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= Why do we need both fine-grained and accurate power proxies?

= POWERT7+ power proxy
— What is new in this work?
— Chip-level power proxy
— Core-level power proxy

= An example application of power proxies

© 2012 IBM Corporation



= Why do we need both fine-grained and accurate power proxies?
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= Practical ways to directly measure power consumption of a core in a microprocessor

do not exist.

= \What-if scenarios

— Accurate evaluation without actually switching between power management policies.

= Power proxies, especially core-level power proxies, provide a practical solution.
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Finer Granularity — Space and Time

= Core-level power management
— Per-VM power capping, within or across chip boundary
— core-level D(V)FS
— With awareness of power consumption variations among cores

» Finer time granularity for fast response to workload and environment variations.

» Energy-based virtual machine billing/accounting

Accuracy
» |naccuracy can lead to wrong power management decisions.

» Reclaiming excessive margins/guardbanding in power management
— 1% improvement in power estimation accuracy - ~1% perf improvement (cf. Lefurgy et
al. Cluster Computing, 2008.)
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= POWERT7+ power proxy
— What is new in this work?
— Chip-level power proxy
— Core-level power proxy
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Overview of POWER7+ Power Proxy Methodology
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» First published complete and easy-to-follow methodology for both chip and core power
proxies

= Competitive accuracy compared to published work

» Fine time granularity (every 32ms in this work)

» Work across chips with significant process variations

= Account for full voltage and frequency range

= Decouple voltage and frequency, instead of modeling for fixed voltage/frequency pair.

» Highly adaptable to future design changes and new features
— per-core voltage rails
— on-chip VRMs

= Account for leakage and temperature dependency
= Account for core-to-core variation by on-chip thermal sensors
» Use simple model formula with physical meaning

» Hardware + Firmware implementation = Speed + Flexibility + Practicality
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Components of a Power Proxy

= |dle power
— Clock grid power
— Leakage power

= Active power
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On idle chip, sweep voltage and frequency
(253 measurement points)

Measure power on Vdd rail, and
measure chip temperature

Genetic Algorithm-based Optimization
Find fitting parameters to minimize

(Preasure — Pigie) for all measurement points
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|dle Power Results

® Power proxy

® Power sensor
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Processor Core Activity Proxy

POWERY Chiplet

= Same activity counters as POWER7
— cf. Michael Floyd et al. HotChips-2011

= Architected ~50 power-related events per chiplet
(39 used for training)

= Both core and L2/L3 caches

= Use groups to minimize hardware complexity and
calculation time

= 762 in-house kernel workload runs for weights

P training
L 2 5 events

» Trained at nominal frequency
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Run training kernel workload
(V = Veoms F = From)

Measure power on Vdd rail.
Measure activity counters

Pyctive = Brneasure — Pidie (V: F, T)

Aig» Pactive

y

Genetic Algorithm-based Optimization
Find weights to minimize
P, tive — ActivityProxy /R

%’ Wig

Active power model

ActivityProxy [ V “
Pactive = R,

VnomO
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Total Power Results at Nominal Frequency (Active Power + Idle Power)
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= Training set: kernel workloads only.

» Test set: other kernels, SPECpower
and SPEC CPU

= Absolute (unsigned) % error
— Good for fast run-time power
management implementation.
— Average 1.8% with 2.0% std.
dev. across all tested workloads.
— Errors of 32ms samples are
close to each other.

= Average (signed) % error for entire
workload
— Good for long-term energy
estimation.
—-0.2% with 2.6% std. dev.

= Compares well with published prior
work, but with 30x faster samples

= Only SPEC CPU2006 results are
shown here.
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Decoupled Voltage and Frequency

= Fixed frequency run of dealll, while under-volting up to 112.5mV without timing violation.
— cf. Charles Lefurgy et al., MICRO-2011.
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Chip-to-Chip Variations: Maximum Chip Power Workload

» Variations are mostly captured by operating voltage

» Each chip has a characterized set of supply voltages
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= Active Power

p AP; ( V )a
active core i —
- - Ry Vhomo
= Clock Grid Power
Freq; |74

P . = B
clock_core_i SO . Ncores Vnomo)

» | eakage Power

P eak_nom V
Pleak_core_i = ok ( ))/(1 T my (Ti - Tio))

Ncores Vnom

» Scale each core power to match measured chip power (optional)
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Results: Per-Core Power Proxy
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Results: Per-Core Power Proxy
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= An example application of power proxies
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= Example: Evaluating the following power management policies
— Nominal: Always run at fixed nominal frequency.
— DPS (Dynamic Power Saving): Adjust (V,F) pairs according to processor utilization level.
— DPS-UV (DPS with under-volting): Adjust frequency according to utilization level + use
lowest achievable voltage for each desired frequency level

» Traditional approach
— Run each policy separately (~3x total run time)
— Control identical runtime environment (initial temperature, ambient temperature, OS state,
etc.)
— Effort to sync start/stop of workload

= With power proxies
— Possible to evaluate all policies simultaneously
— Sync’d start/stop
« specially suitable for workloads with fixed run durations (e.g. SPECpower_ssj)
— Efforts are needed to also model temperature for different policies in firmware
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SPECpower_ssj2008: DPS, DPS-UV, Nominal modes
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= POWERT7+ power proxy
— Chip level and core level
— Accurate with fast sample rates
— Account for variabilities, full voltage and frequency range, decoupled voltage and
frequency
— Practical: easy-to-understand formula, low overhead, highly adaptable to future changes

= Opens opportunities to novel usage scenarios
— Fine-grained power management
— Per-VM based power or energy accounting
— Etc.
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