Evaluation of a High Performance
Code Compression Method

Charles Lefurgy, Eva Piccininni,
and Trevor Mudge

Advanced Computer Architecture Laboratory
Electrical Engineering and Computer Science Dept.
The University of Michigan, Ann Arbor

MICRO-32
November 16-18, 1999

Motivation

Problem: embedded code size
— Constraints: cost, area, and power
— Fit program in on-chip memory SN
— Compilers vs. hand-coded assembly Original Program
» Portability
» Development costs
— Code bloat
Solution: code compression
— Reduce compiled code size -
— Take advantage of instruction repetition Compressed Program

— Systems use cheaper processors with
smaller on-chip memories

Implementation
— Code size?
— Execution speed?

Embedded Systems

CodePack

e Overview
— IBM
— PowerPC instruction set
— First system with instruction stream compression
— 60% compression ratio, £10% performance [IBM]
» performance gain due to prefetching
* Implementation
— Binary executables are compressed after compilation
— Compression dictionaries tuned to application

— Decompression occurs on L1 cache miss
e L1 caches hold decompressed data
« Decompress 2 cache lines at a time (16 insns)

— PowerPC core is unaware of compression

CodePack encoding

e 32-bitinsn is split into 2 16-bit words
 Each 16-bit word compressed separately

Encoding for upper 16 bits Encoding for lower 16 bits

gl00 1[0 0| Encodes zero

32101 16101
641100 231100
1281101 1281101

256110 256110

P
.

- Escape
] rRaw bits

Tag

- Index

CodePack decompression

Fetch index <

Fetch
compressed {
instructions

Decompress <

Y4

Y4

56 2526 31
L1 I-cache
miss address N ,
Byte-aligned
block address
—p

Compression Block
(16 instructions)

1 compressed instruction |Hi tag| Low tag

High dictionary

Native Instruction

Index table
(in main memory)

Compressed bytes
(in main memory)

Low dictionary

Compression ratio

compressedize

« CcOompressiaratio =

original size

 Average: 62%

100%
90%
80%
70%
60%

Compression ratio 50%
40%

30%

20%

10%

0%

P &P RS D Q
K F CLE TR TS
& &S &

N &

O

CodePack programs

« Compressed executable

— 17%-25% raw bits: not compressed!
* Includes escape bits
: S : Tags
« Compiler optimizations might help 250
— 5% index table
— 2KB dictionary (fixed cost)

_ Escape
— 1% pad bits

3%

Raw bits
14%

Indices
51% Index table

Dictionary 5%
1%

go

I-cache miss timing

« Native code uses critical word first

« Compressed code must be fetched sequentially

 Example shows miss to 5th instruction in cache line
— 32-bit insns, 64-bit bus

a) Native code

Instruction cache miss
Instructions from main memory

b) Compressed code
Instruction cache miss l

Index from main memory e A e A A 2 A asea
Codes from main memory
Decompressor x

c) Compressed code
+ optimizations

Instruction cache miss !
Index from index cache A
Codes from main memory

2 Decompressors e _@ E
L0 10 20 30 "E
1 cycle

B L1cachemiss [] Fetch instructions (first line) Z Decompression cycle

Ed Fetch index] Fetch instructions (remaining lines) X Critical instruction word

Baseline results

 CodePack causes up to 18% performance loss
— SimpleScalar
— 4-issue, out-of-order
— 16 KB caches
— Main memory: 10 cycle latency, 2 cycle rate

Instructions
per cycle

1.8

1.6 |

1.4

1.2 +

1.0
0.8
0.6
0.4
0.2
0.0

[native

B CodePack

ccl go perl vortex

Optimization A: Index cache

« Remove index table access with a cache
— A cache hit removes main memory access for index
— optimized: 64 lines, fully assoc., 4 indices/line (<15% miss ratio)
* Within 8% of native code
— perfect: an infinite sized index cache
* Within 5% of native code

1.2
1.0
0.8
Speedup over
native code 0.6
0.4 [CodePack
M optimized
0.2 [1 perfect
0.0 N

ccl go perl vortex

Optimization B: More decoders

 Codeword tags enable fast extraction of codewords

— Enables parallel decoding

« Try adding more decoders for faster decompression
e 2 decoders: performance within 13% of native code

Speedup over
native code

1.0

0.8

0.6

0.4

0.2

0.0

O CodePack
B 2 insn/cycle
[13 insn/cycle

[116 insn/cycle
[I

ccl

go

perl

vortex

11

Comparison of optimizations

Index cache provides largest benefit

Optimizations
— Index cache: 64 lines, 4 indices/line, fully assoc.

— 2nd decod

er

Speedup over native code: 0.97 to 1.05

Speedup over CodePack: 1.17to 1.25

Speedup over
native code

1.2

1
0.8
0.6
0.4
0.2

0

|

|

O CodePack
B index cache
1 2nd decoder

O both optimizations
‘ I [I I ‘ I] I I
ccl go perl vortex

12

Cache effects

e Cache size controls normal CodePack slowdown
e Optimizations do well on small caches: 1.14 speedup

Speedup
over native
code

go benchmark

1.4

1.2
1.0 1
0.8 -

0.6

0.4

0.2

0.0

1KB

4KB

[CodePack

M optimized
|

16KB 64KB

13

Memory latency

e Optimized CodePack performs better with slow memories
— Fewer memory accesses than native code

Speedup
over native
code

1.2
1.0
0.8
0.6
0.4
0.2
0.0

go benchmark

0.5x

@ CodePack
M optimized |

1x

2X

Memory latency

4x 8X

14

Memory width

e CodePack provides speedup for small buses

* Optimizations help performance degrade gracefully as bus
Size Increases

Speedup over
native code

1.2
1.0
0.8
0.6
0.4
0.2
0.0

go benchmark

16

32 64
Bus size (bits)

@ CodePack |
M optimized

I .

128

15

Conclusions

CodePack works for other instruction sets than PowerPC

Performance can be improved at modest cost
— Remove decompression overhead: index lookup, dictionary lookup

Compression can speedup execution
— Compressed code requires fewer main memory accesses
— CodePack includes simple prefetching

Systems that benefit most from compression
— Narrow buses

— Slow memories

Workstations might benefit from compression

— Fewer L2 misses
— Less disk access

16

Web page

http://www.eecs.umich.edu/~tnm/compress

17

