
Evaluation of a High Performance
Code Compression Method

Charles Lefurgy, Eva Piccininni,
and Trevor Mudge

Advanced Computer Architecture Laboratory
Electrical Engineering and Computer Science Dept.

The University of Michigan, Ann Arbor

MICRO-32

November 16-18, 1999



2

Motivation

Embedded Systems

Original Program

ROM
Program

RAM

I/O

CPU

Compressed Program

R
O

MRAM

I/O

CPU

• Problem: embedded code size
– Constraints: cost, area, and power
– Fit program in on-chip memory
– Compilers vs. hand-coded assembly

• Portability
• Development costs

– Code bloat

• Solution: code compression
– Reduce compiled code size
– Take advantage of instruction repetition
– Systems use cheaper processors with

smaller on-chip memories

• Implementation
– Code size?
– Execution speed?



3

CodePack

• Overview
– IBM

– PowerPC instruction set
– First system with instruction stream compression

– 60% compression ratio, ±10% performance [IBM]
• performance gain due to prefetching

• Implementation
– Binary executables are compressed after compilation

– Compression dictionaries tuned to application

– Decompression occurs on L1 cache miss
• L1 caches hold decompressed data
• Decompress 2 cache lines at a time (16 insns)

– PowerPC core is unaware of compression



4

CodePack encoding

• 32-bit insn is split into 2 16-bit words
• Each 16-bit word compressed separately

Encoding for upper 16 bits Encoding for lower 16 bits

32

64

128

256

Tag

Index

Escape

Raw bits

0 1

1 0 0

1 0 1

1 1 0

x x x x x x

xx x x x x x x

xx x x x x x x x

xx x x x x x x x x x x x x x x x1 1 1

0 0

x x x x x

x x x

0 1 x x x x

1 0 0

xx x x x x x x1 0 1

xx x x x x x x x1 1 0

xx x x x x x x x x x x x x x x x1 1 1

0 0

x x x x x

8

16

23

128

256

1 Encodes zero



5

CodePack decompression

Decompress

Byte-aligned
block address

L1 I-cache
miss address

Fetch index

Fetch
compressed
instructions

Native Instruction

Low dictionary

Compression Block
(16 instructions)

312625650

Index table
(in main memory)

Compressed bytes
(in main memory)

Hi tag Low tag Low indexHi index

High 16-bits Low 16-bits

High dictionary

1 compressed instruction



6

•

• Average: 62%

Compression ratio

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

applu
apsi

cc1

compre
ss95

fp
ppp go

hydro
2d

ijp
eg

li9
5

m
88ksim

m
grid

m
peg2enc

pegwit
perl

su2cor
swim

to
m

catv

tu
rb

3d

vorte
x

wave5

Compression ratio

sizeoriginal
sizecompressed

rationcompressio ====



7

CodePack programs
• Compressed executable

– 17%-25% raw bits: not compressed!
• Includes escape bits
• Compiler optimizations might help

– 5% index table

– 2KB dictionary (fixed cost)

– 1% pad bits

Tags
25%

Indices
51%

Dictionary
1%

Index table
5%

Escape
3%

Raw bits
14%

Pad
1%

go



8

I-cache miss timing

• Native code uses critical word first
• Compressed code must be fetched sequentially
• Example shows miss to 5th instruction in cache line

– 32-bit insns, 64-bit bus

Instruction cache miss
Instructions from main memory

Instruction cache miss
Index from index cache
Codes from main memory

Instruction cache miss

Codes from main memory
Decompressor

2 Decompressors

a) Native code

b) Compressed code

c) Compressed code
+ optimizations

t=0

L1 cache miss

Fetch index

Fetch instructions (first line)

Fetch instructions (remaining lines)

Decompression cycle

Critical instruction word

A

B

10 3020
1 cycle

Index from main memory



9

Baseline results

• CodePack causes up to 18% performance loss
– SimpleScalar

– 4-issue, out-of-order
– 16 KB caches

– Main memory: 10 cycle latency, 2 cycle rate

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

cc1 go perl vortex

Instructions
per cycle

native

CodePack



10

Optimization A: Index cache

• Remove index table access with a cache
– A cache hit removes main memory access for index
– optimized: 64 lines, fully assoc., 4 indices/line (<15% miss ratio)

• Within 8% of native code
– perfect: an infinite sized index cache

• Within 5% of native code

0.0

0.2

0.4

0.6

0.8

1.0

1.2

cc1 go perl vortex

Speedup over
native code

CodePack
optim ized

perfect



11

Optimization B: More decoders

• Codeword tags enable fast extraction of codewords
– Enables parallel decoding

• Try adding more decoders for faster decompression
• 2 decoders: performance within 13% of native code

0.0

0.2

0.4

0.6

0.8

1.0

cc1 go perl vortex

Speedup over
native code CodePack

2 insn/cycle
3 insn/cycle
16 insn/cycle



12

Comparison of optimizations

• Index cache provides largest benefit
• Optimizations

– index cache: 64 lines, 4 indices/line, fully assoc.
– 2nd decoder

• Speedup over native code: 0.97 to 1.05
• Speedup over CodePack: 1.17 to 1.25

0

0.2

0.4

0.6

0.8

1

1.2

cc1 go perl vortex

Speedup over
native code CodePack

index cache
2nd decoder
both optimizations



13

Cache effects

• Cache size controls normal CodePack slowdown
• Optimizations do well on small caches: 1.14 speedup

go benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1KB 4KB 16KB 64KB

Speedup
over native

code

CodePack

optimized



14

Memory latency

• Optimized CodePack performs better with slow memories
– Fewer memory accesses than native code

go benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.5x 1x 2x 4x 8x

Memory latency

Speedup
over native

code
CodePack
optimized



15

Memory width

• CodePack provides speedup for small buses
• Optimizations help performance degrade gracefully as bus

size increases

go benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 32 64 128

Bus size (bits)

Speedup over
native code

CodePack

optimized



16

Conclusions

• CodePack works for other instruction sets than PowerPC
• Performance can be improved at modest cost

– Remove decompression overhead: index lookup, dictionary lookup

• Compression can speedup execution
– Compressed code requires fewer main memory accesses

– CodePack includes simple prefetching

• Systems that benefit most from compression
– Narrow buses

– Slow memories

• Workstations might benefit from compression
– Fewer L2 misses

– Less disk access



17

Web page

http://www.eecs.umich.edu/~tnm/compress


