
Accurate Fine-Grained Processor Power Proxies

Wei Huang† Charles Lefurgy∗ William Kuk∗∗,‡ Alper Buyuktosunoglu∗

Michael Floyd∗∗ Karthick Rajamani∗ Malcolm Allen-Ware∗ Bishop Brock∗∗

†AMD, ∗IBM Research,‡Purdue University,∗∗IBM System and Technology Group
WeiN.Huang@amd.com, {lefurgy,wwkuk,alperb,mfloyd,karthick,mware,bcbrock}@us.ibm.com∗

Abstract

There are not yet practical and accurate ways to directly measure
core power in a microprocessor. This limits the granularityof mea-
surement and control for computer power management. We over-
come this limitation by presenting an accurate runtime per-core
power proxy which closely estimates true core power. This enables
new fine-grained microprocessor power management techniques at
the core level. For example, cloud environments could manage and
bill virtual machines for energy consumption associated with the
core. The power model underlying our power proxy also enables
energy-efficiency controllers to perform what-if analysis, instead of
merely reacting to current conditions.

We develop and validate a methodology for accurate power proxy
training at both chip and core levels. Our implementation ofpower
proxies uses on-chip logic in a high-performance multi-core proces-
sor and associated platform firmware. The power proxies account
for full voltage and frequency ranges, as well as chip-to-chip process
variations. For fixed clock frequency operation, a mean unsigned
error of 1.8% for fine-grained 32ms samples across all workloads
was achieved. For an interval of an entire workload, we achieve an
average error of -0.2%. Similar results were achieved for voltage-
scaling scenarios, too. We also present two sample applications of
the power proxy: (1) per-core power billing for cloud computing
services; and (2) simultaneous runtime energy saving comparisons
among different power management policies without runningeach
policy separately.

1. Introduction

In the last several years, direct measurement of power consump-
tion has been widely deployed in servers [20]. At a system-level,
bulk power supply measurement has enabled energy-efficiency op-
timizations, power capping and shifting, and cost-of-operation anal-
ysis. Power measurement of the microprocessor is becoming com-
mon as well and allows for more fine-grained power management.
For example, Intel Node Manager 2.0, to be introduced this year,
will use direct processor and memory power measurements to im-
plement power capping by shifting power allocations between pro-
cessor and memory subsystems [7]. Core-level management, on the
other hand, has languished because there are still no accurate and
practical ways to directly measure the power consumption associ-
ated with each core.

A viable alternative is to implement corepower proxies, which
are estimates of true core power consumption. They are constructed
from real-time measurements of microarchitecture counters and
physical sensors. Many previously published power proxy imple-
mentations made use of existing processor performance monitoring
and analysis signals which were originally put into the hardware to

∗This work was done while Wei Huang was a researcher with IBM Research, and
William Kuk was an intern with IBM System and Technology Group.

assist in tuning compilers and operating mode settings. While these
events are related to the activity of the processor, they typically track
performance-sensitive events rather than events that contribute most
to power consumption. This can lead to significant error across a
wide variety of workloads. More recent work, including ours, lever-
age activity signals in the microarchitecture that correlate better with
power. However, the prior studies have serious limitations. First,
they typically model power at fixed voltage and frequencies,which
ignores how the power proxy error tracks with dynamic frequency
and voltage scaling processors. Second, they focus on active power
and give only simplistic treatments of leakage power and do not con-
sider the impact of process variations. This reduces the effectiveness
of the proxy since conventional high-performance microprocessors
have considerable leakage power consumption and the power con-
sumption of processors of the same type and model can vary widely
due to manufacturing-based variation. Without a strategy for cover-
ing the entire power of the core, the power proxy cannot be used for
applications requiring high accuracy.

The value of accurate power proxies depends on how they are
used. For billing applications, a 1% inaccuracy in energy consump-
tion directly translates to an additional 1% cost to either the user
or supplier. For power capping applications, reduced accuracy in
power estimations means that additional margins added to the re-
quested capping value must be taken to ensure the real power limit
is maintained. In our system, we measure that every 1% of Vdd
power accuracy translates into 1.2% throughput on the SPECpower
workload. For example, the value of power capping with a power
proxy that is 1% accurate compared to a power proxy that is 5%
accurate is about 4.8% in performance. For energy-efficiency con-
trollers that maximize operations per Watt, the inaccuracymay not
matter when optimizing a single component if the power estimation
is monotonic with true power. However, when optimizing across
many processors that each provide a power estimate, suboptimal de-
cisions could be made if the estimates reverse the true senseof which
component draws the most power. Therefore, we believe that con-
tinuing to improve accuracy by even small amounts is meaningful.
Additionally, shortening the time for estimation enables fine-grain
power management. A review of prior work shows our power prox-
ies achieve accuracy comparable to the best known solutions, but do
so at a 30x smaller time resolution (32 ms estimations vs. 1 sec-
ond estimations). Additionally, we validate the power proxies work
across full frequency and voltage ranges, and account for process
variation.

In this paper, we propose a methodology of constructing highly
accurate power proxies, first at the chip level, then at the core level.
Our architecture accounts for active power by utilizing specialized
activity counters in the chip hardware. Firmware computes the final
power proxy by using the measured activity values and incorporating
real-time physical sensor measurements. In addition it calculates



leakage power using manufacturing-time characterizationdata.
We implement our power proxy architecture on a IBM

POWER7+R© high-performance system and run many workloads
to evaluate its accuracy over full voltage and frequency operating
ranges. The power proxies also take into account chip-to-chip varia-
tions. We additionally show that the power proxy is flexible enough
to account for power even when voltage and frequency pairings are
not fixed, but can vary for undervolting and overclocking.

Similar power proxy on-chip circuits in AMD and Intel chips ex-
ist. However, implementation details and thorough accuracy eval-
uations of them have not been published. This paper also signif-
icantly extends previous IBM POWER7 power proxy publications
by adding accurate models for both clock and leakage power, and
for the first time presents a complete full-chip and per-corepower
proxy development methodology with better accuracy than pub-
lished work.

After demonstrating an accurate power proxy, we illustratetwo
use scenarios: billing and predictive management.

First, power has become a precious resource in the data center as
it has a growing impact in the cost of server ownership. In response,
the idea of billing users for energy use in addition to time-based or
MIPS-based accounting is gaining traction. Per-core powerproxies
open the opportunity for energy-based billing in cloud computing
services.

Second, a plethora of runtime energy and power management
techniques have been invented and implemented to achieve en-
ergy proportionality for servers and data centers to boost energy
efficiency and reduce operational cost. Typically a trial-and-error
method is used to determine which management policy is the most
effective for a given workload. It is impractical to run the same work-
loads multiple times, each time with a different power management
technique or policy enabled. Having power proxies that are accurate
across voltage and frequency ranges solves this problem. The power
consumption model that underlies the proxy can estimate theinstan-
taneous power consumption for each power management technique
simultaneously at run time according to its decision on operating
voltage, frequency, temperature, as well as activity counts of the run-
ning workload, thus providing a direct comparison across all power
management policies. The energy manager can then dynamically
and intelligently select a policy in response to changing workload
characteristics.

We summarize our contributions as follows:
• We develop a methodology to construct core-level and chip-level

power proxies, which are implemented in hardware and system
firmware.

• The power proxies take into account full voltage and frequency
ranges. It is also adjustable to chip-to-chip process variations.

• We present the first power proxy that works accurately even when
chip voltage and frequency settings do not have fixed pairings.
This is useful for systems that dynamically undervolt (withfixed
frequency) or overclock (with fixed voltage).

• The power proxy values are updated every 32 ms to enable fine-
grain energy management which is 30x faster than prior work with
comparable accuracy. The power proxies are based on activity
counters and sensors for frequency, voltage and temperature that
are gathered out-of-band so as not to disturb the running work-
load.

• We illustrate how to achieve per-core power accounting, which
may be incorporated into existing proposals for per-VM power

accounting for cloud computing services.
• We discuss the usefulness of power proxies for evaluating differ-

ent energy management techniques simultaneously at run time.
Because of hardware differences (e.g. on-chip activity counter

architecture, data collection rates, voltage rail power measurement
availability, frequency range, process variation distribution, etc.), it
is nearly impossible for us to conduct a direct comparison with exist-
ing methodologies using hardware measurements. However, we do
cite and try our best to quantitatively compare with the claimed ac-
curacy from existing work. In addition, we only solve one (probably
the most complicated) part of the full-system power model, namely
the power consumption of the processor. The methodology needs
to be extended with additional techniques to account for power con-
sumption of other system components.

The paper is organized as follows. An overview of power proxies
in POWER7+ and discussion of design considerations is covered
in Section 2. Next, Section 3 shows how we develop chip power
models and incorporate core-based activity measurement with chip-
based characterization. We report experimental results todetermine
their accuracy. Section 4 illustrates use cases for accurate core power
estimates. In Section 5 we review related work. Finally, we conclude
with Section 6.

2. Background

2.1. Power modeling

The power consumed by a microprocessor can be described by
Eqn. (1).

Pchip = Pactive+Pidle

= Pactive+Pclock+Pleak (1)

Pidle represents theidle powerconsumed when the processor is
on, but not executing instructions andPactive is the additionalactive
powerconsumed due to instruction execution. The idle power can be
further separated into clock grid power and temperature-dependent
leakage power.

Prior work on power proxies has focused mainly on accurate ac-
tive power estimations and given simplistic treatment of the idle
power - often assuming a constant value or one that varied linearly
with clock frequency. While this may be valid for steady-state work-
loads, it is not sufficient for dynamic workloads that inducechang-
ing voltages (voltage scaling) and temperatures in the chipsince idle
power depends strongly on voltage and temperature.

We describe our power model in more detail in Section 3.

2.2. POWER7 chip proxy logic

The POWER7 chip power proxy circuits have been disclosed before
in prior publications [4][5][20]. The circuitry in POWER7+is identi-
cal. These circuits are used to estimate core active power and alone
cannot accurately account for idle power. Our work complements
the prior publications by demonstrating how firmware can be used
to accurately account for idle power and for voltage-scaling in the
active power component.

The methodology to estimate on-chip active power is to accumu-
late a weighted sum of activity counters each measurement inter-
val. We use the termactivity proxyto denote this aggregated activity
count. Each chiplet (combination of a single core with its L2and L3



Figure 1: Activity counters in a POWER7 chiplet [4]. POWER7+
chiplet floorplan is slightly different.

caches) in POWER7+ contains activity proxy logic so that per-core
active power can be separately accounted. Firmware then adjusts
the core activity proxies for the effects of leakage, temperature, pro-
cess variations and voltage to form the chip and corepower proxies,
which are the final estimations of true power consumption. A discus-
sion of the firmware is in Section 3. The remainder of this section
overviews the POWER7 chip power proxy circuit.

Figure 1, reproduced from Floyd et al. [4], shows a diagram ofac-
tivity proxy event collection in the POWER7 processor chiplet. The
activity signals were selected during the initial POWER7 microar-
chitecture design phase. The top events that caused the majority of
the power consumption in each functional unit (e.g. Dispatch, Fixed
point, Load-Store) were considered. Example events include: the
deactivation of dynamic clock gating, data switching, and register
file or array accesses. Relevant signals were added directlyfrom
those units to the on-chip proxy logic which adds a per-eventpro-
grammable weight to an accumulation register whenever thatevent
occurs. Care was taken to avoid redundant counting wheneverpos-
sible. For example, counting Load-Store issue already covers data
cache and D-ERAT (effective-to-real data address translation) reads
and Load Miss Queues so both were not included. For some frequent
events, such as General Purpose Register File access, a pre-count is
performed on the activity before sending a summary signal out of the
unit. Other events, such as instruction pipe issue or floating point op-
eration type, are sent as encoded values and a multiplier is applied
accordingly based on its anticipated power relative to the other types
in that encode group. The L2 and L3 cache units also provide active
power events based on cache lookup and types of access. All these
activity count accumulators are then scaled and summed to form an
aggregate activity proxy per core which can be converted into an
estimate of active power consumed over the previous time period.

There are several challenges in such weighted counter-based
proxy architecture, including:
• How to choose the minimal set of key activity counts to architect;
• Correctly sizing the counter and weight registers and the final scal-

ing logic; and

• How to decompose the weighted aggregation step so as to mini-
mize hardware complexity and calculation time.
To address these challenges, the methodology relies on system-

atic, linear-regression based formalism in conjunction with designer
intuition and experience. A genetic algorithm (GA) optimization
tool further refined the design under hardware constraints.Specif-
ically, the reference (RTL-validated) performance simulator-driven
power simulator projects the core power consumption acrossa care-
fully selected range of workloads. In each case, hundreds ofactiv-
ity count events were also collected over a pre-selected execution
time window. The resulting matrix of several data elements (con-
sisting of power values and activity counts) was fed into theGA-
driven regression solver, to deduce the right set of activity counts
as well as the size of weights to form the architecture. At theend,
activity count events are carefully selected to capture those that cor-
relate maximally with active power consumption as well as those
that are the fundamental (pseudo-independent) positive correlators
of power. The final design has an affordable number of hardware
counters and weight bits which led to an accurate, yet flexible proxy
architecture with reasonable cost. The final design measures close
to 50 activity counts which include instructions dispatched, instruc-
tions completed, execution register file accesses, execution pipeline
issue types, instruction fetch unit activity, load-store unit cache activ-
ity, load-store unit D-ERAT activity, load-store unit prefetch activity,
L2 cache reads/writes and L3 cache reads/writes.

3. Power Proxies

In this section, we demonstrate our methodology and verify its ac-
curacy by creating a proxy that replicates the physical power sensor
for the chip Vdd power rail.

3.1. Experimental setup

We have implemented the power proxy in a prototype high-
performance POWER7+ server. It has four microprocessors (P0-P3)
with 6-cores each, 256 GB of main memory, and runs AIX 7.1. The
maximum core clock frequency is 4228MHz. Voltage is controlled
independently for each microprocessor with all cores on a chip shar-
ing the same voltage level. A per-core digital phase-lock loop allows
clock frequency to be set independently for each core. We purpose-
fully selected the four microprocessors from different process cor-
ners and they are distinct in terms of leakage current, nominal sup-
ply voltage, and ring-oscillator delay measurements. Thisallows us
to confirm that the power proxy accounts for manufacturing-based
variation. We pick P1 as the reference chip because it has a more rep-
resentative nominal voltage than other three chips. In the following
text, for results that are related to a single chip, we show the results
on P1.

The power proxies are implemented in two parts in a POWER7+
system. First, activity counters and the calculation of theactivity
proxies are implemented in hardware logic of the processor.The
weights to different activity events are programmable by writing to
special on-chip registers. Second, a service coprocessor receives
measurements of activity proxies, chip supply voltage, core clock
frequencies, and core temperatures from the POWER7+. The mea-
surements are sent over a special out-of-band management interface
that does not disrupt running workloads. The chip-level andcore-
level power proxies are calculated in firmware that runs on the ser-
vice coprocessor. The firmware performs this computation every 32
milliseconds, which is constrained by the narrow bandwidthof the
management interface.



3.1.1. Power delivery path The POWER7+ processor has four inde-
pendent voltage rails, each fed by a voltage regulator module (VRM).
Two of the voltage rails (Vio and Vmem) require fixed voltages, es-
tablished at chip manufacturing, and are unique for each chip. The
other two voltage rails (Vdd and Vcs) have voltages that can be dy-
namically changed to implement DVFS policies.

The power proxy hardware does not cover circuitry on the Vio
and Vmem rails. This design choice was driven by the fact that
the current drawn on these rails varies only a small amount and be-
cause the load is largely constant. During chip manufacturing, the
current associated with Vio and Vmem is measured during a cali-
bration workload and stored in the chip’s Vital Product Data(VPD)
non-volatile memory along with the associated voltage.

The Vdd and Vcs rails do have circuitry associated with the power
proxy hardware. The Vdd rail feeds the cache and core logic and the
Vcs rail feeds the L3 cache (embedded DRAM) on the chip. For both
rails, chip manufacturing also measures current and voltages, but in-
stead of the single point characterization done for Vio and Vmem,
there are four unique points measured for each of the Vdd and Vcs
rails. The four unique points cover four standard operatingpoints
across the full range of voltages and the associated frequencies that
the chip can operate at safely, and these values are written into the
chip’s VPD. The VPD values are used by product firmware to pro-
gram the Vdd and Vcs VRMs so that the output voltages from the
VRM will be sufficient to establish the characterized chip voltage
under worst-case conditions considering load line and other losses
in the power delivery system.

The Vdd rail is the most interesting power rail in terms of dynamic
power management, as it carries significantly more current than Vcs.
The Vdd and Vcs voltages can be varied over a very wide range
along with the frequency, with Vcs scaling proportionally to Vdd.
At the low end of the voltage range, the minimum Vdd voltage or
Vmin is typically only 70% of the maximum Vdd voltage or Vmax
used. To go with this, the frequency range varies from a minimum
frequency that is only 54.5% of the maximum frequency used.

Roughly 95% of the activity that the activity proxy measuresis
associated with the Vdd rail. For this reason the paper focuses exclu-
sively around precise characterization of the Vdd rail. Themethod-
ology we present in this paper can be easily extended to the Vcs rail,
and we leave this as future work.
3.1.2. Sensing In our test system, the power on the input side (12V
rail) of the chip Vdd voltage regulator is directly measuredwith
an accuracy of 2%. Therefore, our measurement includes lossdue
to voltage regulator conversion inefficiency. The firmware reads
analog-to-digital converters to measure the average powerduring
each 32 millisecond interval. We use this as the ground truthin
all experiments and accuracy claims. The goal of our power proxy
is to replicate as closely as possible the measured chip Vdd power
for each 32 ms interval. We measure the per-core temperatureby
averaging the 5 digital thermal sensors located in each core. They
provide temperature in units of 1 degree Celsius and are accurate to
within 4 degrees of the true temperature.

3.2. Kernels and Benchmarks

We use two sets of workloads for building our runtime power prox-
ies. First, kernels from a variety of available system characterization
sources are used for training the activity proxy weights andpower
model coefficients. Second, testing and validation are donewith a
separate set of benchmarks.

The majority of our training workloads are kernels constructed
from simple array-based loops such as in the popularlmbench [14]
and STREAM [13] benchmarks. A desired size array is allocated
and kernel-specific operations are performed in a sequential or ran-
dom order over the array elements. By varying the nature of opera-
tions, number of distinct arrays and sizes of arrays a variety of work-
load instruction and storage access patterns are emulated.This gives
us a reasonably rich set of power exercisers for the cores, on-chip
caches and logic for accessing the different memory layers including
off-chip DRAM. We additionally vary the workloads by selecting
the multithreading mode of the chip. In all, we use 762 uniquework-
loads for training. This simple kernel-based characterization also
helps us set up very steady workloads in terms of activity andpower
to enable truly representative power measurements to be taken for
the training phases. We complement these loops with a set of sys-
tem stress-test workloads which are targeted at specific components
of the system. This set also includes a maximum power workload
developed for the POWER7 processor.

For testing and validation we use two sets of popular benchmarks
from SPEC—SPECPower_ssj2008 [18] and SPEC CPU2006 [17].
The former provides workloads of different intensities helping us
evaluate our models across the full range of system loads andthe lat-
ter provides a rich variety of processor and memory hierarchy usage
examples.

3.3. Activity proxy training

We use a procedure similar to [4] to train weights in the activ-
ity proxy calculation. All cores in all chips use the same learned
weights. First, we measure the power consumption and tempera-
ture of the chip when it is idle. When running the training setof
benchmarks, we set the processor (P1) to its nominal frequency and
supply voltages. All cores run the same workload. We then sample
power and temperature measurements as well as activity counts for
each event. Per-core active power is calculated by subtracting the es-
timated idle power, which includes a temperature-based adjustment
(Section 3.4), from total measured power and dividing by thenumber
of cores. For each activity event, we also average across allthe cores
to reach a per-core count for that event. The IBM SNAP genetical-
gorithm optimization tool takes per-core active power and activity
counts as inputs to derive a linear regression model for active power,
in the form of

ActivityProxy= Σ(Wg×Σ(Wig×Aig)) (2)

whereWg is an activity group weight,Wig is the weight for activ-
ity event i in group g, andAig is the count for eventi in group g.
The POWER7+ hardware overhead is minimized by splitting theac-
tivity weights into an event weight and a group weight. We usea
genetic algorithm to optimize the weights rather than a simple lin-
ear least-square fit due to the limited scaling ranges and thefact that
only Wg is signed. Once the set of weights is determined, the same
weights are programmed into all the cores across all the processors.
POWER7+ implements the activity proxy, Eqn. (2), in hardware.

Aside from the temperature effects previously mentioned, other
sources of correctable errors and biases need to be considered in
designing training experiments. One type of potentially correctable
error is due to Simultaneous Multi-Threading (SMT) mode, which
is effectively the number of active threads per core. We observe sys-
tematic variations of up to 5% in estimated power in the training sets
based on whether the workload is running with 1, 2 or 4 threadsper



core. Consequently, our training kernels are run in all SMT modes.
Even after correctable errors are considered, systematic errors ex-

ist that will always bound the maximum accuracy of an active power
model based simply on event counting. One important example, to
be addressed by future work, is the dependency of processor power
on the actual data being processed, as the number of nodes switching
at each cycle is data dependent. Cache and register file access power
may also vary based on the data stored in the arrays. Using some sim-
ple cache-contained integer loops running on a POWER7 processor,
we observed variations in total active power of up to 5% depending
on the randomness of the data being processed, with power increas-
ing with increasing randomness.

3.4. Chip-level power model

Activity proxy only accounts for active power at the nominaloper-
ating point, which is a specific frequency, and associated voltage
values set defined in the chip VPD and identified as the defaultfre-
quency for the processor. In order to achieve a true power proxy,
we also must consider other factors, namely the whole supplyvolt-
age range and temperature-dependent leakage power. The impact
of frequency on power consumption is largely captured by activity
counters, since higher frequency results in proportionally more event
counts for the same workload.

Chip power consumption can be further divided into idle power
and active power, both of which are dependent on supply voltage.
Idle power in turn can be divided into leakage power and clockgrid
power. Leakage power is also dependent on temperature. We model
chip-level power consumption in the following format:

Pchip = Pactive+Pclock+Pleak

=
AP
R

(

V
Vnom

)α
+

Freq
S0

(

V
Vnom0

)β

+Pleak_nom

(

V
Vnom

)γ
(1+m0(T −T0))

(3)

whereAP is the activity proxy;R is the ratio between activity proxy
and active power for the reference processor at nominal frequency;
V is the supply voltage at the VRM output;Vnom is the nominal
voltage for each chip at the VRM output;Freq is the chip frequency;
S0 is a constant scaling factor across all chips and is derived during
chip characterization;Vnom0 is the nominal voltage at VRM output
for the characterized chip;Pleak_nom is the idle leakage power of the
chip at nominal voltage;m0 is a linear scaling factor for temperature-
dependency of leakage power;T andT0 are the actual temperature
and characterization temperature of the chip, respectively; α, β and
γ are constant exponents derived from characterizing the reference
chip.

Among all these parameters in the model,S0, T0, m0, Vnom0, α,
β andγ are constants, regardless of chip-to-chip variations.R, Vnom

and Pleak_nom are unique per chip, andR can be calculated based
on VPD data (more details in Section 3.6).AP, Freq, V andT are
runtime measurements at the chip level.

It is interesting to note that the active power term in Eqn. (3)
does not include chip frequency. This is because changes to core
frequency are reflected in the rate at which the activity proxy to accu-
mulate events. Therefore,APnaturally incorporates core frequency.

Through a series of experiments we found the dependence of
leakage power on temperature is approximately linear for a fixed

voltage. This is the reason we include a linear dependence ontem-
perature in the leakage power term in Eqn. (3). We ran different
steady-state workloads such as the kernel loops and the maximum
power workload with constant inputs at nominal voltage and fre-
quency, each starting from a cool temperature and graduallyreach-
ing a warmer steady temperature. The only factor that causespower
change for each workload is temperature-dependent leakagepower.
We found this power component is linearly proportional to tempera-
ture change.

We used the IBM SNAP genetic algorithm optimizer to determine
the parameters for Eqn. (3). First, we measured the idle power and
temperature of each chip across 22 voltage settings and 22 frequency
settings, for a combination of 253 unique voltage-frequency points.
Then we programmed SNAP to find the parameters that minimized
the error for the idle power across all chips every voltage-frequency
points. We obtainedS0 = 159.634,m0≈0.031W/◦C, β = 1.584,γ =
4.070, and a uniquePleak_nom value for each chip.

We verifiedPleak_nomfor all the chips by measuring leakage power
at nominal Vdd (when the chip is idle and before clock grid is en-
abled). After that, we repeat the same procedure for different volt-
ages, to verifyγ = 4.070 across all the chips. We verifiedS0 by
measuring chip idle power (including both leakage power andclock
grid power) at nominal frequency, and subtracting leakage power
calculated above from idle power.

With the total chip power measurement and the idle power model,
we can calculate active power. From multiple training workloads
and we find thatR= 2450 for the reference chip, andα = 2.2 for
active power. The validation of total chip power is shown in Fig. 5
in Section 3.6, as we also show the total power for each of the four
processors with manufacture-based variations.

3.5. Total chip power and idle power estimation results

We now present our main results for the total chip power modeland
idle power model. Additionally, we show that our models are accu-
rate even when the chips are undervolted.

Fig. 2 shows results for total chip power for training kernels, test-
ing kernels/SPECpower, and SPEC CPU2006. We report two met-
rics here. The first one is the absolute (i.e. unsigned) average per-
centage error among 32 ms samples of each workload, see Fig. 2(a)-
(c). This metric helps evaluate instantaneous power proxy errors and
is useful for what-if scenarios for runtime power management poli-
cies that need to make many decisions every second. The second
metric is the average percentage error for each entire workload run,
see Fig. 2(d)-(f). This is useful for evaluating energy consumption
over a relatively longer time, such as a minute or longer.

We achieve 1.8% (std. dev. 2.0%) unsigned percentage errorsfor
32 ms samples of total chip power across all workloads (the last bar
in Fig. 2(a)-(c)). The low standard deviation means the errors from
a vast majority of activity proxy samples are close to each other. For
mean percentage errors for each entire workload (Fig. 2(d)-(f)), on
average, we achieve -0.2% (std. dev. 2.6%). This indicates the set
of weights from the training is especially useful for long-term en-
ergy estimation. The worst case error across all testing workloads
is under 9.5% (vector copy kernel). For SPEC CPU2006, the worst
case workload error is 8.1% forcalculix. This compares well to
prior work [6] that achieved a median error of 1-5% (maximum er-
ror 7-10.7%) for SPEC CPU2006 workloads across multiple chip
architectures, but used 1-second samples for validation.

Our idle power model (Pleak+Pclock) has a maximum error of
2 W across all chips and voltage-frequency points. The maximum



(a) (d)

(b) (e)

(c) (f)

Figure 2: (a)-(c): Chip power (at nominal frequency) absolu te (unsigned) percentage errors across all samples for trai ning kernels,
testing kernels/SPECpower, and SPEC CPU2006, respectivel y. (d)-(f): Chip power (at nominal frequency) average relat ive
errors for each workload run.

Figure 3: Idle power model validation at four different freq uen-
cies.

percent error was 3% which occurs near the lowest idle power mea-
sured. Fig. 3 shows the normalized idle power (i.e. leakage power
and clock power) at different voltage-frequency pairs for all four
chips.

So far, we have derived and verified the chip-level power proxy
for a wide range of voltage-frequency pairs. An interestingexperi-
ment would be to test the power proxy’s accuracy when voltageand
frequency pairs are not fixed. Recently, Lefurgy et al. [12] proposed
a method of safely undervolting a microprocessor while maintaining

the same frequency. Voltage is dynamically selected to maintain a
preset guardband level as chip activity changes, resultingin reduced
chip power without performance loss. We apply this technique when
running the maximum power workload, and allow undervoltingup
to 112.5 mV (about 9.5% of supply voltage) at the fixed frequency of
4228MHz. The first half of Fig. 4 is for the case where frequency is
fixed at 4228 MHz and voltage is set to the traditional corresponding
value, whereas the second half of the figure shows the case where dy-
namic undervolting is enabled such as frequency is fixed while volt-
age changes with available timing margin. This results in about 25%
power reduction fordealII in the second half. Comparing the two
halves, we see that for decoupled voltages and frequencies,our chip-
level power proxy still achieves about the same level of accuracy
when frequency and voltage are decoupled from each other. That is,
9.5% variations of supply voltage do not lead to worse power proxy
estimation.

3.6. Chip-to-chip variations

The chip-level power proxy (or model) presented above is character-
ized from a single reference chip and does not consider chip-to-chip
variations due to uncertainties in the manufacturing process. There-
fore, Eqn. (3) must be adjusted to take variations into account. As
mentioned before, to maximize the process variations amongthe
tested chip, we intentionally evaluate four chips from distinct pro-
cess corners. For example, when considering Performance Sort Ring
Oscillator (PSRO) measurements, one chip is 2.6 standard deviation
slow, one chip is 1.1 standard deviation fast and the other two chips



Figure 4: Chip power proxy validation for dealII with decoupled
voltage and frequency.

are within 0.5 standard deviation of the mean PSRO value. More
simply, the PSRO spread of our 4 chips covers 88% of all chips
from a sample size of thousands of chips passing module test.Data
in the paper also show significant leakage power variations.

For clock power (Pclock), Freq can be measured at run time,S0
andβ are constant across all chips.Vnom0 is also a constant, which is
the nominal Vdd for the reference chip. The only variance in clock
power from one chip to another is from its supply voltageV that can
be measured at run time. For the same operating frequency, different
chips have their different characterized supply voltages.Therefore,
variations among chips for the clock power component can be ac-
counted for by the different settings of supply voltages.

For the leakage power component (Pleak), although each chip’s
leakage power at nominal voltage (the characterized voltage for this
chip to run at nominal frequency) can be measured during system
start up, it is also possible to calculate it by subtracting the clock
power from the measured idle power for each chip. Both methods
achieve almost the same accuracy. The variation among leakage
power can be easily calculated from measurements. The assump-
tions of a constantγ and a constantm0 for all chips are also valid
according to Fig. 3.

For active power, there are two ways to adjust for chip-to-chip
variations. The first approach is to utilize the characterized variation
information in the VPD data. As mentioned in Section 3.1.1, each
chip has VPD data that is established during chip manufacturing test
that is unique to that chip. The uniqueness addresses manufacturing
variability, and system specific information for the targetsystem it is
going into including load line effects between the VRM and the chip
package and the losses associated with the unique package being
used for that die in the system.

In Eqn. (3), forPactive, we can derive a chip-specific value forR
based on VPD, load-line equation, and VRM efficiency. Specifically,
as mentioned before,R= (AP)nom/Pactive_nom. We denoteR0 for the
reference chip, andR1 for an un-characterized chip that we want to
adjust the active power. If both chips run the same workload,at the
same frequency, in the same environment, we know that(AP)nom=
R0Pactive_nom0 = R1Pactive_nom1 because both chips have the same
amount of activities. Therefore,

Figure 5: Chip power model validation at four different freq uen-
cies for the maximum power workload. Chip-to-chip
variation is also accurately accounted for.

R1 = R0

(

Pactive_nom0

Pactive_nom1

)

(4)

where

Pactive_i = PVRM_i −Pidle_i ...(i = 0,1) (5)

We are able to calculateR1 for any processors that are not char-
acterized since 1)R0 is known, 2)Pidle_i can be calculated for each
chip, and 3)PVRM_i can be calculated from the VPD data of chip
i together with knowledge of the load-line equation and VRM effi-
ciency.

However, VRM efficiency is quite sensitive to the load current
and the number of phases, and can vary as much as 10%, causing
a noticeable error in the resultingRi calculation. Instead, we found
that modifying the active power to the following format results in
better accuracy for all the chips:

Pactive=
AP
R0

(

V
Vnom0

)α
(6)

WhereR0 is a constant value from the reference chip, andVnom0
is the nominal Vdd for the reference chip, too. The underlying rea-
son is similar to the clock power component—chip-to-chip variation
is largely captured by the different characterized supply voltage set-
tings for different chips at the same operating frequency.

Therefore, the final format of the chip-level power proxy adjusted
for chip-to-chip variations is:

Pchip = Pactive+Pclock+Pleak

=
AP
R0

(

V
Vnom0

)α
+

Freq
S0

(

V
Vnom0

)β

+Pleak_nom

(

V
Vnom

)γ
(1+m0(T −T0))

(7)

Fig. 5 compares the modeled total power and measured total
power for the maximum power workload for different voltage-
frequency pairs, across all four chips. It shows that our proposed
chip-level power proxy works accurately despite the large manufac-
ture process variations among the chips. Similar results are achieved
for other workloads, too.



3.7. Core-level power proxy

For POWER7+, in order to reach power consumption estimationas-
sociated with each core, we take the following steps.
• Active power: We begin with the per-core activity proxy value

APi calculated by the core.R andV are the same for all the cores
in one processor, since all cores share the same voltage rails in
POWER7+. Specifically,

Pactive_core_i =
APi

R0

(

V
Vnom0

)α
(8)

• Clock grid power: first use average frequency across all the cores
to calculate chip-level clock power. Then divide it to each core’s
contribution by proportionally scaling to the core’s frequency.
Specifically,

Pclock_core_i =
Freqi

NcoresFreqavg

Freqavg

S0

(

V
Vnom0

)β

=
Freqi

S0 ·Ncores

(

V
Vnom0

)β
(9)

• Leakage power: first use Eqn 3 to calculate chip-level leakage
power. Then divide it to each core’s contribution by proportion-
ally scaling to the core’s temperature change. Specifically,

Pleak_core_i =
Pleak_nom

Ncores

(

V
Vnom

)γ
(1+m0(Ti −Ti0)) (10)

whereTi is the core temperature at run time, andTi0 is the core
temperature during characterization.

• Final adjustment: each core’s power proxy now becomes
Proxyi = Pactive_core_i +Pclock_core_i +Pleak_core_i . To ac-
count for the difference between power proxies and power mea-
surement, we can adjust the sum of all power proxies from all the
cores to be equal to total measured chip power, by multiplying
with scaling factor that equals toPmeasured/ΣProxyi .
Although POWER7+ does not have individual voltage rails at the

granularity of cores, the above approach can be easily extended to
such situations by usingV from each core. Use of core-level power
proxies is shown in Section 4.1.

4. Use Cases of Power Proxies

The chip-level and core-level power proxies that incorporate volt-
age, frequency and process variations allow the implementation of
many novel ideas that are otherwise impractical or impossible. One
interesting usage scenario of per-core power proxies is in apower
capping environment with a power constraint at the processor socket
level. Our per-core power proxies enable a better judgment for bal-
ancing power among cores. Prior work [11] shows that every 1%
improvement in power estimation accuracy can lead to roughly 1%
performance improvement in a power-capped scenario, due toless
guardbanding.

In general, this work provides the means of using core-levelpower
proxies for both power-based accounting/billing of virtual machines
and more fine-grained power management. This section provides
two such example applications.

4.1. Fine-grained power accounting

Power proxies, especially per-core power proxies enable power-
based billing for cloud computing services. Our power proxywill

Figure 6: Stacked core power proxy for an estimate of total ch ip
power for a multiprogram workload. Top solid line is
the measured chip power.

Figure 7: Validation of core power proxy for three kernel ben ch-
marks running on individual cores.

work with different assignments of cores to virtual machineand with
the virtual machines operating the cores using different partition-
level power management techniques. For virtual machines atthe
sub-core level (i.e. a subset of threads out of a SMT core), further
extensions to per-thread power proxies are necessary, which is be-
yond the scope of this paper.

We construct a case to show core-level power estimations on a
6-core processor. Each core runs an independent workload from our
kernel benchmarks and each workload has been configured withdif-
ferent memory footprints and different number of threads (1, 2 or
4). The variations among workloads cause power consumptiondif-
ference among cores. Fig. 6 shows the normalized power over time.
We stack the six core power proxies together to get an estimated to-
tal chip power, each core power proxy is represented by one pattern
in the plot. The top-most solid line is the measured chip Vdd power.
As we can see, all the workloads start at the same time. But theker-
nel on core 2 ends earlier than the others. The sum of the core power
proxies is about 3.0% less than the measured chip power.

In order to validate each core power proxy’s accuracy, we pick
three of the kernels that have memory footprint contained within
per-core L2 cache from previous experiment, and run each alone
on its associated core with all other cores idle. We calculate the
“measured” core power by

Pcore_measured=
Pidle

Ncores
+(Pchip−Pidle) (11)

and compare it with the temperature adjusted core power proxy
for those cores in Fig. 6. The results in Fig. 7 show the core power
proxies are quite accurate (0.6%, -6.2% and -8.2%, respectively).



Figure 8: Chip power proxy comparison among three power
management policies: Fixed nominal frequency, Dy-
namic Power Saving (DPS), Dynamic Power Saving
with undervolting (DPS, UV).

4.2. Run-time power saving estimation

In this section, we evaluate different power management poli-
cies for a workload. Fig. 8 shows runtime power comparison
of a SPECpower run under three power management policies.
SPECpower requires each load level run for fixed amounts of time,
regardless of operating mode. That is why the total run timesin all
cases are the same in the figure. Additionally, Fig. 8 shows DPS
and DPS/UV have better "power proportionality” to load levels than
Nominal. This results in significantly improved SPECpower scores
for DPS and DPS/UV.

We show three calibration phases, one 100% load level, one 40%
level and one 20% load level. The Nominal policy uses a fixed fre-
quency and a fixed voltage throughout the run; The Dynamic Power
Saving (DPS) policy dynamically adjusts voltage and frequency to
keep processor at a relatively constant high utilization level. The
DPS/UV (undervolting) policy allows dynamically loweringvoltage
for high load levels without changing frequencies, in orderto reduce
static margins and achieve higher power efficiency. Both chip power
measurements and chip power proxy are shown. As can be seen, the
chip power proxies match well with the power measurements inall
cases.

It is also interesting to compare the three policies. The fixed fre-
quency mode has relatively flat chip power consumption, despite
the significant change in load levels and processor utilization lev-
els. The DPS and DPS/UV modes achieve higher frequency, hence
higher performance at high load levels, and significantly reduced
power consumption at lower load levels and idle state. Thus these
modes are more “power proportional” in that they respond to perfor-
mance demand. In addition, the benefit of DPS/UV is evident that
it consumes 15% less power at full load levels, while keepingthe
same peak performance.

We expect that a chip-level power proxy allows on-the-fly and
accurate evaluation of such power management policies. Tradition-
ally, each power management technique is implemented separately
in hardware, firmware or software. The same set of workloads must
be executed multiple times, once for each technique. Great care
must be taken to ensure each run has the same architectural, environ-
mental and initial conditions. This process is time consuming and
not rigorous. With an accurate chip-level power proxy, processor
power consumptions of different power management policiescan be
calculated simultaneously for different voltage, frequency and tem-

perature scenarios.

5. Related Work

Bellosa [1] developed some of the first microprocessor powermod-
els based on performance counter measurement.

Contreras and Martonosi [2] augment the performance counter-
based linear regression model of CPU power for a Intel PXA255
unicore processor to account for voltage scaling by using different
weights for the performance counters for each voltage and frequency
pairs. In modern server chips, voltages are tuned for each chip so
that chips running at the same frequency in the same system likely
use different voltages. As undervolting and overclocking become
common place in commercial computers, the voltage and frequency
pairs are not stable at run time and instead depend on the running
workload and the electrical guardbands within the processor. Our
methodology can account for both different chip voltages aswell as
dynamic undervolting and overclocking.

Intel’s Common Activity-based Model for Power (CAMP) [15]
uses just 9 micro-architectural events in the processor to create mod-
els of activity factor for 180 physical structures in the processor. The
activity factors are used to generate per-structure power models that
can be combined to provide core-level dynamic power estimates at
run time. They show an 8% average error for the core-level dynamic
power and a maximum error of up to 12% for entire workloads. The
comparison is against a detailed power simulator which itself is esti-
mated to be 5% to 10% accurate. Additionally, the authors provide
an excellent summary of prior work in the area. A limitation of
the work is that it does not provide a methodology for dealingwith
run-time voltage scaling or manufacturing variation. Our work is
distinguished from Intel’s CAMP work in that 1) we implementour
solution in a real chip (not a simulator), 2) we account for manu-
facturing variation, and 3) variation in voltage and frequency. For
example, two cores at different clock frequencies (due to utilization-
based frequency selection), but operating on a shared voltage rail set
for the higher frequency.

Jacobson et al. [8] improves on Powell et al. by providing a
methodology for selecting the best architectural events. The authors
use abstracted microarchitectural scaling models that areuseful in
early-stage power modeling of future generation designs.

Goel et al. [6] derives performance-counter based core-power
models and tunes them using real system power measurement using
linear regression. One difference from prior work is the inclusion of
core-level temperature sensors. Another novel feature is using linear,
inverse, exponential, logarithmic, or square-root transformations to
scale the performance counters before the linear regression step to
correlate better with power consumption. They achieve median er-
rors per benchmark suite of 1-5% across six different CPU models,
which demonstrates a portable methodology. Error in average power
for individual workloads was measured up to 11%. This work has
some of the best error reporting of prior work and an extensive re-
view of prior work.

There are two recent papers that account system power to virtual
machines (VMs). They both attempt to account CPU, memory, and
device power to VMs running on the system. We limit discussion to
the CPU power, which is the sole focus of our work.

Stoess et al. [19] account for processor power by recording CPU
performance counters at VM context switches, weighting andac-
cumulating the counters to form a power proxy, and assigningthe
power to the associated VM. Power during idle periods is equally di-



vided among the running VMs. A limitation of the work is its imple-
mentation on a uniprocessor system running a single core. The work
does not consider how power could be allocated to virtual machines
running on each core, or how voltage scaling or CPU temperature
affect power consumption. We address these limitations in our work
by architecting a power proxy for each processor core and account-
ing for voltage and temperature variation across cores and chips in
the system.

Kansal et al. [10] take another approach to account for CPU power
by tracking the logical CPU utilization of each VM. A simple,linear
relationship is used to relate the utilization to a power consumption.
The system-level power accuracy is measured to be within 5%.How-
ever, such models cannot accurately account power at a core-level
due to manufacturing variation between cores, workload variation,
or temperature variation. Our modeling uses fabrication-time test-
ing to account for manufacturing variation and run-time sensing to
account for workload variation and temperature.

Much of the prior work does not provide error estimates basedon
measured CPU power. Often system power measurement is used and
discounted by power measurements for various system devices to
arrive at the CPU power measurement. We base our error estimates
on a highly accurate Vdd-rail current sensor for the CPU socket.

Do, Rawshdeh, and Shi [3] propose an application-level program-
ming interface to allow processes to monitor their energy consump-
tion. Their CPU power model relies on assigning a fixed power con-
sumption to each processor frequency state and a fixed energyto
frequency transitions. It does not deal with nuances of how instruc-
tions actually use the processor or manufacturing variation. Their
reported results for an estimated system power of a laptop appear to
have over 11% mean error. Our work could be used as a replacement
(with higher accuracy) for their CPU power modeling.

AMD includes power-monitoring circuit in its processor cores [9].
95 activity signals per core are monitored and weighted to form a dy-
namic power estimate that is considered to be 2% accurate. Since the
purpose is for long-term thermal and power control, the circuitry is
optimized to eliminate high-speed routing by not sampling every sig-
nal every cycle. It takes hundreds of time-based samples to achieve
accurate dynamic power estimations.

Intel’s Tukwila chip, an Itanium family processor, tracks approx-
imately 120 architectural event per core to estimate switched capac-
itance every 8 microseconds and compare this to threshold values
to select a maximum voltage-frequency pair to stay within a power
envelope [16]. The application of power proxy sensors in Tukwila
is guardbanding worst-case power, not attempting to replicate real
power on a voltage rail. Since all processors must select thesame
frequency for identical instruction sequences despite manufacturing
variation (leakage and circuit speed), it is not actual power that the
sensors are responding to, but an estimation of power in a worst-
case chip. The accuracy of these sensors compared to real power
measurement is unpublished.

Our work complements the work of AMD and Intel in that we dif-
ferentiate our power model across processors to calculate chip power
as accurately as possible for charge-back purposes. Our power proxy
has additional novel properties addressing real-world implementa-
tion challenges. First, it deals with significant chip-to-chip varia-
tions in an accurate yet concise way. Second, it is accurate for under-
volting (UV) where voltage adjustment is independent of frequency.
Prior work only evaluates with a fixed workset of voltage-frequency
pairs. In addition, prior work on real systems [6] estimatespower

at 1-second intervals. Our estimates are for 32-millisecond inter-
vals, which is more relevant for dynamic power capping and energy-
efficiency controllers.

6. Conclusion

In this paper, we present accurate chip-level and core-level power
proxies for the IBM POWER7+ processor. We validate the power
proxies by accurately replicating an existing Vdd power rail sensor.
For a fixed frequency run, we achieve a mean unsigned error of 1.8%
for fine-grained 32 ms samples across all workloads. For an interval
of an entire workload, we achieve a mean error of -0.2%. The worst-
case workload error was under 9.5%. This accuracy is similarto the
prior work with the highest accuracy, but is attained at a 30xsmaller
timescale which is more appropriate for fine-grain power manage-
ment applications. We also show that the power proxies hold their
accuracy across a range of frequency and voltage settings. Addition-
ally, we demonstrate the first power proxies that work on a system
that undervolts processors, whereas prior studies only show results
for conventional voltage-and-frequency scaling with fixedvoltage-
frequency pairs.

Our demonstration in a real system shows the technique is sound
for deployment in commercial multi-core servers. The powerprox-
ies account for full voltage and frequency ranges and also for chip-to-
chip manufacturing variations. Such proxies are useful fora number
of applications, such as power-based billing strategy for cloud-based
services. They also enable powerful runtime what-if evaluations of
different power management techniques.

Acknowledgement

We thank Jason F. Cantin for providing the IBM SNAP genetic algo-
rithm optimizer used in this work.

References

[1] F. Bellosa, “The benefits of event-driven energy accounting in power-
sensitive systems,” inProceedings of the 9th Workshop on ACM
SIGOPS European Workshop, 2000.

[2] G. Contreras and M. Martonosi, “Power prediction for intel XScale
processors using performance monitoring unit events,” inProceedings
of the International Symposium on Low Power Electronics andDesign
(ISLPED), 2005.

[3] T. Do, S. Rawshdeh, and W. Shi, “pTop: A process-level power profil-
ing tool,” in Proceedings of the Workshop on Power Aware Computing
and Systems, HotPower, 2009.

[4] M. Floyd et al., “Introducing the adaptive energy management fea-
tures of the POWER7 chip,”Micro, IEEE, vol. 31, no. 2, pp. 60–75,
March/April 2011.

[5] M. Floyd et al., “Adaptive energy-management features of the IBM
POWER7 chip,”IBM Journal of Research and Development, vol. 55,
no. 3, pp. 8:1–8:18, May/June 2011.

[6] B. Goelet al., “Portable, scalable, per-core power estimation for intel-
ligent resource management,” inProceedings of International Green
Computing Conference (IGCC), 2010.

[7] Intel Corporation,Intel Server Board S1200BT, February 2012.
[8] H. Jacobsonet al., “Abstraction and microarchitecture scaling in early-

stage power modeling,” inProceedings of International Symposium on
High Performance Computer Architecture (HPCA), 2011.

[9] R. Jotwani et al., “An x86-64 core implemented in 32nm SOI
CMOS,” in Proceedings of International Solid-State Circuits Confer-
ence(ISSCC), 2010.

[10] A. Kansalet al., “Virtual machine power metering and provisioning,”
in Proceedings of the ACM Symposium on Cloud Computing (SOCC),
2010.

[11] C. Lefurgy, X. Wang, and M. Ware, “Power capping: A prelude to
power shifting,”Cluster Computing, vol. 11, no. 2, pp. 183–195, June
2008.



[12] C. R. Lefurgyet al., “Active management of timing guardband to save
energy in POWER7,” inProceedings of International Symposium on
Microarchitecture (MICRO), 2011.

[13] J. McCalpin, “The STREAM2 Home Page,”
http://www.cs.virginia.edu/stream/stream2.

[14] L. W. McVoy and C. Staelin, “lmbench: Portable tools forperformance
analysis,” inProceedings of the USENIX Annual Technical Conference
(USENIX), 1996.

[15] M. Powellet al., “CAMP: A technique to estimate per-structure power
at run-time using a few simple parameters,” inProceedings of In-
ternational Symposium on High Performance Computer Architecture
(HPCA), 2009.

[16] B. Stackhouseet al., “A 65 nm 2-billion transistor quad-core Itanium
processor,”IEEE Journal of Solid-State Circuits, vol. 44, no. 1, pp. 18–
31, January 2009.

[17] “SPEC CPU2006,” http://www.spec.org/cpu2006.
[18] “SPECpower_ssj2008,” http://www.spec.org/power_ssj2008.
[19] J. Stoess, C. Lang, and F. Bellosa, “Energy management for hypervisor-

based virtual machines,” inProceedings of the USENIX Annual Techni-
cal Conference (USENIX), 2007.

[20] M. Ware et al., “Architecting for power management: The IBM
POWER7 approach,” inProceedings of International Symposium on
High Performance Computer Architecture (HPCA), 2010.


