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Outline 

 Why do we need both fine-grained and accurate power proxies? 

 POWER7+ power proxy 

– What is new in this work? 

– Chip-level power proxy 

– Core-level power proxy 

 An example application of power proxies  
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Current Situation 

 Practical ways to directly measure power consumption of a core in a microprocessor 

do not exist. 

 What-if scenarios 

– Accurate evaluation without actually switching between power management policies. 

 Power proxies, especially core-level power proxies, provide a practical solution. 
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Finer Granularity Power Estimations with Improved Accuracy 

Finer Granularity – Space and Time 

 Core-level power management 

– Per-VM power capping, within or across chip boundary 

– core-level D(V)FS  

– With awareness of power consumption variations among cores 

 Finer time granularity for fast response to workload and environment variations. 

 Energy-based virtual machine billing/accounting 

 

Accuracy 

 Inaccuracy can lead to wrong power management decisions. 

 Reclaiming excessive margins/guardbanding in power management 

– 1% improvement in power estimation accuracy  ~1% perf improvement (cf. Lefurgy et 

al. Cluster Computing, 2008.) 
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Overview of POWER7+ Power Proxy Methodology 
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Novelty of POWER7+ Power Proxy 

 First published complete and easy-to-follow methodology for both chip and core power 

proxies  

 Competitive accuracy compared to published work 

 Fine time granularity (every 32ms in this work) 

 Work across chips with significant process variations 

 Account for full voltage and frequency range 

 Decouple voltage and frequency, instead of modeling for fixed voltage/frequency pair. 

 Highly adaptable to future design changes and new features 

– per-core voltage rails 

– on-chip VRMs 

 Account for leakage and temperature dependency 

 Account for core-to-core variation by on-chip thermal sensors 

 Use simple model formula with physical meaning 

 Hardware + Firmware implementation = Speed + Flexibility + Practicality 
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Components of a Power Proxy 

 Idle power 

– Clock grid power 

– Leakage power 

 Active power 
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Determine Idle Power Model: Leakage Power + Clock Grid Power 

On idle chip, sweep voltage and frequency 
(253 measurement points) 

Measure power on Vdd rail, and 

measure chip temperature 

Genetic Algorithm-based Optimization 

Find fitting parameters to minimize 

(𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒 − 𝑃𝑖𝑑𝑙𝑒) for all measurement points 

Idle power model 

(Pmeasure, Voltage,  Frequency, Temperature) 

𝑃𝑖𝑑𝑙𝑒 =
𝐹

𝑆0

𝑉

𝑉𝑛𝑜𝑚0

𝛽

+ 𝑃𝑙𝑒𝑎𝑘_𝑛𝑜𝑚
𝑉

𝑉𝑛𝑜𝑚

𝛾

1 + 𝑚0 𝑇 − 𝑇0  

𝑆0, 𝛽, 𝑃𝑙𝑒𝑎𝑘_𝑛𝑜𝑚, 𝛾,𝑚0 Clock grid power Leakage power 
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Idle Power Results 
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Processor Core Activity Proxy 

 Same activity counters as POWER7 

– cf. Michael Floyd et al. HotChips-2011 

 Architected ~50 power-related events per chiplet 

(39 used for training) 

 Both core and L2/L3 caches 

 Use groups to minimize hardware complexity and 

calculation time 

 762 in-house kernel workload runs for weights 

training 

 Trained at nominal frequency  

L 3 

L 2 

VSU 

& 

FPU 

ISU 

IFU 

LSU 

F
X

U
 

NCU 

CORE 

DFU 

= Activity Sense point 

POWER7 Chiplet 

4 events 
Activity 

Proxy 

Core 

Activity 

5 events 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑃𝑟𝑜𝑥𝑦 = 𝑊𝑔 × 𝑊𝑖𝑔 × 𝐴𝑖𝑔  
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Determine Active Power Model: On-Chip Activity Proxies 

Run training kernel workload 

(𝑉 = 𝑉𝑛𝑜𝑚, 𝐹 = 𝐹𝑛𝑜𝑚) 

Measure power on Vdd rail. 

Measure activity counters 

𝑃𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒 − 𝑃𝑖𝑑𝑙𝑒(𝑉, 𝐹, 𝑇) 

Genetic Algorithm-based Optimization 

Find weights to minimize 

𝑃𝑎𝑐𝑡𝑖𝑣𝑒 − 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑃𝑟𝑜𝑥𝑦/𝑅 

Active power model 

𝑃𝑎𝑐𝑡𝑖𝑣𝑒 =
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑃𝑟𝑜𝑥𝑦

𝑅0

𝑉

𝑉𝑛𝑜𝑚0

𝛼

 

𝑊𝑔,𝑊𝑖𝑔 

𝐴𝑖𝑔 , 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 
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Total Power Results at Nominal Frequency (Active Power + Idle Power) 

 Training set: kernel workloads only. 

 Test set: other kernels, SPECpower 

and SPEC CPU 

 Absolute (unsigned) % error 

– Good for fast run-time power 

management implementation. 

– Average 1.8% with 2.0% std. 

dev. across all tested workloads. 

– Errors of 32ms samples are 

close to each other. 

 Average (signed) % error for entire 

workload 

– Good for long-term energy 

estimation. 

– -0.2% with 2.6% std. dev. 

 Compares well with published prior 

work, but with 30x faster samples 

 Only SPEC CPU2006 results are 

shown here. 
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Decoupled Voltage and Frequency 

 Fixed frequency run of dealII, while under-volting up to 112.5mV without timing violation. 
– cf. Charles Lefurgy et al., MICRO-2011.  
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Chip-to-Chip Variations: Maximum Chip Power Workload 

 Variations are mostly captured by operating voltage 

 Each chip has a characterized set of supply voltages 
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Per-Core Power Proxies 

 Active Power 

𝑃𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑟𝑒_𝑖 =
𝐴𝑃𝑖
𝑅0
(
𝑉

𝑉𝑛𝑜𝑚0
)𝛼 

 Clock Grid Power 

𝑃𝑐𝑙𝑜𝑐𝑘_𝑐𝑜𝑟𝑒_𝑖 =
𝐹𝑟𝑒𝑞𝑖
𝑆0 ∙ 𝑁𝑐𝑜𝑟𝑒𝑠

(
𝑉

𝑉𝑛𝑜𝑚0
)𝛽 

 Leakage Power 

  𝑃𝑙𝑒𝑎𝑘_𝑐𝑜𝑟𝑒_𝑖 =
𝑃𝑙𝑒𝑎𝑘_𝑛𝑜𝑚

𝑁𝑐𝑜𝑟𝑒𝑠
(
𝑉

𝑉𝑛𝑜𝑚
)𝛾 1 +𝑚0(𝑇𝑖 − 𝑇𝑖0 ) 

 

 Scale each core power to match measured chip power (optional) 
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Results: Per-Core Power Proxy 

𝑃𝑐𝑜𝑟𝑒_"𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑" =
𝑃𝑖𝑑𝑙𝑒
𝑁𝑐𝑜𝑟𝑒𝑠

+ (𝑃𝑐ℎ𝑖𝑝 − 𝑃𝑖𝑑𝑙𝑒) 
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Results: Per-Core Power Proxy  
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Exploring What-if Scenarios with Power Proxies 

 Example: Evaluating the following power management policies 

– Nominal: Always run at fixed nominal frequency. 

– DPS (Dynamic Power Saving):  Adjust (V,F) pairs according to processor utilization level. 

– DPS-UV (DPS with under-volting): Adjust frequency according to utilization level + use 

lowest achievable voltage for each desired frequency level 

 Traditional approach 

– Run each policy separately (~3x total run time) 

– Control identical runtime environment (initial temperature, ambient temperature, OS state, 

etc.) 

– Effort to sync start/stop of workload 

 With power proxies 

– Possible to evaluate all policies simultaneously 

– Sync’d start/stop 

• specially suitable for workloads with fixed run durations (e.g. SPECpower_ssj) 

– Efforts are needed to also model temperature for different policies in firmware 
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SPECpower_ssj2008: DPS, DPS-UV, Nominal modes 
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Summary 

 POWER7+ power proxy 

– Chip level and core level 

– Accurate with fast sample rates 

– Account for variabilities, full voltage and frequency range, decoupled voltage and 

frequency 

– Practical: easy-to-understand formula, low overhead, highly adaptable to future changes 

 Opens opportunities to novel usage scenarios 

– Fine-grained power management 

– Per-VM based power or energy accounting 

– Etc.  

 


