# On Evaluating Request-Distribution Schemes for Saving Energy in Server Clusters

Karthick Rajamani and Charles Lefurgy

{karthick,lefurgy}@us.ibm.com

IBM Austin Research Lab

03/07/03 ISPASS 03

# Power-Aware Request Distribution (PARD)

#### Environment

- Cluster of Servers
- Request distribution infrastructure balances load among servers.

#### PARD Idea

- Save energy, matching resource usage to load while providing required performance.
  - Monitor load in terms of number of active connections.
  - Given upper bound on connections per server (for required performance), power-off excess servers.

## Problem Dimensions



Energy Savings vs Performance trade-off is the focus of energy-saving studies, incl. PARD.

System-workload context impacts the energy-performance trade-offs and the energy-saving strategies that can be explored.

### Contributions

- Identified key system and workload factors that impact PARD strategies.
- Exploited knowledge of system-workload context to derive better energy consumption estimates – quantified impact and verified effectiveness of models.
- Developed novel approach for exploiting conventional benchmarks for resource-/energy-saving studies.

## System Factors

#### Cluster unit

 Capacity: number of connections that a cluster unit/server can service with required performance.

#### Startup delay

Time to bring-up a powered-down server into the service.

#### Shutdown delay

 Delay in powering-down a server after removing it form the active server pool.

#### Ability to migrate service/connections

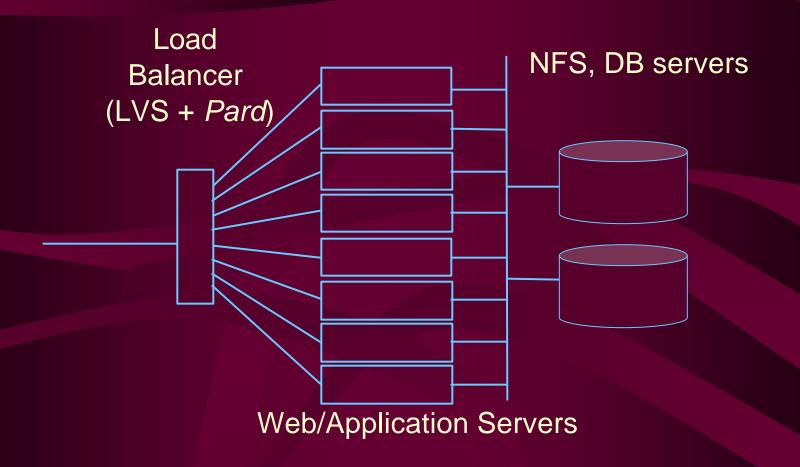
Affects flexibility in reducing number of active servers.

## Workload Factors

- Workload unit
  - Size of schedulable work, unit for capacity.
- Load profile load versus time
  - peak and shape.
- Relation between load and rate of change in load
  - The same rate of change in load could have different impact depending on current load.

# **Energy Consumption Model**

- Powered-on servers have fixed energy cost, independent of load.
- Powered-off servers have zero energy cost.


 Assumption valid for our platform, could require extensions for others.

## PARD and SW context

$$L + SD < NC$$

- Workload
  - Load L (number of connections),
  - Slope of load curve, S
- System
  - Startup delay D,
  - Capacity of server, C.
- Energy
  - N number of active machines.

# Experimental Setup



PARD employed for power-managing application servers.



## **Evaluation Platform**

Super-Dense blade Servers (SDS) – Application servers



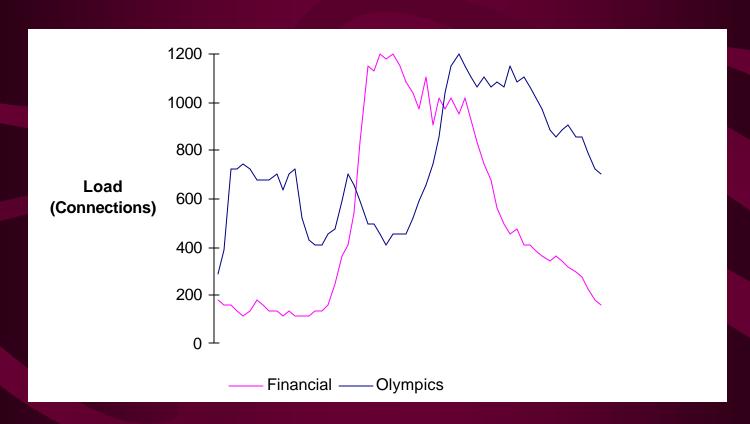


- Separate LVS server, Image and Database servers.
- Wall-power energy measurement for SDS.



# Workload for Energy Studies

#### Problem


- Workloads must have variation in load for poweringdown/lowering performance-energy levels.
- Benchmarks lack load variation, focus on peak performance.

Solution: combine application characteristics captured by benchmarks with real variations in load.

- TPC-W: e-commerce benchmark, client emulators send dynamic page requests to modeled e-commerce site.
- Modify clients at time t, according to desired load profile from logs of real web sites.
- Scale load profile to *capacity* of the system.

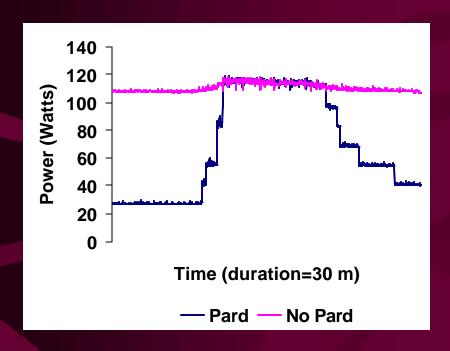
## Load Profiles

One day's web logs of a Financial web site, Winter Olympics '98.

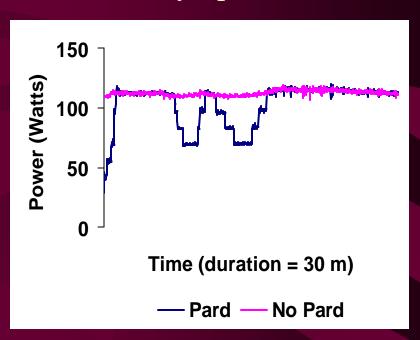


# PARD based on Simple Threshold (ST)

- React to observed load.
- Threshold T new server powered-on when number of active connections/server exceeds T.


$$N_{t} = L_{t}/T \tag{1}$$

$$N_t >= \max(L_{t->t+D})/C \qquad (2)$$


Using (2), provides T for maximum energy savings.

# Simple Threshold Results

#### Financial



Olympics



PARD (ST) saves 36.7%

PARD (ST) saves 7.1%

## Model vs Measured

| Load      | Traditional estimate | SW estimate | Measured<br>Savings |
|-----------|----------------------|-------------|---------------------|
| Financial | 51%                  | 40%         | 36.7%               |
| Olympics  | 32%                  | 10%         | 7.1%                |

Traditional estimate is the savings estimated as L<sub>t</sub>/C.

# New Schemes from SW insight

• Spare Servers – spare active servers accommodate sharper increases in load, leading to higher thresholds and potentially higher energy savings.

• History-based – Use different extent of knowledge of workload to appropriately start and stop servers. e.g. Perfect knowledge: start a server just *startup-delay* seconds before it will be required.



## Results for New Schemes

Spare Servers – shown for 3 spares

| Load      | Traditional estimate | SW<br>estimate | Measured<br>Savings |
|-----------|----------------------|----------------|---------------------|
| Financial | 51%                  | 27.3%          | 25.1%               |
| Olympics  | 32%                  | 19.8%          | 17.7%               |

Perfect Knowledge

| Load      | Traditional estimate | SW<br>estimate | Measured<br>Savings |
|-----------|----------------------|----------------|---------------------|
| Financial | 51%                  | 49.2%          | 45.6%               |
| Olympics  | 32%                  | 30.4%          | 26.1%               |

ST savings are 36.7% and 7.1% for Financial and Olympics, respectively.

## Conclusions

Established importance of system-workload context

- Better estimates, evaluation.
- Better strategies.

## New Schemes

#### Spare Servers

$$Max(L_{t,t+D}) / C \le (S + L_t / T_S = N_t)$$

History-based Servers

$$N_{t} = (L_{t} + S_{max} * D) / C$$

$$N_{t=} (L_{t} + S_{N} * D) / C$$

$$N_{t=} (L_{t} + S_{t} * D) / C = Max(L_{t->t+d}) / C$$



# SDS Blade Power Budget

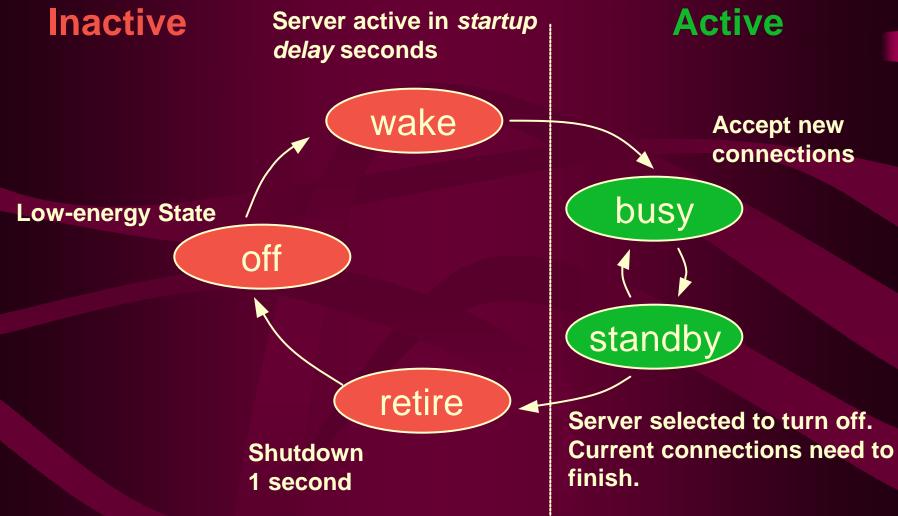
| Processor                  | 6.402  |
|----------------------------|--------|
| SODIMM 256MB               | 1.000  |
| Voltage Regulator          | 0.005  |
| North/South/Ethernet       | 1.980  |
| Ethernet PHY               | 0.660  |
| LPC Flash Memory           | 0.033  |
| EEPROM                     | 0.007  |
| PCI to PCI Bridge          | 0.173  |
| Supervisory Processor      | 0.330  |
| Ethernet Controller        | 0.743  |
| Voltage Monitor - I2C      | 0.008  |
| Clock Generator            | 0.693  |
| Disk                       | 1.485  |
| 90% efficient power supply | 1.352  |
| Total                      | 14.871 |



# SDS vs Conventional Racks

|                 | SDS Cluster    | Conventional   |
|-----------------|----------------|----------------|
| CPUs            | 360            | 42             |
| CPUs/U          | 8.57           | 1              |
| Processor speed | 180 GHz (x-86) | 101 GHz (x-86) |
|                 | (500 MHz each) | (2.4 GHZ each) |
| Main memory     | 184 GB         | 168 GB         |
| Ethernet        | 71.4 Gb/s      | 84 Gb/s        |
| L2 cache        | 92 MB          | 42 MB          |
| I/O buses       | 360            | 42             |




03/07/03 ISPASS 03 21

## Software on SDS

- Linux Diskless Server Architecture
  - Single system image for all blades
  - Boot from management blade disk
  - Blades are diskless and boot in 20 seconds
- Ethernet block device
  - High performance swap
  - Serving web content
- Blade management across I2C bus
  - H8 microcontroller on blades acts as power switch
- Console over Ethernet
- Power-Aware Request Distribution
  - Quick boot time reduces "idle" power



# States of a PARD-managed Server

