximum number of dictionary entries is determined by the choice o

encoding scheme for the codewords. Obviously, codewords with more bits can index

larger range of dictionary entries. We limit the dictionary entries to sequences of ins

tions within a basic block. We allow branch instructions to branch to codewords, but 

may not branch within encoded sequences. We also do not compress branches with

fields. These restrictions simplify code generation.
16



of

es in

ng in

ram.

e Huff-

e

mple

st

iable-

pres-

nd

han a
Replacing instruction sequences with codewords
Our greedy algorithm combines the step of building the dictionary with the step

replacing instruction sequences. As each dictionary entry is defined, all of its instanc

the program are replaced with a token. This token is replaced with an efficient encodi

the encoding step.

Encoding codewords
Encodingrefers to the representation of the codewords in the compressed prog

As discussed in Section 2.3.2, variable-length codewords, (such as those used in th

man encoding in [Wolfe92]) are expensive to decode. A fixed-length codeword, on th

other hand, can be used directly as an index into the dictionary making decoding a si

table lookup operation.

Our baseline compression method uses a fixed-length codeword to enable fa

decoding. We also investigate a variable-length scheme. However, we restrict the var

length codewords to be a multiple of some basic unit. For example, we present a com

sion scheme with 8-bit, 12-bit, and 16-bit codewords. All instructions (compressed a

uncompressed) are aligned on 4-bit boundaries. This achieves better compression t

fixed-length encoding, but complicates decoding.

Uncompressed Code

lbz r9,0(r28)

clrlwi r11,r9,24

addi r0,r11,1

cmplwi cr1,r0,8

ble cr1,000401c8

cmplwi cr1,r11,7

bgt cr1,00041d34

lwz r9,4(r28)

stb r18,0(r28)

b 00041d38

lbz r9,0(r28)

clrlwi r11,r9,24

addi r0,r11,1

cmplwi cr1,r0,8

bgt cr1,00041c98

Compressed Code

CODEWORD #1

ble cr1,000401c8

cmplwi cr1,r11,7

bgt cr1,00041d34

CODEWORD #2

b 00041d38

CODEWORD #1

bgt cr1,00041c98

Dictionary

 #1 lbz r9,0(r28)
clrlwi r11,r9,24
addi r0,r11,1
cmplwi cr1,r0,8

#2 lwz r9,4(r28)
stb r18,0(r28)

... ...

Figure 3.1: Example of compression.
17



s of

since

ose

s to

pres-

requir-

eir tar-

pres-

mp

anges

 word

dvan-

words

e, we

truc-

at it

ze of
3.2.2 Related issues

Branch instructions
One obvious side effect of a compression scheme is that it alters the location

instructions in the program. This presents a special problem for branch instructions,

branch targets change as a result of program compression.

To avoid this problem, we do not compress relative branch instructions (i.e. th

containing an offset field used to compute a branch target). This makes it easy for u

patch the offset fields of the branch instruction after compression. If we allowed com

sion of relative branches, we might need to rewrite codewords representing relative

branches after a compression pass; but this would affect relative branch targets thus

ing a rewrite of codewords, etc. The result is again an NP-complete problem

[Szymanski78].

Indirect branches are compressed in our study. Since these branches take th

get from a register, the branch instruction itself does not need to be patched after com

sion, so it cannot create the codeword rewriting problem outlined above. However, ju

tables (containing program addresses) need to be patched to reflect any address ch

due to compression.

Branch targets
Instruction sets restrict branches to use targets that are aligned to instruction

boundaries. Since our primary concern is code size, we trade-off the performance a

tages of these aligned instructions in exchange for more compact code. We use code

that are smaller than instruction words and align them on 4-bit boundaries. Therefor

need to specify a method to address branch targets that do not fall at the original ins

tion word boundaries.

One solution is to pad the compressed program so that all branch targets are

aligned as defined by the original ISA. The obvious disadvantage of this solution is th

will increase program size.

A more complex solution (the one we have adopted for our experiments) is to

modify the control unit of the processor to treat the branch offsets as aligned to the si
18
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the codewords. The post-compilation compressor modifies all branch offsets to use 

alignment.

One of our compression schemes requires that branch targets align to 4-bit b

aries. In PowerPC and ARM, branch targets align to 32-bit boundaries. Since branc

the compressed program specify a target aligned to a 4-bit boundary, the target could

any one of 8 positions within the original 32-bit boundary. We use 3 bits in the branch

set to specify the location of the branch target within the usual 32-bit alignment. Ove

the range of the offset is reduced by a factor of 8. In our benchmarks, less than 1% 

branches with offsets had a target outside of this reduced range. Branch targets in x

align to 8-bit boundaries. We use 1 bit in the offset to specify the 4-bit alignment of t

compressed instruction within the usual 8-bit alignment. This reduces the range of br

offsets by a factor of 2. In our benchmarks, less than 2.2% of the branch offsets wer

side this reduced range. Branches requiring larger ranges are modified to load their ta

through jump tables. Of course, this will result in a slight increase in the code size fo

these branch sequences.

3.2.3 Compressed program processor

The general design for a compressed program processor is given in Figure 3.2

assume that all levels of the memory hierarchy will contain compressed instructions

conserve memory. Since the compressed program may contain both compressed a

uncompressed instructions, there are two paths from the instruction memory to the p

sor core. Uncompressed instructions proceed directly to the normal instruction deco

Compressed instructions must first be translated using the dictionary before being de

and executed. In the simplest implementations, the codewords can be made to inde

directly into the dictionary. More complex implementations may need to provide a tran

tion from the codeword to an offset and length in the dictionary. Since codewords ar

groups of sequential values with corresponding sequential dictionary entries, the com

tion to form the index is usually simple. Since the dictionary index logic is extremely

small and is implementation dependent, we do not include it in our results.
19
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3.3 Experiments

In this section we integrate our compression technique into the PowerPC, AR

i386, and MIPS-16 instruction sets. For PowerPC, i386, and MIPS-16 we compiled t

SPEC CINT95 benchmarks with GCC 2.7.2 using -O2 optimization. The optimizatio

include common sub-expression elimination. They do not include function in-lining a

loop unrolling since these optimizations tend to increase code size. We compiled SP

CINT92 and SPEC CINT95 for ARM6 using the Norcroft ARM C compiler v4.30. For a

instruction sets, the programs were not linked with libraries to minimize the differenc

across compiler environments and help improve comparisons across different instru

sets. All compressed program sizes include the overhead of the dictionary.

Our compression experiments use two compression schemes. The first sche

uses fixed-length codewords and the second uses variable-length codewords. We im

ment the fixed-length compression on PowerPC and the variable-length compressio

PowerPC, ARM, i386, and MIPS-16.

Recall that we are interested in thedictionary size(number of codewords) anddic-

tionary entry length(number of instructions at each dictionary entry).

Figure 3.2: Compressed program processor.

Compressed
instruction memory
(usually ROM)

Dictionary index logic
(convert codeword
to dictionary offset
and length)

Dictionary

CPU core

Uncompressed instruction

Index

Codeword
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3.3.1 Fixed-length codewords

Our baseline compression method, implemented on PowerPC, uses fixed-len

codewords of 2 bytes. The first byte is an escape byte that has an illegal PowerPC o

value. This allows us to distinguish between normal instructions and compressed ins

tions. The second byte selects one of 256 dictionary entries. Dictionary entries are lim

to a length of 16 bytes (4 PowerPC instructions). PowerPC has 8 illegal 6-bit opcodes

using all 8 illegal opcodes and all possible patterns of the remaining 2 bits in the byte

can have up to 32 different escape bytes. Combining this with the second byte of the

word, we can specify up to 8192 different codewords. Since compressed instruction

only illegal opcodes, any processor designed to execute programs compressed with

baseline method will be able to execute the original programs as well.

3.3.2 Compressing patterns of 1 instruction

As outlined above, Liao finds common sequences of instructions and replace

them with a branch (call-dictionary) instruction. The problem with this method is that i

not possible to compress patterns of 1 instruction due to the overhead of the branch

instruction. In order to be beneficial, the sequence must have at least two instruction

Our first experiment measures the benefit of allowing sequences of single ins

tions to be compressed. Our baseline method allows single instructions to be compr

since the codeword (2 bytes) that is replacing the instruction (4 bytes) is smaller. We

pare this against an augmented version of the baseline that uses 4-byte codewords.

assume that the 4-byte codeword is actually a branch instruction, then we can approx

the effect of the compression used by Liao. This experiment limits compressed instru

sequences to 4 instructions. The largest dictionary generated (for gcc) used only 75

codewords. Figure 3.3 shows that the 2-byte compression is a significant improveme

over the 4-byte compression. This improvement is mostly due to the smaller codewo

size, but a significant portion results from using patterns of 1 instruction. Figure 3.4 sh

the contribution of each of these factors to the total savings. The size reduction due 

using 2-byte codewords was computed using the results of the 4-byte compression 

recomputing the savings as if the codewords were only 2 bytes long. This savings wa
21
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tracted from the total savings to derive the savings due to using patterns of 1 instruc

For each benchmark, except vortex, using patterns of 1 instruction improved the com

sion ratio by over 6%.

3.3.3 Dictionary parameters

Our next experiments vary the parameters of the baseline method. Figure 3.5

shows the effect of varying the dictionary entry length and number of codewords (en

in the dictionary). The results are averaged over the CINT95 benchmarks. In genera

Figure 3.3: Comparison of baseline compression method with 2-byte and 4-byte
codewords.
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Figure 3.4: Analysis of difference in code reduction between 4-byte codewords
and 2-byte codewords in baseline compression method.

Reason for code reduction
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tionary entry sizes above 4 instructions do not improve compression noticeably. Tabl

lists the maximum number of codewords for each program under the baseline compre

method, which is representative of the size of the dictionary.

The benchmarks contain numerous instructions that occur only a few times. As

dictionary becomes large, there are more codewords available to replace the numer

instruction encodings that occur infrequently. The savings of compressing an individ

instruction is tiny, but when it is multiplied over the length of the program, the compr

sion is noticeable. To achieve good compression, it is more important to increase the

Figure 3.5: Summary of effect of number of dictionary entries and length of
dictionary entries in baseline compression method.

Compression ratio is averaged over the CINT95 benchmarks.
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Table 3.1: Maximum number of codewords used in baseline compression.
Maximum dictionary entry size is 4 instructions.

Benchmark
Maximum Number of

Codewords Used

compress 72

gcc 7577

go 2674

ijpeg 1616

li 454

m88ksim 1289

perl 2132

vortex 2878
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ber of codewords in the dictionary rather than increase the length of the dictionary en

A few thousand codewords is enough for most CINT95 programs.

Usage of the dictionary
Our experiments reveal that dictionary usage is similar across all the benchm

thus we illustrate our results usingijpeg as a representative benchmark. We extend the

baseline compression method to use dictionary entries with up to 8 instructions. Figur

shows the composition of the dictionary by the number of instructions the dictionary

entries contain. The number of dictionary entries with only a single instruction range

from 50% to 80%. The greedy algorithm tends to pick smaller, highly used sequence

instructions. This has the effect of breaking apart larger patterns that contain these sm

patterns. This results in even less opportunity to use the larger patterns. Therefore, 

larger the dictionary grows, the higher the proportion of short dictionary entries it con

tains. Figure 3.7 shows which dictionary entries contribute the most to compression.

tionary entries with 1 instruction achieve between 46% and 60% of the compression

savings. The short entries contribute to a larger portion of the savings as the size of th

tionary increases. The compression method in [Liao96] cannot take advantage of th

since the codewords are the size of single instructions, so single instructions are no

pressed.

Figure 3.6: Composition of dictionary for ijpeg.
Longest dictionary entry is 8 instructions.
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3.3.4 Variable-length codewords

In the baseline method, we used 2-byte codewords. We can improve our com

sion ratio by using smaller encodings for the codewords. Figure 3.8 shows that in the

line compression, 40% of the compressed program bytes are codewords. Since the

baseline compression uses 2-byte codewords, this means 20% of the final compress

gram size is due to escape bytes. We investigated several compression schemes usi

able-length codewords aligned to 4 bits (nibbles). Although there is a higher decode

penalty for using variable-length codewords, they make possible better compression

restricting the codewords to integer multiples of 4 bits, we still retain some of the dec

ing process regularity that the 1-bit aligned Huffman encoding in [Kozuch94] lacks.

Our choice of encoding is based on CINT95 benchmarks. We present only the

encoding choice we have discovered. We use codewords that are 8-bits, 12-bits, an

bits in length. Other programs may benefit from different encodings. For example, if m

codewords are not necessary for good compression, then the large number of 12-bi

16-bit codewords we use could be replaced with fewer (shorter) 4-bit and 8-bit codew

to further reduce the codeword overhead.

A diagram of the nibble aligned encoding is shown in Figure 3.9. This scheme

predicated on the observation that when an unlimited number of codewords are use
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Figure 3.7: Bytes saved in compression of ijpeg  according to instruction length
of dictionary entry.
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final compressed program contains more codewords than uncompressed instruction

Therefore, we use the escape code to indicate (less frequent) uncompressed instruc

rather than codewords. The first 4-bits of the codeword determine the length of the c

word. With this scheme, we can provide 128 8-bit codewords, and a few thousand 1

and 16-bit codewords. This offers the flexibility of having many short codewords (thu

minimizing the impact of the frequently used instructions), while allowing for a large

overall number of codewords. One nibble is reserved as an escape code for uncomp

instructions. We reduce the codeword overhead by encoding the most frequent sequ

of instructions with the shortest codewords.

Using this encoding technique effectively redefines the entire instruction set

encoding, so this method of compression can be used in existing instruction sets tha

no available escape bytes, such as ARM and i386.

Our results for PowerPC, ARM, i386, and MIPS-16 using the 4-bit aligned co

pression are presented in Figure 3.10. We allowed the dictionaries to contain a max

of 16 bytes per entry. We obtained average code reductions of 39%, 34%, 26%, and

for PowerPC, ARM, i386, and MIPS-16, respectively. Figure 3.11 shows the average

inal size and the average compressed size of the benchmarks for all instruction sets

data is normalized to the size of the original uncompressed PowerPC programs. One

observation is that compressing PowerPC or ARM programs saves more memory th

recompiling to the i386 instruction set. Compression of PowerPC programs resulted

39% size reduction, while using the i386 instruction set only provided a 29% size re

Figure 3.8: Composition of compressed PowerPC programs.
Maximum of 8192 2-byte codewords. Longest dictionary entry is 4 instructions.
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tion over PowerPC. Compression of ARM programs yielded a 34% size reduction, b

using i386 only gave a 18% size reduction over ARM. Overall, we were able to prod

the smallest programs by compressing MIPS-16 programs.

Figure 3.9: Nibble Aligned Encoding.
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Figure 3.10: Nibble compression for PowerPC, ARM, i386, and MIPS-16
instruction sets.
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3.3.5 Comparison to MIPS-16

In this section we compare the size improvement that MIPS-16 and nibble co

pression have over MIPS-2. In Figure 3.12 we show the original and compressed av

sizes of the benchmarks for both MIPS-2 and MIPS-16.

For the smaller programs, MIPS-16 compression is better, while for large pro

grams, nibble compression is better. For the large programs, nibble compression do

nificantly better than MIPS-16.

The reason for this is that in small programs there are fewer repeated instruc

and this causes compressible sequences to be less frequent. MIPS-16 is able to co

single instances of 32-bit instructions down to 16 bits, but our nibble compression req

at least 2 instances of the same instructions to compress it (due to dictionary overhe

Figure 3.11: Comparison of compression across instruction sets.
All program sizes are normalized to the size of the original PowerPC programs.
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Figure 3.12: Comparison with MIPS-16.
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Therefore on the small benchmarks where there are fewer repeated instructions, MIP

has the advantage. When programs are larger then there are enough repeated instr

so that the nibble compression can overcome the dictionary overhead to beat the MIP

compression. Since MIPS-16 is just another instruction set, we can apply nibble com

sion to it. Therefore, we can always obtain a program smaller than the MIPS-16 vers

3.4 Discussion

We have proposed a method of compressing programs for embedded microp

sors where program size is limited. Our approach combines elements of two previou

posals. First we use a dictionary compression method (as in [Liao95]) that allows

codewords to expand to several instructions. Second, we allow the codewords to be

smaller than a single instruction (as in [Kozuch94]). We find that the size of the diction

is the single most important parameter in attaining a better compression ratio. The se

most important factor is reducing the codeword size below the size of a single instruc

To obtain good compression we find it is crucial to have an encoding scheme that is

ble of compressing patterns of single instructions. Our most aggressive compressio

SPEC CINT95 achieves an average size reduction of 39%, 34%, 26%, and 16% for

erPC, ARM, i386, MIPS-16 respectively.

Our compression ratio is similar to those achieved by Thumb and MIPS-16. W

Thumb and MIPS-16 are effective in reducing code size, they increase the number of

instructions in a program. We compared the CINT95 benchmarks compiled for MIPS

and MIPS-II using GCC. We found that overall, the number of instructions increased 6

when using MIPS-16. In the worst case, for thecompress benchmark, the number of

instructions increased by 15.5%. On the contrary, our method does not cause the nu

of instructions in a program to increase. Compressed programs are translated back in

instructions of the original program and executed, so that the number of instructions

cuted in a program is not changed. Moreover, a compressed program can access a

registers, operations, and modes available on the underlying processor. We derive o

codewords and dictionary from the specific characteristics of the program under exe

tion. Tuning the compression method to individual programs helps to improve code 
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Compression is available on a per instruction basis without introducing any special

instructions to switch between compressed and non-compressed code.

3.5 Improvements

There are several ways that our compression method could be improved. Firs

compiler should avoid producing instructions with encodings that are used only once

our PowerPC benchmarks, we found that 8% of the instructions (not including branc

were not compressible by our method because they had instruction encodings that w

only used once in the program. Second, we need an effective method to compress b

instructions. In the PowerPC benchmarks, 18% of the instructions were branches wit

relative offsets. We did not compress these instructions in order to simplify the comp

sion mechanism. These instructions offer an opportunity to improve compression sig

cantly. Third, the compiler could attempt to produce instructions with identical byte

sequences so they become more compressible. One way to accomplish this is by allo

registers so that common sequences of instructions use the same registers. Finally,

could improve the selection of codewords in the dictionary by using covering algorith

instead of our greedy algorithm.
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Chapter 4

Future Work

In our preliminary study, the compression took advantage of the patterns that e

ing compilers produce. We often found code sequences that had identical patterns o

dependencies, but the values in the code were given different register names. The u

different register names caused these patterns to be mapped to separate dictionary e

This increased the size of the dictionary and number of index bits in the codewords.

believe that we can achieve even better code sizes by modifying the compiler to gen

code that is more suitable for compression.

One method to improve the problem of different register names is to guide th

compiler in register allocation so that the most frequent patterns use the same regis

names. Another method is to “templatize” the patterns so that the registers they use c

specified in the codewords. This makes the codewords longer, but reduces the over

number of patterns in the dictionary. These two approaches can be used together. In

common instruction sequences which use the same register names can be viewed a

matching a template with no arguments.

4.1 A template compression instruction set

Our preliminary work defines a dictionary-based compression for identical inst

tion sequences. The encoding allows regular instructions to mix freely with codewor

The codewords represent sequences of instructions. These sequences contain only

tions of the underlying instruction set and can be decoded in the usual fashion by th

cessor. Figure 4.1 shows a sample of PowerPC code from the benchmarkvortex. The code

patterns labeled A and B each occur twice and pattern C occurs only once in the prog
31



xam-

rn C

 with

ease

ed.

ary is

t

eration

se

e

Since all PowerPC instructions are 4 bytes long, the size of this code is 60 bytes. An e

ple of our dictionary-based compression for this code is in Figure 4.2. The code patte

is not put in the dictionary because it only occurs once in the program. If a sequence

a single occurrence were put into the dictionary, the overall program size would incr

by the size of the codeword that replaces it. Therefore, sequence C is not compress

Assuming that codewords are each 2 bytes long, then the size of the code and diction

44 bytes. This saves 16 bytes over the original code.

Ernst et al. [Ernst97] do code compression by using codewords that represen

sequences of instructions. The sequences are actually templates that specify the op

to be performed, but some register and immediate values may not be specified. The

unspecified registers and immediate values are supplied by arguments that follow th

srawi r0,r5,31
subf r0,r5,r0
rlwinm r0,r0,1,31,31
...
srawi r0,r6,31
subf r0,r6,r0
rlwinm r0,r0,1,31,31
...
srawi r0,r5,31
subf r0,r5,r0
rlwinm r0,r0,1,31,31
...
srawi r0,r6,31
subf r0,r6,r0
rlwinm r0,r0,1,31,31
...
srawi r3,r5,31
subf r3,r5,r3
rlwinm r3,r3,1,31,31

Figure 4.1: Sample PowerPC code from vortex .

pattern A

pattern B

pattern C

Figure 4.2: Example of dictionary-based compression.

Dictionary

 #1 srawi r0,r5,31
subf r0,r5,r0
rlwinm r0,r0,1,31,31

#2 srawi r0,r6,31
subf r0,r6,r0
rlwinm r0,r0,1,31,31

Compressed Code

codeword#1

...

codeword#2

...

codeword#1

...

codeword#2

...
srawi r3,r5,31
subf r3,r5,r3
rlwinm r3,r3,1,31,31
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codeword in the program. Figure 4.3 illustrates how template-based compression w

represent the sample code. Assuming that the field specifiers in the codewords each

byte, then the size of the code and dictionary is 37 bytes. This is a 7 byte saving ove

dictionary-based compression and a 23 byte savings over the original code. In addit

dictionary entry is saved over the dictionary-based compression. Using fewer diction

entries can help compression by decreasing the number of bits in the codeword. In 

tion, a small dictionary can simplify the implementation of the microprocessor.

We will adopt the template compression to define a compression-based instru

set. In the dictionary entries, instructions will have special reserved values that specif

fields that are to be filled in from the bytes following the codeword. For example, any

of register 31 could signal the decoder to use the next byte after the codeword to sp

the register that should be used. The instruction decoder fetches each instruction in

and reads bytes that follow the codeword to fill each unspecified field in the template

When the template is completely decoded, then the decoder is pointing to the next c

word or instruction in the program. Once the instructions in a dictionary entry are

decoded, they can be cached so that repeated uses of this dictionary entry can be ex

quickly. It may be interesting to consider operators as template fields, but for the firs

sion of this work, we will only use operands.

Figure 4.3: Example of template-based compression.

Dictionary

 #1 srawi r0,*,31
subf r0,*,r0
rlwinm *,r0,1,31,31

Compressed Code

codeword#1:r5:r5:r0

...

codeword#1:r6:r6:r0

...

codeword#1:r5:r5:r0

...

codeword#1:r6:r6:r0

...

codeword#1:r5:r5:r3
33
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4.2 Why is template-compression a good idea?

We believe that template compression will provide several benefits over instruc

compression. Below are listed some reasons why template compression is a worthw

approach:

• About 10% of the instructions in the benchmarks were incompressible ins
tions that only occurred once in the program. Templates could transform th
specific instructions into generalized instructions that could be compressed
single dictionary entry.

• Template compression has the effect of combining together sequences th
were in separate dictionary entries in the dictionary-compression. Since th
dictionary is made of many small patterns that are only used 2 or 3 times e
it could be advantageous if many entries resembled each other by using t
plates. Then the dictionary could be made much smaller.

• One template codeword can replace many dictionary codewords by using
plate fields for the incompressible instructions that are found between dict
nary codewords.

• Template compression works well for large patterns that have very few vary
inputs.

4.3 A template compression compiler

Template compression has been used as a means of compressing programs

the code generation step of the compiler [Ernst97]. Their code generator does not pu

fully create code sequences that are suitable for a template representation. We prop

do template compression inside the compiler and let the compiler directly generate c

for a compression based instruction set. Instead of merely discovering templates after

generation, we can explicitly manufacture templates by applying code transformation

the internal representation (IR) of the program. We hope these code transformations

lead to dictionaries with fewer, larger templates that can represent more code. Temp

compression has already been applied at the compiler IR level [Fraser95]. However

size of templates was limited to 10 nodes in the LCC IR. We plan to let templates be

large as entire procedures and measure the resulting benefit.
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The MIRV project at the University of Michigan is developing a compiler that w

will use to demonstrate template compression. The IR of MIRV uses a tree structure

each source level statement. This tree structure has several properties that make it s

for template generation. The most beneficial templates are large in size and have fe

fields. We expect the tree structures to contain the types of templates we desire becau

tree bundles related instructions producing a single result. Some examples of the ty

computations that the trees completely encode are:

• array references
• loop conditions
• function calls

The tree structure explicitly shows the value dependencies between operations. Thi

erty will be used to find repeating patterns of computation in programs.

Values with lifetimes that exist completely in the scope of the template can be

assigned to any unused register name. Since these templates must work at any poin

program, a simple implementation could reserve some register names to be used on

within templates. This removes all conflicts with register names outside the template

hold live values.

Some template values will have lifetimes that extend beyond the template. Th

template communicates with surrounding code by putting values in registers or memo

is possible that every instance of code surrounding the template will want to use diff

register or memory names. These values are the prime candidates for the fields of th

plate.

4.3.1 Proposed Compilation Algorithm

The modifications we propose to make to the MIRV compiler involve canonica

representing the statement trees, applying compression, and generating code for tem

An overview of the compilation phases is given below and illustrated in Figure 4.4. O

additions to MIRV for compression are detailed in steps 3-7 and 9.

1. Convert source code into tree IR.
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2. Perform standard code size optimizations. (dead code elimination, consta
propagation, etc.)

Pattern 1

Figure 4.4: Relation between intermediate representation and compression
dictionary.

Pattern 2

Dictionary

Pattern 2

Pattern 1

Apply compression (build dictionary)

Intermediate Representation

Compressed Intermediate Representation

int main() {...}

Source code

Parse source code.
Form IR tree
Optimize (dead code elimination, constant propagation, etc.)
Canonical tree representation (for pattern matching)

code#1:4,r4
code#2:r2

load r1,*(sp)
loadi r2,8
add *,r1,r2

load r1,12(sp)
loadi r2,10
mult *,r1,r2

st r4,r5
Pattern 1

Pattern 2

Compiled compressed code

Generate code
Apply back-end optimizations (register allocation, scheduling, etc.)
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3. Put trees in canonical form for tree pattern matching on operations. We ca
borrow pattern matching techniques from common sub-expression elimina
to accomplish this.

4. Enumerate all sub-tree patterns. Sub-trees are considered to be identical
trees have the same shape, operators, and external communications. For
first implementation, we will use only complete sub-trees. For each sub-tr
consider every possible template for it concerning its immediate values.

5. Cover the program with templates picked from the list of all sub-tree patte
These templates will be in the final dictionary.

Templates can be chosen greedily from the list of patterns by using a cost f
tion. The cost function will be a factor of 1) estimated code size of template
estimated codeword size (including template arguments), and 3) the numb
uses of the template, and 4) estimated size of the original non-compresse
code.

6. Allocate communication registers to the templates with the highest usage
possible, give all instances of a dictionary template identical communicati
registers and specialize the dictionary entry (turn the field into a constant)

7. Allocate registers to the non-compressed code.

8. Generate object code for the program.

9. Do object code compression on the non-compressed instructions. Try to t
the object dictionary into templates for extra compression.

Figure 4.5: Example of canonical form for IR tree.

pattern 1 pattern 2

transformed pattern 1

swap sub-trees

+ +

+

match!
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4.4 Template compression experiments

We wish to compare template compression against other techniques that save

size. The proposed template-compression compiler phases raise a number of quest

that we hope to answer:

• What is the difference in code size between template-compression and in
tion-compression? How do they interact when combined? Do they compre
different types of code or the same types of code? Instruction compressio
object code should be good at compressing prologue/epilogue code and p
terns across abutting trees. In general, object code compression is done a
code generation and may have additional instructions to work from that the
compression did not.

• How much improvement does compression offer over standard code size 
mizations? Determine which code size optimizations should be done for th
compression instruction set. What is the relative value of each optimizatio

• The first version of template compression will use templates that are com
sub-trees in the MIRV IR. What is the value of using templates that are pa
sub-trees instead of complete sub-trees? Does this allow more of a progra
be covered with templates?

• What algorithm for covering the MIRV IR with templates yields the best co
pression?

• Is it useful to generalize a template so that it works in more situations, but
sible performs some useless work? For example, consider using a multiply
template. It could cover abutting multiply and add instructions as well as sin
occurrences of multiply and add instructions. This would allow more of a p
gram to be covered by fewer dictionary entries.

4.5 Software compression

Our preliminary study considers a hardware modification to the fetch and bra

units of a microprocessor to support compression. We are also interested in explorin

compression options that do not require hardware modification. This would allow co

pression to be widely applicable to available microprocessors. Some studies have a

borrowed the concept of procedure abstraction [Fraser95, Liao95, Ernst97, Lefurgy9

However, these previous attempts limited the size of the abstracted procedures to a
38
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instructions or single basic blocks. We are not aware of any study that has measure

applicability of procedure abstraction on a larger level. We propose to add procedure

abstraction to the MIRV compiler as a hardware independent method of reducing co

size. We will re-use the pattern matching from template compression to find candidate

procedure abstraction. These candidates will be added at the MIRV IR level as func

called with the appropriate arguments. All backends for the MIRV compiler will be able

use this code reducing technique.

4.6 Improving execution-time

Compressed programs use less memory and can result in fewer instruction c

misses [Chen97a]. If the reduction of instruction cache misses offsets the extra deco

time for compressed instructions, then there will be a performance improvement. Th

fore, we plan to measure the effects of our program representations on the instructio

cache.

Many of the program representations that we reviewed obtained smaller progr

at the cost of execution speed. Some previous studies [ARM95, Fraser95, Liao95] h

proposed to balance this trade-off by only applying their representations to the portio

the program that are not frequently executed. This allows the highly executed parts 

program to proceed at the usual execution speed. However, we are unaware of any 

that performs this experiment. We propose to modify the MIRV compiler so that we m

choose the sections of a program that may be compressed. This will allow us to me

the execution benefit of selective compression.

It may also be possible to use template compression to improve execution tim

Function memoization is a code optimization that caches the results of recent functi

invocations. The next time that the function is called with the same arguments, the r

can be quickly provided from the cache instead of computing it [Abelson85]. Sodani

[Sodani97] presents a method of improving execution time by memoizing individual

machine instructions. He keeps the results of instruction execution in a table and us

these results if the instructions are encountered again with the same source values.

avoids re-executing instructions when the result will be identical to a previous result
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may be possible to use templates in a similar manner. Caching the result of templat

potentially more valuable than caching the results of individual instructions because

plates represent more work. We propose to study the patterns of source values and

values in templates to see if they are useful in avoiding re-execution.

4.7 Conclusion

In this thesis proposal, we have reviewed several methods of program repres

tion to improve space efficiency. We have proposed a representation based on data

pression techniques that incorporates elements of previous studies. A preliminary st

shows that this representation is competitive with other methods in terms of program

Additionally, this method allows greater access to the operations of the underlying pr

sor than previous methods. Based upon this preliminary study, we proposed templa

an improved program representation. We have presented a course of research that in

comparison of the template representation with previous methods and exploration o

it might improve microprocessor performance.
40



-

e-

e
of

n
-

-

ode
on

n

e
4.

ing
on
.

-
ers/

ro-
-

t

Bibliography

[Abelson85] H. Abelson and G. J. Sussman,Structure and Interpretation of Comput
er Programs, MIT Press, Cambridge, Mass., 1985.

[ARM95] Advanced RISC Machines Ltd.,An Introduction to Thumb, March
1995.

[Bell90] T. Bell, J. Cleary, I. Witten,Text Compression, Prentice Hall, 1990.

[Benes97] M. Benes, A. Wolfe, S. M. Nowick, “A High-Speed Asynchronous D
compression Circuit for Embedded Processors”,Proceedings of the
17th Conference on Advanced Research in VLSI, September 1997.

[Bird96] P. Bird and T. Mudge,An Instruction Stream Compression Techniqu,
Technical report CSE-TR-319-96, EECS Department, University
Michigan, November 1996.

[Chen97a] I. Chen, P. Bird, and T. Mudge,The Impact of Instruction Compressio
on I-cache Performance, Technical report CSE-TR-330-97, EECS De
partment, University of Michigan, 1997.

[Chen97b] I. Chen,Enhancing Instruction Fetching Mechanism Using Data Com
pression, Ph.D. Dissertation, University of Michigan, 1997.

[Ernst97] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A. Proebsting, “C
compression”,Proceedings of the ACM SIGPLAN’97 Conference
Programming Language Design and Implementation (PLDI), June
1997.

[Flynn83] M. J. Flynn and L. W. Hoevel, “Execution Architecture: The DELtra
Experiment”,IEEE Transactions on Computers, Vol. C-32, No. 2, Feb-
ruary 1983.

[Franz94] M. Franz,Code-Generation On-the-Fly: A Key for Portable Softwar,
PhD dissertation, Institute for Computer Systems, ETH Zurich, 199

[Franz97] M. Franz and T. Kistler, “Slim binaries”,Communications of the ACM,
40(12):87–94, December 1997.

[Fraser84] C. W. Fraser, E. W. Myers, A. L. Wendt, “Analyzing and Compress
Assembly Code”,Proceedings of the ACM SIGPLAN ’84 Symposium
Compiler Construction, SIGPLAN Notices, Vol. 19, No. 6, June 1984

[Fraser95] C. W. Fraser, T. A. Proebsting,Custom Instruction Sets for Code Com
pression, unpublished, http://www.cs.arizona.edu/people/todd/pap
pldi2.ps, October 1995.

[Kirovski97] D. Kirovski, J. Kin, and W. H. Mangione-Smith, “Procedure Based P
gram Compression”,Proceedings of the 30th Annual International Sym
posium on Microarchitecture, December 1997.

[Kissell97] K. Kissell, MIPS16: High-density MIPS for the Embedded Marke,
41



o-

ity
-

m-

ig-
ol-

Dy-
m

re

6.

ion
m-

dent

m-
-

Technical report, Silicon Graphics MIPS Group, 1997.

[Kozuch94] M. Kozuch and A. Wolfe,“ Compression of Embedded System Pr
grams,”IEEE International Conference on Computer Design, 1994.

[Lefurgy97] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge, “Improving code dens
using compression techniques”,Proceedings of the 30th Annual Inter
national Symposium on Microarchitecture, December 1997.

[Liao95] S. Liao, S. Devadas, K. Keutzer, “Code Density Optimization for E
bedded DSP Processors Using Data Compression Techniques”,Pro-
ceedings of the 15th Conference on Advanced Research in VLSI, March
1995.

[Liao96] S. Liao,Code Generation and Optimization for Embedded Digital S
nal Processors, Ph.D. Dissertation, Massachusetts Institute of Techn
ogy, June 1996.

[MPR95] “Thumb Squeezes ARM Code Size,”Microprocessor Report9(4), 27
March 1995.

[Perl96] S. Perl and R. Sites, “Studies of Windows NT Performance Using
namic Execution Traces,”Proceedings of the USENIX 2nd Symposiu
on Operating Systems Design and Implementation, October 1996.

[Sodani97] A. Sodani and G. S. Sohi, “Dynamic Instruction Reuse”,Proceedings of
the 24th Annual International Symposium on Computer Architectu,
June 1997.

[SPEC95] SPEC CPU’95, Technical Manual, August 1995.

[Standish76] T. A. Standish, D. C. Harriman, D. F. Kibler, and J. M. Neighbors,The
Irvine Program Transformation Catalogue, Department of Information
and Computer Science, University of California, Irvine, January 197

[Storer77] J. Storer,NP-completeness Results Concerning Data Compress,
Technical report 234, Department of Electrical Engineering and Co
puter Science, Princeton University, 1977.

[Szymanski78] T. G. Szymanski, “Assembling code for machines with span-depen
instructions,”Communications of the ACM 21:4, pp. 300-308, April
1978.

[Turley95] J. L. Turley. Thumb squeezes arm code size.Microprocessor Report,
9(4), 27 March 1995.

[Wolfe92] A. Wolfe and A. Chanin, “Executing Compressed Programs on an E
bedded RISC Architecture,”Proceedings of the 25th Annual Interna
tional Symposium on Microarchitecture, December 1992.
42


	Table of Contents
	List of Tables
	List of Figures
	Introduction
	1.1 Data compression
	1.2 Text compression
	1.3 Repetition in object code
	1.4 Organization

	Background
	2.1 Improved encodings for native instructions
	2.2 Interpreted programs
	2.3 Frequency-based coding
	2.4 Procedurization
	2.5 Load-time representations
	2.6 Conclusion

	Preliminary Work
	3.1 Introduction
	3.2 Overview of compression method
	3.3 Experiments
	3.4 Discussion
	3.5 Improvements

	Future Work
	4.1 A template compression instruction set
	4.2 Why is template-compression a good idea?
	4.3 A template compression compiler
	4.4 Template compression experiments
	4.5 Software compression
	4.6 Improving execution-time
	4.7 Conclusion

	Bibliography

