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• Problem: embedded code size
– Constraints: cost, area, and power
– Fit program in on-chip memory
– Compilers vs. hand-coded assembly

• Portability
• Development costs

– Code bloat

• Solution: code compression
– Reduce compiled code size
– Take advantage of instruction repetition
– Systems use cheaper processors with

smaller on-chip memories

• Implementation
– Code size?
– Execution speed?
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CodePack

• Overview
– IBM

– PowerPC instruction set
– First system with instruction stream compression

– 60% compression ratio, ±10% performance [IBM]
• performance gain due to prefetching

• Implementation
– Binary executables are compressed after compilation

– Compression dictionaries tuned to application

– Decompression occurs on L1 cache miss
• L1 caches hold decompressed data
• Decompress 2 cache lines at a time (16 insns)

– PowerPC core is unaware of compression



4

CodePack encoding

• 32-bit insn is split into 2 16-bit words
• Each 16-bit word compressed separately
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CodePack decompression
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•

• Average: 62%

Compression ratio
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CodePack programs
• Compressed executable

– 17%-25% raw bits: not compressed!
• Includes escape bits
• Compiler optimizations might help

– 5% index table

– 2KB dictionary (fixed cost)

– 1% pad bits

Tags
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Indices
51%

Dictionary
1%

Index table
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Escape
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Raw bits
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Pad
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I-cache miss timing

• Native code uses critical word first
• Compressed code must be fetched sequentially
• Example shows miss to 5th instruction in cache line

– 32-bit insns, 64-bit bus

Instruction cache miss
Instructions from main memory

Instruction cache miss
Index from index cache
Codes from main memory

Instruction cache miss

Codes from main memory
Decompressor

2 Decompressors

a) Native code

b) Compressed code

c) Compressed code
+ optimizations

t=0

L1 cache miss

Fetch index

Fetch instructions (first line)

Fetch instructions (remaining lines)

Decompression cycle

Critical instruction word

A

B

10 3020
1 cycle

Index from main memory
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Baseline results

• CodePack causes up to 18% performance loss
– SimpleScalar

– 4-issue, out-of-order
– 16 KB caches

– Main memory: 10 cycle latency, 2 cycle rate
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Optimization A: Index cache

• Remove index table access with a cache
– A cache hit removes main memory access for index
– optimized: 64 lines, fully assoc., 4 indices/line (<15% miss ratio)

• Within 8% of native code
– perfect: an infinite sized index cache

• Within 5% of native code
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Optimization B: More decoders

• Codeword tags enable fast extraction of codewords
– Enables parallel decoding

• Try adding more decoders for faster decompression
• 2 decoders: performance within 13% of native code
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Comparison of optimizations

• Index cache provides largest benefit
• Optimizations

– index cache: 64 lines, 4 indices/line, fully assoc.
– 2nd decoder

• Speedup over native code: 0.97 to 1.05
• Speedup over CodePack: 1.17 to 1.25
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Cache effects

• Cache size controls normal CodePack slowdown
• Optimizations do well on small caches: 1.14 speedup

go benchmark
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Memory latency

• Optimized CodePack performs better with slow memories
– Fewer memory accesses than native code

go benchmark
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Memory width

• CodePack provides speedup for small buses
• Optimizations help performance degrade gracefully as bus

size increases

go benchmark
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Conclusions

• CodePack works for other instruction sets than PowerPC
• Performance can be improved at modest cost

– Remove decompression overhead: index lookup, dictionary lookup

• Compression can speedup execution
– Compressed code requires fewer main memory accesses

– CodePack includes simple prefetching

• Systems that benefit most from compression
– Narrow buses

– Slow memories

• Workstations might benefit from compression
– Fewer L2 misses

– Less disk access
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Web page

http://www.eecs.umich.edu/~tnm/compress


