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Introduction

= Data centers are expanding to

meet new business requirement.®
— Cost-prohibitive to expand the
power facility.
— Upgrades of power/cooling
systems lag far behind.
— Example: NSA data center

= Power overload may cause system failures.
— Power provisioning CANNOT guarantee exempt of overload.

— Over-provisioning may cause unnecessary expenses.

Power control for an entire data center
IS very hecessary.
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Challenges

= Scalability: One centralized controller for thousands
of servers?

= Coordination: if multiple controllers designed, how
do they interact with each other?

= Stability and accuracy: workload is time-varying
and unpredictable.

= Performance: how to allocate power budgets
among different servers, racks, etc.?
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State of The Art

= Reduce power by improving energy-efficiency : ,

— Based on heuristic and NOT enforce power budget.

= Power control for a server a
rack,
— Cannot be directly applied for data centers.

= No “Power” Struggles presents a multi-level power
manager.
— NOT designed based on power supply hierarchy
— NO rigorous overall stability analysis
— Only simulation results for 180 servers

= Use power as a knob to control performance

requirements in OS level.
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What is This Paper About?

= SHIP: a highly Scalable Hierarchical Power control
architecture for large-scale data centers

— Scalability: decompose the power control for a data center
into three levels.

— Coordination: hierarchy is based on power distribution
system in data centers.

— Stability and accuracy: theoretically guaranteed by Model
Predicative Control (MPC) theory.

— Performance: differentiate power budget based on
performance demands, /.e. utilization.
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Power Distribution Hierarchy
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Control Architecture
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PDU-level Power Model

= System model:

N pp(K) : the total power of PDU
pp(k+1) = PP(k)J“;AP’i(k) Apr.(k) : the power change of rack i

= Uncertainties:
Apr,(k)=g.Abr (k)  Abr,(k): the change of power budget for rack i

g; Is the power change ratio

= Actual model:
| Abr, (k) |
pp(k+1)=pp(k)+[9, .- gyl

| Abry (k)
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Model Predictive Control (MPC)

= Control objective:

min _ (pp(k+1)—F)°

{Abr; (K)1< j<N
subject to: P, . < Abr (k) + br;(k) < P, (1< j<N)
pp(k+1) <P,

= Design steps:
— Design a dynamic model for the controlled

system.
— Design the controller.
— Analyze the stability and accuracy.

ns UNIVERSITYof

TENNESSEEUWr

KNOXVILLE



MPC Controller Design
[SyStem } {Constraint$

Power budget Model |
A " ¢ " Abr (k)

LLeast Squares Solver}H
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to track budget
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Stability

= Local Stability

— @;is assumed to be 1 at design time.
— g, Is unknown a priori.

- 0<g,<14.8: 14.8 times of the allocated budget

* Global Stability

— Decouple controllers at different levels by running
them in different time scales.

— The period of upper-level control loop > the
settling time of the lower-level

— Sufficient but not necessary
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System Implementation
= Physical testbed

— 10 Linux servers ,, - - I - ,,
— Power meter (Wattsup)

 error: +1.5%
« sampling period: 1 sec
— Workload: HPL, SPEC
— Controllers:
 call matlab function.
 period: 5s for rack, 30s for PDU

= Simulator (C++)
— Simulate large-scale data centers in three levels.
— Utilization trace file from 5,415 servers in real data centers
— Power model is based on experiments in servers.
— Generate 3 data center configurations.
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Precise Power Control (Testbed)
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= Tested under other set points

Power can be precisely
controlled at the budget.
The budget can be reached
within 4 control periods.

The power of each rack is
controlled at their budgets.

Budgets are proportional to
P

max =
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Power Differentiation (Testbed)
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to estimated max consumptions:
= Capability to differentiate budgets based on workload
to improve performance
= Take the utilization as the optimization weights.

= QOther differentiation metrics: response time,
throughput
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Simulation for Large-scale Data Centers
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Budget Djfferentiation for PDUs
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= Power differentiation in large-scale data centers;

— Minimize the difference with estimated max power consumption.
— Utilization is the weight.

— The difference order is consistent with the utilization order.
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Scalability of SHIP
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Conclusion

SHIP: a highly Scalable Hlerarchical Power control

architecture for large-scale data centers

— Three-levels: rack, PDU, and data center

— MIMOQO controllers based on optimal control theory (MPC)
— Theoretically guaranteed stability and accuracy

— Discussion on coordination among controllers

Experiments on a physical testbed and a simulator
— Precise power control

— Budget differentiation

— Scalable for large-scale data centers
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Stability Analysis

Solve control inputs based on the
system model and reference

!

Derive the closed-loop system

!

Compute the dominant pole

—

Stability Settling time
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More Implementation Details

= CPU modulator

— 4-5 frequency levels to scale

— fraction levels:
For 2.8, that is: 2, 3, 3, 3, 3 with 5 subintervals.
— 50 subintervals in each period of rack controllers

= Trace file
— From 5415 servers in multiple data centers (manufacturing,
financial, telecommunication, retail sectors)
— Average CPU utilization every 15 minutes

— From 00:00 on July 14 to 23:45 on July 20 in 2008
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Reference Trajectory

-
Pj

ref(k+i|k)=P.—e ™ (P, — pp(k)), 1<i<P

= T,and T,
= P: prediction horizon

o SPecify the speed of system response.
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