
Mambo – A Full System Simulator for the PowerPC Architecture

Patrick Bohrer Mootaz Elnozahy Ahmed Gheith Charles Lefurgy Tarun Nakra
James Peterson Ram Rajamony Ron Rockhold Hazim Shafi Rick Simpson

Evan Speight Kartik Sudeep Eric Van Hensbergen
Lixin Zhang

IBM Austin Research Lab
Austin, TX 78758

pbohrer@us.ibm.com

Abstract

Mambo is a full-system simulator for modeling PowerPC-
based systems. It provides building blocks for creating sim-
ulators that range from purely functional to timing-accurate.
Functional versions support fast emulation of individual Pow-
erPC instructions and the devices necessary for executing op-
erating systems. Timing-accurate versions add the ability to
account for device timing delays, and support the modeling
of the PowerPC processor microarchitecture. We describe our
experience in implementing the simulator and its uses within
IBM to model future systems, support early software devel-
opment, and design new system software.

1 Introduction

Full system simulators have emerged during the past decade
as viable tools for low-level system software development and
performance evaluation. Earlier, our team adapted the SimOS
simulator platform [8] to support the PowerPC architec-
ture [5]. While our experience was successful, it also showed
the need for an industry-strength implementation that is more
configurable and amenable to the rigors of the software en-
gineering life cycle. Therefore we started Mambo, a modu-
lar full system simulator that is designed from the ground up
to simulate the PowerPC line of processors [6]. The imple-
mentation supports different simulation modes, ranging from
functional simulation of the PowerPC instructions, to cycle-
accurate simulation of an entire system. Mambo also includes
trace collection and debugging interfaces to allow detailed
analysis of the simulated hardware and software. Seven pro-
cessors of the PowerPC line are supported, including the 32-
bit embedded 405GP [7] and the 64-bit 970 PowerPC used in
Apple’s new G5 system [1]. The processor support includes
interrupts, debugging controls, caches, busses, and a large
number of architectural features. In addition, Mambo models
memory-mapped I/O devices, consoles, disks, and networks
that allow the simulated operating systems to boot and run
programs.

To fill our needs, our design stresses modularity and con-
figurability. Modularity is achieved by an internal struc-
ture that features a modern, multithreaded simulation core.
This in turn is enhanced with various programming constructs
that support a modular and highly maintainable design. The
constructs implement higher-level abstractions to express the
usual characteristics of simulated systems, such as pipelined
execution units, and programmers use these abstractions to
quickly model different system behaviors. Due to this modu-
larity, our team is able to experiment with simulator enhance-
ments and performance improvement, and quickly introduce
them into the simulator with minimal perturbation to the pro-
duction mode operation.

The second feature stressed in the Mambo design is config-
urability. Mambo is designed as a collection of configuration
features that can be selected to easily define a variety of pro-
cessors and devices. Compile time and runtime parameters
allow users to configure nearly every feature of the system
being simulated. Compile time options define major features
(such as 32-bit or 64-bit support), while runtime options set
fine-grained parameters such as amount of memory, number
of processors, cache geometry, etc. A partial list of selectable
features includes:

� 32-bit or 64-bit processor design.
� Floating point registers and instructions.
� Vector Multimedia Extension (VMX) registers and in-

structions.
� Hardware Multi-Threading (SMT) [12].
� PCI bus.
� IDE disks.
� Network.
� Caches (L1, L2, L3, and victim).
� Bus.
� Memory.
� UART and console support.
� Hypervisor support.
� Address translation (ERAT, SLB, TLB) [6].



� Uniprocessor or multiprocessor.

The simulator runs on the x86 and PowerPC platforms run-
ning a range of operating systems including Linux, AIX,
OS/X, and Windows R

�

. It uses Tcl/Tk to provide a command
language and graphical user interface and DiskSim [3] to pro-
vide timing-accurate disk models.

We have used Mambo successfully for a variety of purposes,
including support of operating system development, sys-
tem bringup, characterization of application performance and
power consumption, performance tuning, and pre-hardware
application development. In Section 2 we describe our ex-
perience with Mambo in more detail. We then describe in
Section 3 the implementation of the simulation and conclude
the paper in Section 4.

2 Experience with Mambo

Like other full system simulators, Mambo has proved useful
in software development and application characterization. In
some cases, the simulator served as a platform to enable soft-
ware development before the hardware is available. As an ex-
ample, a team of researchers at IBM was able to develop the
software for Blue Gene/L [11] [4] [2] so that when the hard-
ware became available, programs were running on the first
day, and the system was usable within a week. Similar uses
are also underway for several architectures and systems under
development.

It is noteworthy that Mambo is useful for software develop-
ment even if the hardware is available. For example, devel-
oping low-level system software such as operating systems
on the bare hardware is time consuming. Mambo includes
an interface to gdb, allowing source-level debugging from the
very first instruction of the operating system. gdb attaches to
Mambo so that developers can use the normal gdb interface to
debug the simulated operating system. The simulator can sin-
gle step through code that cannot normally be traced in this
way, such as an operating system’s first level interrupt han-
dler. A team of researchers at IBM has used the simulator to
support the development of the K-42 operating system [10].
In their experience, the simulator has advanced their develop-
ment schedule by about a year.

Mambo also can enhance the software-hardware co-design
process. For example, new hardware features such as SMT
or hypervisor support can be modeled and low-level system
software can be developed to examine the use of such fea-
tures before they are finalized into hardware. Our experience
shows that this approach has several benefits that straddle
software and hardware. For example, our experience shows
that using Mambo early in the hardware design process to
model the new feature forces the designers to define the fea-
ture well enough to be programmed. The feedback from the
model implementation and the software experience with the

feature may uncover errors, missing functionality or areas that
were not well understood. Traditionally, such problems are
not uncovered until a detailed VHDL model of the hardware
is built, or even after system software has been implemented
on the finalized hardware platform. For instance, in the early
design of a PowerPC processor, Mambo revealed a race con-
dition that required changing the semantics of several bits in
a control register. Also, the hardware features of a hypervisor
design had to be updated based on the implementation of the
operating system on the modeled hypervisor.

The second category of using Mambo is in application char-
acterization. Mambo produces a variety of statistics, both in
summary and detailed form, allowing the performance and
operation of a program to be understood and evaluated for
a new hardware architecture. By associating performance-
affecting hardware events (e.g., cache misses, TLB shoot
downs, and memory references) with the program instruction
stream, it is possible to identify under-performing portions
of a program and correlate the performance problems with
resource usage. This may allow significant performance im-
provement by changing a data structure or the position of an
inner loop to reflect the cache architecture. These features
provide an infrastructure for characterizing application and
system behavior and performance.

We have extended the characterization to the emerging field of
power-aware computing [9]. With the help of power estimates
for the various tasks associated with execution of instructions,
an analysis of the total power consumed in the core and mem-
ory subsystem can be carried out. Then, one can use this
information to identify opportunities for reducing processor
speed (e.g., during memory-intensive instructions) or modi-
fying the application structure to reduce power consumption.

3 Implementation

3.1 Operating System Adaptation
While Mambo is capable of booting unmodified operating
systems such as Linux, detailed simulation of peripherals is
time intensive to implement and slows down simulation. To
improve run-time when detailed device simulation is not nec-
essary, several changes are made to the simulated operating
system to allow more direct interaction with Mambo. A direct
block driver interface allows disk images on the simulation
host to be used by the simulated operating system, and a vir-
tual Ethernet interface is added that can either communicate
to other simulated hosts or to real networks. Other changes
include process tracking hooks, which interact with Mambo
statistics gathering infrastructure.

Figure 1 shows a screenshot of Mambo booting Linux on a
PowerPC 750 system. The UART0 window shows the simu-
lated console and the xterm window shows the Mambo com-
mand line. Other windows show the GUI interface and a
statistic gathering tool. The GUI ensures ease of use and



Figure 1: Mambo Graphical User Interface during a Linux boot.

quick identification of performance bottlenecks.

3.2 Timing Models
Mambo provides a variety of timing models for software de-
velopment and for hardware and software performance eval-
uation. The simplest timing model assumes each instruc-
tion requires one cycle to execute. Memory accesses are
synchronous and instantaneous. This is a purely functional
model, and is useful for software development and debug-
ging when a precise measure of execution time is not impor-
tant. Even in this mode, some system features require tim-
ing support. For example, I/O interrupts and timer interrupts
are scheduled to provide at least a crude sense of the passing
of time. These inaccuracies are tolerated given the intended
use of the functional model. This use trades accuracy for in-
creased processing speed. For instance, a functional model
of the 405GP processor executing on a 3.2GHz, x86 system
can simulate an average of 4 million PowerPC instructions
per second.

For accurate performance evaluation, Mambo provides a
cycle-accurate timing model. A cycle-accurate timing model
requires a complete modeling of the operation of the proces-
sor including its pipeline and functional units. Each operation
takes a number of cycles to complete and must consider both
processing time (the time to search a cache, for example) and
resource constraints (e.g., an instruction cannot be issued to
an add unit if that add unit is already in use). This mode

of operation provides good accuracy at the expense of longer
simulation time. A cycle accurate model of the 405GP pro-
cessor was validated to be within 0.6% of real hardware, but
ran four times longer than the functional model, which was
off by 26% against the real hardware [9]. For more complex
processors, the slowdown of the cycle accurate model com-
pared to the functional model can be 10 times or more.

A compromise between the fast, but inaccurate, functional
model and the slower, but accurate, cycle-accurate model is
the cycle-approximate model. This model uses probabilistic
measures to improve timing estimates. For example, a mem-
ory reference may (or may not) hit in the cache. A cache hit
takes a different amount of time than a cache miss. In the
cycle-accurate model, it is necessary to model the cache, al-
lowing Mambo to determine exactly if a particular reference
is in the cache. The cycle-accurate model knows if there is
a cache hit or miss. The cycle-approximate model does not
model the cache (hence providing a faster simulation), but
probabilistically determines the time for the access from user-
supplied cache hit ratios as well as a predetermined time for a
cache hit and cache miss. We are currently adding this model
to the infrastructure.

3.3 Multithreaded Simulator Structure
To simplify the development effort while still accurately mod-
eling hardware events, we structured Mambo as an internal
thread programming model, allowing instruction execution



code to simply pause in place (delay) as necessary. For in-
stance, the main function of a cache refill request simply looks
as follows:

Cache_Refill(MemAccessStruct *ma)
{
DO_DELAY(cache_to_bus_delay);
Pass_It_To_Bus(ma);
DO_DELAY(bus_to_memory_controller_delay);
Pass_It_To_Memory_Controllers(ma);
DO_DELAY(memory_controller_to_dram_delay);
Pass_It_To_Dram(ma);
DO_DELAY(dram_delay);
Pass_Back_To_Memory_Controller(ma);
DO_DELAY(memory_controller_to_bus_delay);
Pass_Back_To_Bus(ma);
DO_DELAY(bus_to_cache_delay);
Pass_Back_To_Cache(ma);

}

DO DELAY() is a call to inform the thread scheduler that this
thread needs to be delayed for the given number of cycles. Be-
cause Mambo’s thread model allows simulators to be coded
in the way that preserves hardware behavior, it can drastically
reduce programming effort and the resulting code is very easy
to understand.

Mambo’s thread model is implemented completely at user
level. Switching between Mambo threads is almost as effi-
cient as switching between events, but should occur much less
frequently compared to a pure event-driven simulator.

The thread programming model has also introduced a host
of other programming constructs to express the constraints
of, for example, a pipeline processor model or a multi-level
cache. All abstractions are built on a small set of low-level
(familiar) mechanisms, most notably, gates, counters,
avals, and ports.

A gate is used to express resource limitations by restricting
concurrency. A gate is created with a given width. A thread
can enter then leave a gate. The gate only allows width
threads simultaneously (in simulated time).

A counter is used as an event signaling mechanism.
Threads can set, increment, decrement the value of a
counter. A thread can block for the counter to have a zero
count.

An aval (active value) is used to implement constructs like
register renaming. A thread can declare ownership of an ac-
tive value. Any thread that attempts to access this value can
provide a counter that gets decremented when the owner sets
the final value.

A port is the preferred mechanism for forking concurrent
activities. A port is associated with a handler function and a
dynamic pool (fixed or variable size) of worker threads. Send-
ing a message to a port schedules it for processing by a worker

thread and returns asynchronously to the caller. Counters can
be used to synchronize different aspects of the interaction be-
tween the caller and the worker.

Since simulation models always use those constructs to ex-
press their dynamic behavior and timing characteristics, we
have the freedom to vary the implementation to achieve dif-
ferent objectives. Indeed, we are currently exploring different
models of multi-threaded (using one way messages) and dis-
tributed (using backwards recovery techniques) implementa-
tions.

3.4 Performance Evaluation Infrastructure
The performance of a program on a PowerPC system, even
one that does not yet exist, can be determined by running it on
Mambo. By booting an operating system, such as Linux, the
application can be executed and timed using standard timing
tools running on the simulated system, including operating
system interactions.

Alternatively, applications can be run in ”standalone” mode,
where all operating system functions are supplied by Mambo,
and normal OS effects, such as paging and scheduling do not
occur. This provides information that is more directly a result
of the intrinsic program design and implementation. This is
useful for application’s performance and power characteriza-
tion.

Mambo also provides its own timing measures. In addition
to simple cycle count information, and summary statistics,
Mambo provides an ”emitter” data stream. To enhance mod-
ularity and usability, we decoupled the performance analysis
toolset from the simulator implementation. Rather than build
into Mambo a large set of performance analysis tools, Mambo
has been designed to generate a stream of events. The spe-
cific events, such as instruction execution, memory reference
addresses and contents, TLB hits and misses, cache hits and
misses, and so on, are emitted into a circular queue in shared
memory where they can be read by other programs, called
”emitter readers.”

The events that Mambo puts in the emitter data stream are se-
lectable by the user at run-time. In addition, events deemed
”uninteresting” for a particular run or purpose can be ignored
by emitter readers. Thus, a user can select a large set of events
to be emitted and simultaneously run several emitter readers
that process the emitter data stream looking for the events of
interest to them. Emitter readers can compute summary in-
formation (range, average, standard deviation, and histogram
of execution times), or can display the events in real time.

Another approach is to define an emitter reader that converts
the Mambo emitter data stream (or some subset of it) to a
pre-existing trace format. This new trace can then be fed into
existing analysis tools. Multiple trace formats can be sup-
ported simply by writing new emitter readers, a relatively sim-
ple task. Mambo itself requires no changes for the additional
formats.



For enhanced usability, performance analysis can be provided
by the GUI based emitter readers. These provide graphs of
memory access, cache misses, processor resource usage, and
even power usage [9], displayed against time. Since the emit-
ter stream includes the program counter, it is possible to trace
interesting performance events, such as high cache miss rates,
back to the specific instruction of the simulated program and
even to the specific lines of source code.

4 Conclusions

Mambo is a full system simulator that has proved useful in
supporting low-level system software development and char-
acterizing applications’ performance and power consumption.
We have used the simulator successfully within IBM to sup-
port various projects, including the Blue Gene supercomputer
and the K42 operating system, among several others. The
simulator features a modern core based on multithreading and
high-level abstractions that support a high degree of modular-
ity, configurability, and ease of use. Users of the simulator
report substantial reduction in development times, increased
insight into the hardware design process, and successful char-
acterization of application performance and power consump-
tion.

While Mambo is not open source software, it is freely avail-
able through a special license to parties outside IBM on an as-
is basis. At the time of this publication, it has been licensed
to 8 companies and over 25 academic institutions.

Acknowledgements

This work was partially supported by the Defense Ad-
vanced Research Projects Agency, Department of De-
fense under contracts F33615-00-C-1736, F33615-03-C-
4106, NBCH30390004, and NBCHC020056. Further support
was provided by various IBM divisions. PowerPC is a trade-
mark of IBM. X86 is a trademark of Intel Corp. Windows is
a trademark of Microsoft Corp. We acknowledge all trade-
marks referenced herein to be the property of their owners.

References

[1] Apple Computer Inc. Apple Power Mac G5, 2004.

[2] L. R. Bachega, J. R. Brunheroto, L. DeRose,
P. Mindlin, and J. E. Moreira. The BlueGene/L Pseudo Cycle-
accurate Simulator. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), March 2004.

[3] J. S. Bucy and G. R. Ganger. The disksim simulation
environment version 3.0 reference manual. Technical Report
CMU-CS-03-102, Carnegie Mellon University, 2003.

[4] L. Ceze, K. Strauss, G. Almasi, P. J. Bohrer, J. R. Brun-
heroto, C. Caşcaval, J. G. Castaños, D. Lieber, X. Martorell,
J. E. Moreira, A. Sanomiya, and E. Schenfeld. Full Circle:
Simulating Linux Clusters on Linux Clusters. In Proceedings
of the Fourth LCI International Conference on Linux Clus-
ters: The HPC Revolution 2003. Springer-Verlag, June 2003.

[5] IBM Austin Research Lab. SimOS-PowerPC web
page. Available at http://www.research.ibm.com/arl/projects
/SimOSppc.html, 2000.

[6] IBM Corporation. The PowerPC Architecture: A Spec-
ification for a New Family of Processors. Morgan Kaufmann
Publishers, Inc., 1994.

[7] IBM Corporation. PowerPC 405GP Embedded Pro-
cessor User’s Manual. IBM Corporation, 2000.

[8] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta.
Complete Computer Simulation: The SimOS Approach. In
IEEE Parallel and Distributed Technology, Fall 1995.

[9] H. Shafi, P. Bohrer, J. Phelan, C. Rusu, and J. Peterson.
Design and validation of a performance and power simulator
for PowerPC systems. IBM Journal of Research and Devel-
opment, 47(5/6):641–652, 2003.

[10] C. A. N. Soules, J. Appavoo, K. Hui, R. W. Wisniewski,
D. Da Silva, G. R. Ganger, O. Krieger, M. Stumm, M. Aus-
lander, M. Ostrowski, B. Rosenburg, and J. Xenidis. System
support for online reconfiguration. In USENIX Annual Tech-
nical Conference, pages 141–154, 2003.

[11] The BlueGene/L Team. An Overview of the Blue-
Gene/L Supercomputer. In Proceedings of the 2002
ACM/IEEE conference on Supercomputing, Nov 2002.

[12] R. Thekkath and S. Eggers. The effectiveness of multi-
ple hardware contexts. In International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, 1994.


