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Introduction

� Data centers are expanding to

meet new business requirement.
− Cost-prohibitive to expand the 

power facility.

− Upgrades of power/cooling

systems lag far behind.

− Example: NSA data center

� Power overload may cause system failures.
− Power provisioning CANNOT guarantee exempt of overload.

− Over-provisioning may cause unnecessary expenses.

Power control for an entire data center 
is very necessary.
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Challenges

� Scalability: One centralized controller for thousands 

of servers?

� Stability and accuracy: workload is time-varying 
and unpredictable. 

� Coordination: if multiple controllers designed, how 

do they interact with each other?

� Performance: how to allocate power budgets 
among different servers, racks, etc.?
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State of The Art
� Reduce power by improving energy-efficiency : [Lefurgy], 

[Nathuji], [Zeng], [Lu], [Brooks]

− Based on heuristic and NOT enforce power budget. 

� Power control for a server [Lefurgy], [Skadron], [Minerick], a

rack, [Wang], [Ranganathan], [Femal]

− Cannot be directly applied for data centers.

� No “Power” Struggles presents a multi-level power 

manager. [Raghavendra] 

− NOT designed based on power supply hierarchy

− NO rigorous overall stability analysis

− Only simulation results for 180 servers

� Use power as a knob to control performance 
requirements in OS level. [Horvath], [Chen], [Sharma]
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What is This Paper About?

− Scalability: decompose the power control for a data center 

into three levels. 

� SHIP: a highly Scalable Hierarchical Power control

architecture for large-scale data centers

− Coordination: hierarchy is based on power distribution 

system in data centers. 

− Stability and accuracy: theoretically guaranteed by Model 

Predicative Control (MPC) theory. 

− Performance: differentiate power budget based on 

performance demands, i.e. utilization. 
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Power Distribution Hierarchy

� A simplified example 

for a three-level data 
center

− Data center-level

− PDU-level

− Rack-level

� Thousands of servers 

in total
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PDU-level Power Model

� System model:

� Uncertainties:
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Model Predictive Control (MPC)

� Design steps:
− Design a dynamic model for the controlled

system.

− Design the controller.
− Analyze the stability and accuracy.

� Control objective:
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MPC Controller Design

Least Squares Solver
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Stability

� Local Stability

− gi  is assumed to be 1 at design time.
− gi is unknown a priori.

− 0 < gi < 14.8: 14.8 times of the allocated budget

� Global Stability

− Decouple controllers at different levels by running
them in different time scales.

− The period of upper-level control loop  > the

settling time of the lower-level

− Sufficient but not necessary
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System Implementation

� Physical testbed
− 10 Linux servers

− Power meter (Wattsup)

• error:       

• sampling period: 1 sec

− Workload: HPL, SPEC

− Controllers: 

• call matlab function. 

• period: 5s for rack, 30s for PDU

� Simulator (C++)
− Simulate large-scale data centers in three levels.

− Utilization trace file from 5,415 servers in real data centers

− Power model is based on experiments in servers.

− Generate 3 data center configurations.

%5.1±
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Precise Power Control (Testbed)

� Power can be precisely

controlled at the budget.

� The budget can be reached

within 4 control periods.

� The power of each rack is

controlled at their budgets.

� Budgets are proportional to

.maxP

� Tested under other set points
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Power Differentiation (Testbed)

� Capability to differentiate budgets based on workload

to improve performance
� Take the utilization as the optimization weights.

� Other differentiation metrics: response time, 

throughput

Budget allocation proportional 
to estimated max consumptions;

Budgets differentiated 
by utilization;

CPU: 100%
CPU: 80%

CPU: 50%
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Simulation for Large-scale Data Centers

� 6 PDU, 270 racks

� Real data traces
� 750 kW

� Randomly generate

3 data centers
� Real data traces
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Budget Differentiation for PDUs

� Power differentiation in large-scale data centers;
− Minimize the difference with estimated max power consumption.

− Utilization is the weight.

− The difference order is consistent with the utilization order.

PDU5

PDU2



17

Execution time of the MPC controller Vs. the # of servers

Scalability of SHIP 

Centralized SHIP

Level One level Multiple

Computation overhead Large Small

Communication overhead Long Short

Scalability NO YES

Overhead 
of SHIP

The max scale
of centralized
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Conclusion
� SHIP: a highly Scalable HIerarchical Power control

architecture for large-scale data centers

− Three-levels: rack, PDU, and data center

− MIMO controllers based on optimal control theory (MPC)

− Theoretically guaranteed stability and accuracy

− Discussion on coordination among controllers

� Experiments on a physical testbed and a simulator

− Precise power control

− Budget differentiation

− Scalable for large-scale data centers
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Stability Analysis

Derive the closed-loop system

Solve control inputs based on the 

system model and reference

Compute the dominant pole

Stability Settling time
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More Implementation Details

� CPU modulator

− 4-5 frequency levels to scale

− fraction levels:

• For 2.8, that is: 2, 3, 3, 3, 3 with 5 subintervals.

− 50 subintervals in each period of rack controllers

� Trace file

− From 5415 servers in multiple data centers (manufacturing,

financial, telecommunication, retail sectors)

− Average CPU utilization every 15 minutes

− From 00:00 on July 14 to 23:45 on July 20 in 2008
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Reference Trajectory
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� Tp and Tref specify the speed of system response.

� P:  prediction horizon


