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Motivation

Problem: embedded code size
— Constraints: cost, area, and power
— Fit program in on-chip memory SN
— Compilers vs. hand-coded assembly Original Program
» Portability
» Development costs
— Code bloat
Solution: code compression
— Reduce compiled code size -
— Take advantage of instruction repetition Compressed Program

— Systems use cheaper processors with
smaller on-chip memories

Implementation
— Code size?
— Execution speed?

Embedded Systems




CodePack

e Overview
— IBM
— PowerPC instruction set
— First system with instruction stream compression
— 60% compression ratio, £10% performance [IBM]
» performance gain due to prefetching
* Implementation
— Binary executables are compressed after compilation
— Compression dictionaries tuned to application

— Decompression occurs on L1 cache miss
e L1 caches hold decompressed data
« Decompress 2 cache lines at a time (16 insns)

— PowerPC core is unaware of compression




CodePack encoding

e 32-bitinsn is split into 2 16-bit words
 Each 16-bit word compressed separately
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CodePack decompression
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Compression ratio

compressedize

« CcOompressiaratio =

original size

 Average: 62%
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CodePack programs

« Compressed executable

— 17%-25% raw bits: not compressed!
* Includes escape bits
: S : Tags
« Compiler optimizations might help 250
— 5% index table
— 2KB dictionary (fixed cost)
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I-cache miss timing

« Native code uses critical word first

« Compressed code must be fetched sequentially

 Example shows miss to 5th instruction in cache line
— 32-bit insns, 64-bit bus

a) Native code

Instruction cache miss
Instructions from main memory

b) Compressed code
Instruction cache miss l

Index from main memory e A e A A 2 A asea
Codes from main memory
Decompressor x

c) Compressed code
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Baseline results

 CodePack causes up to 18% performance loss
— SimpleScalar
— 4-issue, out-of-order
— 16 KB caches
— Main memory: 10 cycle latency, 2 cycle rate
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Optimization A: Index cache

« Remove index table access with a cache
— A cache hit removes main memory access for index
— optimized: 64 lines, fully assoc., 4 indices/line (<15% miss ratio)
* Within 8% of native code
— perfect: an infinite sized index cache
* Within 5% of native code
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Optimization B: More decoders

 Codeword tags enable fast extraction of codewords

— Enables parallel decoding

« Try adding more decoders for faster decompression
e 2 decoders: performance within 13% of native code
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Comparison of optimizations

Index cache provides largest benefit

Optimizations
— Index cache: 64 lines, 4 indices/line, fully assoc.

— 2nd decod

er

Speedup over native code: 0.97 to 1.05

Speedup over CodePack: 1.17to 1.25
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Cache effects

e Cache size controls normal CodePack slowdown
e Optimizations do well on small caches: 1.14 speedup
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Memory latency

e Optimized CodePack performs better with slow memories
— Fewer memory accesses than native code

Speedup
over native
code

1.2
1.0
0.8
0.6
0.4
0.2
0.0

go benchmark

0.5x

@ CodePack
M optimized |

1x

2X

Memory latency

4x 8X

14



Memory width

e CodePack provides speedup for small buses

* Optimizations help performance degrade gracefully as bus
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Conclusions

CodePack works for other instruction sets than PowerPC

Performance can be improved at modest cost
— Remove decompression overhead: index lookup, dictionary lookup

Compression can speedup execution
— Compressed code requires fewer main memory accesses
— CodePack includes simple prefetching

Systems that benefit most from compression
— Narrow buses

— Slow memories

Workstations might benefit from compression

— Fewer L2 misses
— Less disk access
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Web page

http://www.eecs.umich.edu/~tnm/compress
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