
Abstract
We propose a method for compressing programs in

embedded processors where instruction memory size dom-
inates cost. A post-compilation analyzer examines a pro-
gram and replaces common sequences of instructions with
a single instruction codeword. A microprocessor executes
the compressed instruction sequences by fetching code-
words from the instruction memory, expanding them back
to the original sequence of instructions in the decode
stage, and issuing them to the execution stages. We apply
our technique to the PowerPC, ARM, and i386 instruction
sets and achieve an average size reduction of 39%, 34%,
and 26%, respectively, for SPEC CINT95 programs.

1  Introduction

According to a recent prediction by In-Stat Inc., the
merchant processor market is set to exceed $60 billion by
1999, and nearly half of that will be for embedded proces-
sors. However, by unit count, embedded processors will
exceed the number of general purpose microprocessors by
a factor of 20. In spite of these impressive statistics, pro-
cessors for embedded applications have been much less
studied than general purpose microprocessors. In many
ways they present the designer with a greater challenge
because embedded processors are more highly constrained
by cost, power, and size. For control oriented embedded
applications, the most common type, a significant portion
of the final circuitry is used for instruction memory. Since
the cost of an integrated circuit is strongly related to die
size, and memory size is proportional to die size, smaller
program sizes imply that smaller, cheaper dies can be used
in embedded systems. An additional pressure on program
memory is the relatively recent adoption of high-level lan-
guages for embedded systems because of the need to con-
trol development costs. As typical code sizes have grown,
these costs have ballooned at rates comparable to those
seen in the desktop world. Thus, the ability to compress
instruction code is important, even at the cost of execution
speed.

High performance systems are also impacted by pro-
gram size due to the delays incurred by instruction cache

misses. A study at Digital [Perl96] showed that an SQL
server on a DEC 21064 Alpha requires twice as much
instruction bandwidth as the processor is able to provide
due to instruction cache misses. This problem will only
increase as the gap between processor performance and
memory performance grows. Reducing program size is
one way to reduce instruction cache misses and provide
higher instruction bandwidth [Chen97b].

This paper focuses on compression for embedded
applications, where execution speed can be traded for
compression. We borrow concepts from the field of text
compression and apply them to the compression of
instruction sequences. We propose modifications at the
microarchitecture level to support compressed programs.
A post-compilation analyzer examines a program and
replaces common sequences of instructions with a single
instruction codeword. A microprocessor executes the com-
pressed instruction sequences by fetching codewords from
the instruction memory, expanding them back to the origi-
nal sequence of instructions in the decode stage, and issu-
ing them to the execution stages. We demonstrate our
technique by applying it to the PowerPC, ARM, and i386
instruction sets.

1.1  Repeated instruction encodings

Object code generated by compilers mostly contains
instructions from a small, highly used subset of the
instruction set. This causes a high degree of repetition in
the encoding of the instructions in a program. In the pro-
grams we examined, only a small number of instructions
had bit pattern encodings that were not repeated elsewhere
in the same program. Indeed, we found that a small num-
ber of instruction encodings are highly reused in most pro-
grams.

To illustrate the repetition of instruction encodings,
we profiled the SPEC CINT95 benchmarks [SPEC95].
The benchmarks were compiled for PowerPC with GCC
2.7.2 using -O2 optimization. In Figure 1, the results for
the go benchmark show that 1% of the most frequent
instruction words account for 30% of the program size,
and 10% of the most frequent instruction words account
for 66% of the program size. On average, more than 80%
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of the instructions in CINT95 have bit pattern encodings
which are used multiple times in the program. In addition
to the repetition of single instructions, we also observe that
programs contain entire repeated sequences of instruc-
tions. It is clear that the repetition of instruction encodings
provides a great opportunity for reducing program size
through compression techniques.

1.2   Overview of compression method

Our compression method finds sequences of instruc-
tions that are frequently repeated throughout a single pro-
gram and replaces the entire sequence with a single
codeword. All rewritten (or encoded) sequences of instruc-
tions are kept in a dictionary which, in turn, is used at pro-
gram execution time to expand the singleton codewords in
the instruction stream back into the original sequence of
instructions. Codewords assigned by the compression
algorithm are indices into the instruction dictionary.

The final compressed program consists of codewords
interspersed with uncompressed instructions. Figure 2
illustrates the relationship between the uncompressed
code, the compressed code, and the dictionary. A complete
description of our compression method is presented in
Section 3.

The organization of this paper is as follows. Section 2
reviews text compression and previous methods of com-
pressing programs. In section 3, we describe our compres-
sion method. Our experimental results are presented in
section 4. Finally, section 5 contains our conclusions.

2  Background and related work

In this section we will discuss strategies for text com-
pression, and methods currently employed by micropro-
cessor manufacturers to reduce the impact of RISC
instruction sets on program size.

2.1  Text compression

Text compression methods fall into two general cate-
gories:statistical anddictionary.

Statistical compression uses the frequency of single-
ton characters to choose the size of the codewords that will
replace them. Frequent characters are encoded using
shorter codewords so that the overall length of the com-
pressed text is minimized. Huffman encoding of text is a
well-known example.

Dictionary compression selects entire phrases of com-
mon characters and replaces them with a single codeword.
The codeword is used as an index into the dictionary entry
which contains the original characters. Compression is
achieved because the codewords use fewer bits than the
characters they replace.

There are several criteria used to select between using
dictionary and statistical compression techniques. Two
very important factors are thedecode efficiency and the
overallcompression ratio. The decode efficiency is a mea-
sure of the work required to re-expand a compressed text.
The compression ratio is defined by the formula:

(Eq. 1)

Dictionary decompression uses a codeword as an
index into the dictionary table, then inserts the dictionary
entry into the decompressed text stream. If codewords are
aligned with machine words, the dictionary lookup is a
constant time operation. Statistical compression, on the
other hand, uses codewords that have different bit sizes, so
they do not align to machine word boundaries. Since code-
words are not aligned, the statistical decompression stage
must first establish the range of bits comprising a code-
word before text expansion can proceed.

It can be shown that for every dictionary method there
is an equivalent statistical method which achieves equal
compression and can be improved upon to give better
compression [Bell90]. Thus statistical methods can always
achieve better compression than dictionary methods albeit
at the expense of additional computation requirements for
decompression. It should be noted, however, that dictio-
nary compression yields good results in systems with
memory and time constraints because one entry expands to
several characters. In general, dictionary compression pro-

Figure 1: Unique instruction bit patterns in a
program as a percentage of static
program instructions.

The data is from the go benchmark compiled for
PowerPC. The x-axis is sorted by the frequency of
bit patterns in the static program.
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vides for faster (and simpler) decoding, while statistical
compression yields a better compression ratio.

2.2  Thumb and MIPS16

Although a RISC instruction set is easy to decode, its
fixed-length instruction formats are wasteful of program
memory. Thumb [ARM95][MPR95] and MIPS16
[Kissell97] are two recently proposed instruction set mod-
ifications which define reduced instruction word sizes in
an effort to reduce the overall size of compiled programs.

Thumb and MIPS16 are defined as subsets of the
ARM and MIPS-III architectures. A wide range of appli-
cations were analyzed to determine the composition of the
subsets. The instructions included in the subsets are either
frequently used, do not require a full 32-bits, or are impor-
tant to the compiler for generating small object code. The
original 32-bit wide instructions have been re-encoded to
be 16-bits wide. Thumb and MIPS16 are reported to
achieve code reductions of 30% and 40%, respectively
[ARM95][Kissell97].

Thumb and MIPS16 instructions have a one-to-one
correspondence to instructions in the base architectures. In
each case, a 16-bit instruction is fetched from the instruc-
tion memory, decoded to the equivalent 32-bit wide
instruction, and passed to the base processor core for exe-
cution.

The Thumb and MIPS16 implementations are unable
to use the full capabilities of the underlying processor. The
instruction widths are shrunk at the expense of reducing
the number of bits used to represent register designators
and immediate value fields. This confines programs to 8
registers of the base architecture and significantly reduces
the range of immediate values. In addition, conditional
execution and zero-latency shifts are not available in
Thumb and floating-point instructions are not available in
MIPS16.

Compression in Thumb and MIPS16 occurs on a per
procedure basis. There are special branch instructions to
toggle between 32-bit and 16-bit modes.

While Thumb and MIPS16 are effective in reducing
code size, they increase the number of static instructions in
a program. If the number of instructions did not increase,
then it would be possible to achieve a code reduction of
50% by moving from 32-bit instructions to 16-bit instruc-
tions. However, Thumb and MIPS16 report code reduc-
tions of 30% and 40% respectively. This suggests that the
number of static instructions in programs increases by
40% and 20% respectively. This requires a program to
execute more instructions which reduces performance. For
example, Thumb code runs 15% - 20% slower on systems
with ideal instruction memories (32-bit buses and no wait
states) [ARM95].

Our method does not cause the number of instructions
in a program to increase. Compressed programs are trans-
lated back into the instructions of the original uncom-
pressed program and executed, so that the number of
instructions executed in a program is not changed. More-
over, a compressed program can access all the registers,
operations, and modes available on the underlying proces-
sor.

We derive our codewords and dictionary from the spe-
cific characteristics of the program under execution. Tun-
ing the compression method to individual programs helps
to improve code size.

Our compression method works on the level of indi-
vidual instructions. There are no special modes for execut-
ing compressed programs. This gives the programmer
more control over the use of compression.

2.3  Compressed Code RISC Processor

The Compressed Code RISC Processor (CCRP)
described in [Wolfe92][Kozuch94] is an interesting

Uncompressed Code
lbz r9,0(r28)
clrlwi r11,r9,24
addi r0,r11,1
cmplwi cr1,r0,8
ble cr1,000401c8
cmplwi cr1,r11,7
bgt cr1,00041d34
lwz r9,4(r28)
stb r18,0(r28)
b 00041d38
lbz r9,0(r28)
clrlwi r11,r9,24
addi r0,r11,1
cmplwi cr1,r0,8
bgt cr1,00041c98

Compressed Code
CODEWORD #1
ble cr1,000401c8
cmplwi cr1,r11,7
bgt cr1,00041d34
CODEWORD #2
b 00041d38
CODEWORD #1
bgt cr1,00041c98

Dictionary

 #1 lbz r9,0(r28)
clrlwi r11,r9,24
addi r0,r11,1
cmplwi cr1,r0,8

#2 lwz r9,4(r28)
stb r18,0(r28)

... ...

Figure 2: Example of compression.



approach that employs an instruction cache that is modi-
fied to run compressed programs. At compile-time, the
cache line bytes are Huffman encoded. At run-time, cache
lines are fetched from main memory, uncompressed, and
put in the instruction cache. Instructions fetched from the
cache have the same addresses as in the uncompressed
program. Therefore, the core of the processor does not
need modification to support compression. However,
cache misses are problematic because missed instructions
in the cache do not reside at the same address in main
memory. CCRP uses a Line Address Table (LAT) to map
missed instruction cache addresses to main memory
addresses where the compressed code is located. The LAT
limits compressed programs to only execute on processors
that have the same line size for which they were compiled.

One short-coming of CCRP is that it compresses on
the granularity of bytes rather than full instructions. This
means that CCRP requires more overhead to encode an
instruction than our scheme which encodes groups of
instructions. Moreover, our scheme requires less effort to
decode a program since a single codeword can encode an
entire group of instructions. Finally, our compression
method does not need a LAT mechanism since we patch
all branches in the binary executable to use the new
instruction addresses in the compressed program.

2.4  Reusing mini-subroutines

 Liao proposes a software method for supporting com-
pressed code [Liao96]. He findsmini-subroutines which
are common sequences of instructions in the program.
Each instance of a mini-subroutine is removed from the
program and replaced with a call instruction. The mini-
subroutine is placed once in the text of the program and
ends with a return instruction. Mini-subroutines are not
constrained to basic blocks and may contain branch
instructions under restricted conditions. The prime advan-
tage of this compression method is that it requires no hard-
ware support. However, the subroutine call overhead will
slow program execution.

A hardware modification is proposed to support code
compression consisting primarily of acall-dictionary
instruction. This instruction takes two arguments:location
andlength. Common instruction sequences in the program
are saved in a dictionary, and the sequence is replaced in
the program with thecall-dictionary instruction. During
execution, the processor jumps to the point in the dictio-
nary indicated bylocation and executeslength instructions
before implicitly returning. The advantage of this method
over the purely software approach is that it eliminates the
return instruction from the mini-subroutine. However, it
also limits the dictionary to sequences of instructions
within basic blocks.

While Liao’s compression method uses the familiar
branch mechanism to uncompress code, it introduces
many branch instructions into a program thus reducing
overall performance.

Thecall-dictionary instruction is considered to be the
size of 1 or 2 instruction words. This requires the dictio-
nary to contain sequences with at least 2 or 3 instructions,
respectively, since shorter sequences would be no bigger
than thecall-dictionary instruction and no compression
would result. This method misses an important compres-
sion opportunity. We will later show that there is a signifi-
cant advantage for compressing patterns consisting of one
instruction.

Liao does not explore the trade-off of the field widths
for thelocation andlength arguments in the call-dictionary
instruction. In this paper we vary the parameters ofdictio-
nary size (the number of entries in the dictionary) and the
dictionary entry length (the number of instructions at each
dictionary entry) thus allowing us to examine the efficacy
of compressing instruction sequences of any length.

2.5  CISC instruction sets

CISC instruction sets are often implemented with
micro-code. For example, in the Pentium microprocessor,
x86 instructions are expanded into a series of RISC-like
micro-instructions. Interestingly, our technique, while
analogous to micro-code, can compress x86 programs. We
will compare compression of RISC programs to i386 pro-
grams and compressed i386 programs.

3  Compression method

3.1  Algorithm

Our compression method is based on the technique
introduced in [Bird96][Chen97a]. A dictionary compres-
sion algorithm is applied after the compiler has generated
the program. We search the program object modules to
find common sequences of instructions to place in the dic-
tionary. Our algorithm has 3 parts:

1. Building the dictionary

2. Replacing instruction sequences with codewords

3. Encoding codewords

3.1.1  Building the dictionary
For an arbitrary text, choosing those entries of a dic-

tionary that achieve maximum compression is NP-com-
plete in the size of the text [Storer77]. As with most
dictionary methods, we use a greedy algorithm to quickly
determine the dictionary entries. On every iteration of the
algorithm, we examine each potential dictionary entry and
find the one that results in the largest immediate savings.



The algorithm continues to pick dictionary entries until
some termination criteria has been reached; this is usually
the exhaustion of the codeword space. The maximum
number of dictionary entries is determined by the choice
of the encoding scheme for the codewords. Obviously,
codewords with more bits can index a larger range of dic-
tionary entries. We limit the dictionary entries to
sequences of instructions within a basic block. We allow
branch instructions to branch to codewords, but they may
not branch within encoded sequences. We also do not
compress branches with offset fields. These restrictions
simplify code generation.

3.1.2  Replacing instruction sequences with codewords
Our greedy algorithm combines the step of building

the dictionary with the step of replacing instruction
sequences. As each dictionary entry is defined, all of its
instances in the program are replaced with a token. This
token is replaced with an efficient encoding in the encod-
ing step.

3.1.3  Encoding codewords
Encoding refers to the representation of the code-

words in the compressed program. As discussed in Section
2.1, variable-length codewords, (such as those used in the
Huffman encoding in [Wolfe92]) are expensive to decode.
A fixed-length codeword, on the other hand, can be used
directly as an index into the dictionary making decoding a
simple table lookup operation.

Our baseline compression method uses a fixed-length
codeword to enable fast decoding. We also investigate a
variable-length scheme. However, we restrict the variable-
length codewords to be a multiple of some basic unit. For
example, we present a compression scheme with 8-bit, 12-
bit, and 16-bit codewords. All instructions (compressed
and uncompressed) are aligned on 4-bit boundaries. This
achieves better compression than a fixed-length encoding,
but complicates decoding.

3.2  Related issues

3.2.1  Branch instructions
One obvious side effect of a compression scheme is

that it alters the locations of instructions in the program.
This presents a special problem for branch instructions,
since branch targets change as a result of program com-
pression.

To avoid this problem, we do not compress relative
branch instructions (i.e. those containing an offset field
used to compute a branch target). This makes it easy for us
to patch the offset fields of the branch instruction after
compression. If we allowed compression of relative
branches, we might need to rewrite codewords represent-

ing relative branches after a compression pass; but this
would affect relative branch targets thus requiring a
rewrite of codewords, etc. The result is again an NP-com-
plete problem [Szymanski78].

Indirect branches are compressed in our study. Since
these branches take their target from a register, the branch
instruction itself does not need to be patched after com-
pression, so it cannot create the codeword rewriting prob-
lem outlined above. However, jump tables (containing
program addresses) need to be patched to reflect any
address changes due to compression.

3.2.2  Branch targets
Instruction sets restrict branches to use targets that are

aligned to instruction word boundaries. Since our primary
concern is code size, we trade-off the performance advan-
tages of these aligned instructions in exchange for more
compact code. We use codewords that are smaller than
instruction words and align them on 4-bit boundaries.
Therefore, we need to specify a method to address branch
targets that do not fall at the original instruction word
boundaries.

One solution is to pad the compressed program so that
all branch targets are aligned as defined by the original
ISA. The obvious disadvantage of this solution is that it
will decrease the compression ratio.

A more complex solution (the one we have adopted
for our experiments) is to modify the control unit of the
processor to treat the branch offsets as aligned to the size
of the codewords. The post-compilation compressor modi-
fies all branch offsets to use this alignment.

One of our compression schemes requires that branch
targets align to 4-bit boundaries. In PowerPC and ARM,
branch targets align to 32-bit boundaries. Since branches
in the compressed program specify a target aligned to a 4-
bit boundary, the target could be in any one of 8 positions
within the original 32-bit boundary. We use 3 bits in the
branch offset to specify the location of the branch target
within the usual 32-bit alignment. Overall, the range of the
offset is reduced by a factor of 8. In our benchmarks, less
than 1% of the branches with offsets had a target outside
of this reduced range. Branch targets in x86 align to 8-bit
boundaries. We use 1 bit in the offset to specify the 4-bit
alignment of the compressed instruction within the usual
8-bit alignment. This reduces the range of branch offsets
by a factor of 2. In our benchmarks, less than 2.2% of the
branch offsets were outside this reduced range. Branches
requiring larger ranges are modified to load their targets
through jump tables. Of course, this will result in a slight
increase in the code size for these branch sequences.



3.3  Compressed program processor

The general design for a compressed program proces-
sor is given in Figure 3. We assume that all levels of the
memory hierarchy will contain compressed instructions to
conserve memory. Since the compressed program may
contain both compressed and uncompressed instructions,
there are two paths from the instruction memory to the
processor core. Uncompressed instructions proceed
directly to the normal instruction decoder. Compressed
instructions must first be translated using the dictionary
before being decoded and executed. In the simplest imple-
mentations, the codewords can be made to index directly
into the dictionary. More complex implementations may
need to provide a translation from the codeword to an off-
set and length in the dictionary. Since codewords are
groups of sequential values with corresponding sequential
dictionary entries, the computation to form the index is
usually simple. Since the dictionary index logic is
extremely small and is implementation dependent, we do
not include it in our results.

4  Experiments

In this section we integrate our compression tech-
nique into the PowerPC, ARM, and i386 instruction sets.
For PowerPC and i386 we compiled the SPEC CINT95
benchmarks with GCC 2.7.2 using -O2 optimization. The
optimizations include common sub-expression elimina-
tion. They do not include function in-lining and loop
unrolling since these optimizations tend to increase code
size. We compiled SPEC CINT92 and SPEC CINT95 for
ARM6 using the Norcroft ARM C compiler v4.30. For all
instruction sets, the programs were not linked with librar-
ies to minimize the differences across compiler environ-
ments and help improve comparisons across different
instruction sets. All compressed program sizes include the
overhead of the dictionary.

Our compression experiments use two compression
schemes. The first scheme uses fixed-length codewords
and the second uses variable-length codewords. We imple-
ment the fixed-length compression on PowerPC and the
variable-length compression on PowerPC, ARM, and
i386.

Recall that we are interested in thedictionary size
(number of codewords) anddictionary entry length(num-
ber of instructions at each dictionary entry).

4.1  Fixed-length codewords

Our baseline compression method, implemented on
PowerPC, uses fixed-length codewords of 2 bytes. The
first byte is an escape byte that has an illegal PowerPC
opcode value. This allows us to distinguish between nor-
mal instructions and compressed instructions. The second
byte selects one of 256 dictionary entries. Dictionary
entries are limited to a length of 16 bytes (4 PowerPC
instructions). PowerPC has 8 illegal 6-bit opcodes. By
using all 8 illegal opcodes and all possible patterns of the
remaining 2 bits in the byte, we can have up to 32 different
escape bytes. Combining this with the second byte of the
codeword, we can specify up to 8192 different codewords.
Since compressed instructions use only illegal opcodes,
any processor designed to execute programs compressed
with the baseline method will be able to execute the origi-
nal programs as well.

4.2  Compressing patterns of 1 instruction

As outlined above, Liao finds common sequences of
instructions and replaces them with a branch (call-dictio-
nary) instruction. The problem with this method is that it is
not possible to compress patterns of 1 instruction due to
the overhead of the branch instruction. In order to be bene-
ficial, the sequence must have at least two instructions.

Our first experiment measures the benefit of allowing
sequences of single instructions to be compressed. Our
baseline method allows single instructions to be com-
pressed since the codeword (2 bytes) that is replacing the
instruction (4 bytes) is smaller. We compare this against an
augmented version of the baseline that uses 4-byte code-
words. If we assume that the 4-byte codeword is actually a
branch instruction, then we can approximate the effect of
the compression used by Liao. This experiment limits
compressed instruction sequences to 4 instructions. The
largest dictionary generated (for gcc) used only 7577
codewords. Figure 4 shows that the 2-byte compression is
a significant improvement over the 4-byte compression.
This improvement is mostly due to the smaller codeword
size, but a significant portion results from using patterns of
1 instruction. Figure 5 shows the contribution of each of
these factors to the total savings. The size reduction due to

Figure 3: Compressed program processor.
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using 2-byte codewords was computed using the results of
the 4-byte compression and recomputing the savings as if
the codewords were only 2 bytes long. This savings was
subtracted from the total savings to derive the savings due
to using patterns of 1 instruction. For each benchmark,
except vortex, using patterns of 1 instruction improved the
compression ratio by over 6%.

4.3  Dictionary parameters

Our next experiments vary the parameters of the base-
line method. Figure 6 shows the effect of varying the dic-
tionary entry length and number of codewords (entries in
the dictionary). The results are averaged over the CINT95
benchmarks. In general, dictionary entry sizes above 4
instructions do not improve compression noticeably.
Table 1 lists the maximum number of codewords for each
program under the baseline compression method, which is
representative of the size of the dictionary.

The benchmarks contain numerous instructions that
occur only a few times. As the dictionary becomes large,
there are more codewords available to replace the numer-

ous instruction encodings that occur infrequently. The sav-
ings of compressing an individual instruction is tiny, but
when it is multiplied over the length of the program, the
compression is noticeable. To achieve good compression,
it is more important to increase the number of codewords
in the dictionary rather than increase the length of the dic-
tionary entries. A few thousand codewords is enough for
most CINT95 programs.

4.3.1  Usage of the dictionary
Our experiments reveal that dictionary usage is simi-

lar across all the benchmarks, thus we illustrate our results
using ijpeg as a representative benchmark. We extend the
baseline compression method to use dictionary entries
with up to 8 instructions. Figure 7 shows the composition
of the dictionary by the number of instructions the dictio-
nary entries contain. The number of dictionary entries with
only a single instruction ranges from 50% to 80%. Not
surprisingly, the larger the dictionary, the higher the pro-
portion of short dictionary entries. Figure 8 shows which

Figure 4: Comparison of baseline compression
method with 2-byte and 4-byte
codewords.
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dictionary entries contribute the most to compression. Dic-
tionary entries with 1 instruction achieve between 46%
and 60% of the compression savings. The short entries
contribute to a larger portion of the savings as the size of
the dictionary increases. The compression method in
[Liao96] cannot take advantage of this since the code-
words are the size of single instructions, so single instruc-
tions are not compressed.

4.4  Variable-length codewords

In the baseline method, we used 2-byte codewords.
We can improve our compression ratio by using smaller
encodings for the codewords. Figure 9 shows that in the
baseline compression, 40% of the compressed program
bytes are codewords. Since the baseline compression uses
2-byte codewords, this means 20% of the final compressed
program size is due to escape bytes. We investigated sev-
eral compression schemes using variable-length code-
words aligned to 4 bits (nibbles). Although there is a
higher decode penalty for using variable-length code-
words, they make possible better compression. By restrict-

ing the codewords to integer multiples of 4 bits, we still
retain some of the decoding process regularity that the 1-
bit aligned Huffman encoding in [Kozuch94] lacks.

Our choice of encoding is based on CINT95 bench-
marks. We present only the best encoding choice we have
discovered. We use codewords that are 8-bits, 12-bits, and
16-bits in length. Other programs may benefit from differ-
ent encodings. For example, if many codewords are not
necessary for good compression, then the large number of
12-bit and 16-bit codewords we use could be replaced with
fewer (shorter) 4-bit and 8-bit codewords to further reduce
the codeword overhead.

A diagram of the nibble aligned encoding is shown in
Figure 10. This scheme is predicated on the observation
that when an unlimited number of codewords are used, the
final compressed program contains more codewords than
uncompressed instructions. Therefore, we use the escape
code to indicate (less frequent) uncompressed instructions
rather than codewords. The first 4-bits of the codeword
determine the length of the codeword. With this scheme,
we can provide 128 8-bit codewords, and a few thousand
12-bit and 16-bit codewords. This offers the flexibility of
having many short codewords (thus minimizing the impact
of the frequently used instructions), while allowing for a
large overall number of codewords. One nibble is reserved
as an escape code for uncompressed instructions. We
reduce the codeword overhead by encoding the most fre-
quent sequences of instructions with the shortest code-
words.

Using this encoding technique effectively redefines
the entire instruction set encoding, so this method of com-
pression can be used in existing instruction sets that have
no available escape bytes, such as ARM and i386.

Our results for PowerPC, ARM, and i386 using the 4-
bit aligned compression are presented in Figure 11. We
allowed the dictionaries to contain a maximum of 16 bytes
per entry. We obtained average code reductions of 39%,

Figure 7: Composition of dictionary for ijpeg
(longest dictionary entry is 8
instructions).
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Figure 8: Bytes saved in compression of ijpeg
according to instruction length of
dictionary entry.
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Figure 9: Composition of compressed PowerPC
programs (maximum of 8192 2-byte
codewords, longest dictionary entry is
4 instructions).
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34%, and 26% for PowerPC, ARM, and i386, respectively.
Figure 12 shows the uncompressed size and the com-
pressed size of each benchmark for all instruction sets.
The data is normalized to the size of the original uncom-
pressed PowerPC program. One clear observation is that
compressing PowerPC or ARM programs saves more
memory than recompiling to the i386 instruction set. Com-
pression of PowerPC programs resulted in a 39% size
reduction, while using the i386 instruction set only pro-
vided a 29% size reduction over PowerPC. Compression
of ARM programs yielded a 34% size reduction, but using
i386 only gave a 18% size reduction over ARM. Overall,
we were able to produce the smallest programs by com-
pressing i386 and ARM programs.

4.5  Comparison to Thumb

In this section we compare Thumb against the nibble
compression method. In Figure 13 we show the results

published by ARM along with the results of nibble com-
pression.

It is impossible to directly compare the compression
ratios because we did not have the same binary executa-
bles as ARM. However the graph indicates an interesting
trend. For the smaller programs (under 40K-bytes),
Thumb compression is better, while for large programs,
nibble compression is better. For the large programs, we
started with an executable slightly larger than the ARM
Ltd. version and compressed it to slightly smaller than the
Thumb version.

The reason for this is that in small programs there are
fewer repeated instructions, and this causes compressible
sequences to be less frequent. Thumb is able to compress
single instances of 32-bit instructions down to 16-bits, but
our nibble compression requires at least 2 instances of the
same instructions to compress it (due to dictionary over-
head). Therefore on the small benchmarks where there are
fewer repeated instructions, Thumb has the advantage.
When programs are larger (over 40K-bytes) then there are
enough repeated instructions and the nibble compression
can overcome the dictionary overhead to beat the Thumb
compression.

5  Discussion

We have proposed a method of compressing programs
for embedded microprocessors where program size is lim-
ited. Our approach combines elements of two previous
proposals. First we use a dictionary compression method
(as in [Liao96]) that allows codewords to expand to sev-
eral instructions. Second, we allow the codewords to be
smaller than a single instruction (as in [Kozuch94]). We

Figure 10: Nibble Aligned Encoding.
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Figure 11: Nibble compression for PowerPC,
ARM, and i386 instruction sets.
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All program sizes are normalized to the size of the
original PowerPC programs.
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find that the size of the dictionary is the single most impor-
tant parameter in attaining a better compression ratio. The
second most important factor is reducing the codeword
size below the size of a single instruction. To obtain good
compression we find it is crucial to have an encoding
scheme that is capable of compressing patterns of single
instructions. Our most aggressive compression for SPEC
CINT95 achieves an average size reduction of 39%, 34%,
and 26% for PowerPC, ARM, and i386, respectively.

Our compression ratio is similar to that achieved by
Thumb and MIPS16. Our advantage over these instruction
sets is that we do not increase the number of executed
instructions and retain full access to the resources of the
underlying processor. Compression is available on a per
instruction basis without introducing any overhead to
switch between compressed and non-compressed code.

There are several ways that our compression method
could be improved. First, the compiler should minimize
producing instructions with encodings that are used only
once. In our PowerPC benchmarks, we found that between
6% - 15% of the instructions (not including branches)
were not compressible by our method because they had
instruction encodings that were only used once in the pro-
gram. Second, the compiler could attempt to produce
instructions with identical byte sequences so they become
more compressible. One way to accomplish this is by allo-
cating registers so that common sequences of instructions
use the same registers. Finally, we could improve the
selection of codewords in the dictionary by using covering
algorithms instead of our greedy algorithm.

We also plan to explore the performance aspects of
our compression and examine the trade-offs in partitioning
the on-chip memory for the dictionary and program.
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