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Abstract

Power-performance optimization is a relatively new problem
area particularly in the context of server clusters. Power-
aware request distribution is a method of scheduling ser-
vice requests among servers in a cluster so that energy con-
sumption is minimized, while maintaining a particular level
of performance. Energy efficiency is obtained by powering-
down some servers when the desired quality of service can
be met with fewer servers. We have found that it is critical
to take into account the system and workload factors during
both the design and the evaluation of such request distribu-
tion schemes. We identify the key system and workload fac-
tors that impact such policies and their effectiveness in sav-
ing energy. We measure a web cluster running an industry-
standard commercial web workload to demonstrate that un-
derstanding this system-workload context is critical to per-
forming valid evaluations and even for improving the energy-
saving schemes.

1 Introduction

Energy efficiency for servers has recently become an impor-
tant concern for technical, environmental, and financial rea-
sons [1]. Both products [2, 3, 4] and research [5, 6, 7] are
beginning to address the problem of reducing energy con-
sumption in servers. Energy conservation policies for server
clusters use variations in workload to conserve energy by re-
ducing resource consumption when the load is low. When
using such policies, both the system and workload character-
istics affect the energy savings that can be obtained. Previous
research has not considered these characteristics in detail. In
this paper, we present a systematic study of the system and
workload characteristics that affect the design and evalua-
tion of request distribution schemes targeting energy savings
in server clusters.

With the growing trend of dynamic content web sites, we
employ Power-Aware Request Distribution (PARD) at the
load-balancing front-end of a cluster serving dynamic web
workloads. Energy management is performed for the server
tier which produces the dynamic content. The static (im-
age) service and the database back-end are hosted on sepa-

rate servers that are not energy-managed. We generate our
experimental workloads from the industry-standard TPC-W
benchmark [8] and apply traces from real site logs to pro-
duce varying load profiles. This allows us to capture the dy-
namic workload behavior from TPC-W while using realistic
load variations to test the effectiveness of energy-conserving
schemes. We use a custom-built, energy-efficient server clus-
ter in our evaluations to examine and validate our theories.

In this paper, we identify the following key system and

workload factors that most significantly affect energy effi-
ciency. The primary system factors are the cluster unit and
its capacity, startup delay, shutdown delay, and the ability (or
lack thereof) to migrate connections between servers. The
primary workload factors are the load profile with a spe-
cific shape and peak, the rate of change in load in relation
to the current load, and the workload unit. Together, these
factors make up the system-workload context. We show the
interaction between these factors and how a given system-
workload context affects the design and performance of a
PARD scheme. Our key contributions are as follows:

o We identify the key factors in the system-workload con-
text that impact energy saving policies. We show how
to use the knowledge of these factors to derive better
energy estimates for PARD policies.

e We provide a novel method for generating workloads
which meet the need for industry-standard benchmarks
as well as the load variation required for energy-saving
studies.

e We analyze the energy savings for a set of PARD poli-
cies using our on-off model with the system-workload
context. We verify them with energy measurements on
areal cluster with dynamic web workloads.

All the PARD schemes we consider save energy by turn-
ing off servers that are idle. In a survey of idle server power,
Chase et al. [5] found that conventional servers used at least
60% of their peak power when at idle (with the IA-32 pro-
cessor calling HALT in the idle loop of the operating sys-
tem). In fact, all but one system used over 74% of their
peak power at idle. This idle power consumption is due to
components that are not power-managed like memory and
sometimes disks and inefficiencies of power supplies. Thus,



power-management by just voltage-scaling processors will
miss saving significant energy when the system is idle. In
our studies, we turn-off servers to obtain the maximum en-
ergy savings at idle. Some operating systems have a hiber-
nation mode that uses very little power. This could be more
energy-efficient than full reboots of the server after short du-
ration idle periods. We do not evaluate this in our study as
our infrastructure does not support this feature.

In our studies, we have chosen to use web workloads in
which all characteristics (maximum load, maximum rate of
change in load, etc.) are known a priori. We assume a well-
provisioned cluster that operates during normal usage condi-
tions without unexpected load increases. Real clusters could
experience overload due to equipment failures or unexpected
load spurts. Here, we focus on the impact of the system-
workload context on request distribution techniques; the de-
sign of request distribution schemes to handle unplanned
load is beyond the scope of this paper.

The organization of the paper is as follows. In section 2,
we present the related work from previous studies. In section
3 we define the system-workload context and describe its im-
portance in understanding the results of energy optimization
studies. Section 4 describes our basic request distribution
strategy, our system environment and the workloads used.
We present our experimental results and analysis in section 5.
Finally, we conclude the paper and present some of our ideas
for future work in section 6.

2 Related Work

Energy management policies that dynamically resize the
cluster in response to workload variation are just beginning
to be studied. Pinheiro et al. aggregate the demands made
on CPU, network, and disk in the cluster and use this to esti-
mate the number of servers to keep powered-on [7]. The sys-
tem administrator tunes the system by setting an elapsed time
(the time to wait between reconfigurations to let the system
settle) and a degradation percent. Chase et al. estimate the
impact of cluster resource availability on workload through-
put using economic theory [5]. They suggest that a bound on
cluster energy savings can be estimated by the variability in
the workload. In our work, we examine the interaction be-
tween workload variability, system factors, PARD strategies
and energy consumption. Elnozahy et al. [6] have studied the
relationship between policies that use dynamic voltage scal-
ing and those that turn servers completely off. They found
that a policy that both resized the cluster and dynamically
varied the voltage (and frequency) of the servers achieved
that best energy savings. However, a simple policy that turns
off servers when not required is found quite competitive with
the more complex policies.

In contrast to these previous studies, our study does not
focus on finding the optimal energy management policy.
Some of these prior studies lack rigorous explanation of their
experimental setup and results which makes comparison be-

tween the studies difficult. For example, it is often not clear
if the peak of the workload has been correctly sized for the
number of servers in the cluster. In this paper, we provide
a framework for doing such experiments and list the criti-
cal system and workload parameters that are necessary to
put the studies in context. We validate our framework by
measuring energy and performance on a real cluster. An-
other point of differentiation is that we are the only study to
use a transaction-oriented web workload that is based on an
industry-standard benchmark - TPC-W. We describe how we
scale our workloads which use the time-varying load from
two real web sites. In addition, our experiments are done on
a cluster of blade servers that have been designed for energy-
efficiency.

While resizing clusters to save energy is a new area of
research, there have been many previous studies on resizing
the resources of a single server to save energy while main-
taining a performance goal. Some examples of these stud-
ies include adjusting the performance of the processor using
voltage scaling [9] [10], resizing queues in the microproces-
sor [11], resizing the cache by powering-down unused cache
lines [12] [13], and putting idle memory banks into a low-
power mode[14].

Energy and performance optimizations in web servers
have been widely studied. Bohrer et al. [1] report on the op-
portunity to use voltage-scaling processors in web servers.
Elnozahy et al. [15] use request batching as a method to
improve energy-efficiency during low-intensity workloads
that would otherwise prevent servers from being turned off.
Locality-Aware Request Distribution [16] was initially con-
ceived of as a way to improve performance of web servers by
selecting a web server that has the request cached in mem-
ory (instead of on disk). Although energy management was
not the focus of that study, it is likely that fetching a cached
copy of the document will save energy as well. Oceano [17]
is a system managing an e-business computing utility. It dy-
namically assigns servers from a common pool to to multiple
customers in response to changing workload to meet quality
of service constraints. It would be straight-forward to aug-
ment the server assignment with PARD-like policies to re-
duce energy consumption whenever customers underutilize
their allocated servers.

3 The System-Workload Context

The problem of power-aware request distribution can be
characterized as minimizing cluster resource utilization for a
particular workload, while meeting given quality-of-service
(QoS) constraints. Our focus is on those resources whose
consumption affects the variable energy in the system. The
different dimensions of the problem-space are:

o the energy consumed

e the QoS

o the system characteristics

o the workload characteristics



Every point in this four-dimensional space has an asso-
ciated implication for the energy consumed by the cluster,
the performance provided, cluster design decisions, and the
nature of workloads that can be serviced. The system and
workload characteristics, together, define the space of opera-
tion for the trade-offs between energy savings and QoS. We
call this the system-workload context. Studies that report en-
ergy savings and QoS without defining the system-workload
context can give only an incomplete and potentially inaccu-
rate picture of the value of a PARD scheme.

Furthermore, while energy and QoS are the measures of
interest to request-distribution strategies, the indirect impact
of the system and workload on both energy and QoS makes
understanding their roles crucial to both the design and eval-
uation of energy-saving request distribution schemes. In this
section, we identify the critical system-workload factors that
impact the efficacy of PARD schemes.

3.1 The On-Off Model

We use a simple On-Off model for estimating the variable en-
ergy consumption of the cluster. We assume that the power
of a cluster resource (in our case, a server) is equal to its peak
power when it is on and zero when it is off. This assumption
lets us compute the energy savings for any duration based
on just the average number of resources that are active dur-
ing that period. For our PARD schemes, in which complete
servers are turned on or off, this is a valid assumption. We
believe that resources with more power states than just on
and off can be considered as multiple units with different on-
level energy consumption and can be studied with the same
model. Resources with a huge variation in the on-level en-
ergy consumption, i.e. with a dynamic energy range that is a
significant fraction of the off-to-peak energy change, would
need to be approximated with multiple resource units each
corresponding to a small range in the energy variation, to
work under this model.
We define the utilization ratio as

average active resources

utilization ratio = )
total resources

A utilization ratio of 1 corresponds to a system that al-
ways runs at peak capacity while a utilization ratio of 0 cor-
responds to a system that is completely idle. The fraction of
energy saved is:

energy saved = 1 — utilization ratio (2)

Though, this model is simple, we will see that it is quite
effective in predicting the energy consumption provided we
understand the implications of the system-workload context
on the fraction of resources used and, thus, on the energy
consumption of the system.

3.2 Key System Characteristics

Following are the key system characteristics that affect the
impact of PARD schemes:

Cluster unit: It is the smallest unit of resource that can be
added/removed to increase/decrease energy consumption of
the cluster. Its energy cost and performance are key to any
PARD scheme. Smaller the size of the cluster unit (in terms
of its energy cost), the finer the adjustments that can be made
for power-performance trade-offs. In this paper, we assume
the cluster unit is a single server.

Immunity to overload: The capacity of the cluster unit is
the maximum load seen by any cluster unit after which its
performance becomes unacceptably low. As PARD schemes
vary the resources committed to a service, overload situa-
tions can occur even when the full cluster resources are suf-
ficient to handle the increased load. Thus, it is vital to know
the capacity of a cluster unit to both detect and avoid over-
load which is important both for design and evaluation of
PARD schemes. In this paper, we measure capacity in terms
of the number of active client connections to the cluster unit.
System energy consumption: In addition to the energy con-
sumed by a cluster unit, the base energy consumption of the
system (minimum system configuration) and the peak energy
consumption need to be specified to establish the variabil-
ity of system energy which would be the domain for PARD-
based energy conservation.

System support for PARD scheme implementations and
their cost: The following are some important system capa-
bilities that affect the design and impact of PARD schemes.

Ability to turn on cluster units: The startup delay is the
time to bring a cluster unit online - includes time to power it
up, boot the OS and start services, and, if significant, the cost
of bringing it to a certain performance level (say, pre-load
data into cache/memory). Given a certain minimum required
QoS, the startup delay affects the number of cluster units that
need to be running to handle spikes in load.

Ability to turn off cluster units: The shutdown delay cor-
responds to the period between removing a cluster unit from
service and actually turning it off. During this period the
cluster unit would continue to consume energy while provid-
ing no service. Larger shutdown delays (combined with the
startup delays) could limit the ability of PARD to react to
smaller and less predictable changes in load.

Independence of cluster units: When cluster units turn on
and off, the less impact they have on the other running cluster
units, the less complex and more flexible the PARD schemes
can be. For example, if all data is placed on a remote file sys-
tem (for example, NFS file systems) then any cluster unit’s
ability to service requests is independent of the status of other
cluster units. On the other hand, if data is partitioned be-
tween local disks, clusters units cannot be shut off without
cutting off access to their local data or before re-partitioning
the local data.

Ability to migrate service requests: The ability to transfer
or terminate a request/connection to a cluster unit could also
impact the design and effect of PARD schemes. The impact



of this is closely related to the duration of service for each
request/connection. If the duration of the request is long and
the system does not provide the ability to migrate the service
to another cluster unit, then the servicing cluster unit needs
to be kept online for the full duration of the request or the
connection as long as there is activity on it.

3.3 Key Workload Characteristics

Following are the key workload characteristics that affect the
impact of the PARD schemes:
Workload unit: Analogous to the cluster unit, the workload
unit is the minimal schedulable service request. Often, the
request can have very different impact on the server load de-
pending on the specific parameters of the request, current re-
source consumption of the server, and other factors. While
this makes determining the impact of each request quite dif-
ficult, it is important to have a good understanding of the cost
for a request, at least of the average cost. In this paper, we
use a single client connection as the basic workload unit.
Load Ratio: We define load ratio for the workload as
average load

load ratio = W (3)

Load ratio of 1 corresponds to a workload with a fixed, con-
stant load affording little scope for PARD-based energy sav-
ings. Given the instantaneous load and a required minimum
quality of service for the workload, there is a certain minimal
number of cluster units (resources) that need to be committed
to that service. If we assume a linear relation between load
and resource utilization (usually valid under regular opera-
tion conditions), for a workload scaled to the system capacity
the load ratio would correspond to the minimal utilization ra-
tio for the system. With energy consumption proportional to
resources used, the load ratio provides a useful upper bound
of {1 — load ratio} for the energy savings.

Rate of change in load in relation to the current load:
Given a certain QoS constraint the current load determines
the amount of resources required to serve it. Any increase
in load has to be met with the same resources until new re-
sources can be brought online. Hence, given a certain delay
in bringing up a new server, the maximum rate of change in
load that can be tolerated is also determined by the current
load. Conversely, both the load profile (load versus time)
and the rate of change of the load profile (rate versus time
and load) are required to characterize a workload for energy-
savings studies.

3.4 Interplay of System-Workload Characteristics

In this section, we illustrate the interactions of the parameters
and characteristics identified in the previous section and their
impact on energy consumption. First, we show the impact of
the workload characteristics and the cluster unit capacity on
the maximum achievable energy savings. Next, we show the
impact of the startup and shutdown delays.
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Figure 2: Different workloads, same peak

Figures 1 and 2 depict workloads (load vs time) derived
from the logs of a day’s activity at two web sites. Figure 1
shows the effect of scaling the same workload by differ-
ent factors. The system consists of 8 servers each capable
of sustaining 150 connections (workload unit = 1 connec-
tion, and capacity C = 150 connections) at the required QoS
for a total capacity of 1200 concurrent connections. The
curve Financial1200 corresponds to the workload scaled to
the peak while Financial800 is the same workload scaled
to 800 connections. M(Financial1200) and M(Financial800)
correspond to the number of active servers required to serve
the workload at any given instant. The maximum expected
energy savings is {1 — wutilization ratio}, which is 0.51
for Financial1200 and 0.67 for Financial800. We get {1 —
load ratio} numbers of 0.57 and 0.73 for Financial 1200 and
Financial800, respectively which are quite close to the en-
ergy estimates from the utilization ratios. We also see that
Financial800 has a larger estimated energy savings than Fi-
nancial1200 showing one could get optimistic savings when
the evaluation workload is not scaled to the capacity of the
cluster.

Figure 2 illustrates the usefulness of the load ratio with
two different workload profiles both scaled to 1200 connec-
tions at peak. The energy savings computed from the load ra-
tios for Financial1200 and Olympics1200 are 0.57 and 0.36,
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Figure 3: Effect of Startup Delay

which are marginally higher than the savings computed from
the utilization ratios - 0.51 and 0.33. The examples illus-
trate that energy savings varies with both the peak and shape
of the load curve. They also illustrate that the load ratio can
provide a good upper bound on the maximum energy savings
when given just the knowledge of the workload.

Next we examine the effect of the system delays on energy
savings. Let D represent the startup delay; N, the number
of powered-on machines; C, the capacity of each machine;
L, the instantaneous load on the system; and, S, the rate of
change/slope of the load on the system. Then, to meet the
QoS constraint, we need the following relation to be main-
tained between the above quantities:

L+SD<N=xC )

For a system with specific machine capacity C, at any
given load (L and S§), a higher value of D implies a higher
value for N i.e. a higher startup delay requires more active
machines, in general, leading to higher energy consumption.
For a given load profile, L; (i.e. L and S will be known for
all instants of time), one can compute the minimal N; such
that the above inequality is satisfied for all time t. This curve
would then correspond to the minimum energy curves for the
given load profile and system parameters D and C. Figure 3
shows N, curves for different startup delays for the Finan-
cial1200 profile from figure 1.

While the effect of startup delay on energy consumption is
indirect through its effect on the QoS constraint (which is met
by never having more than C connections per machine), the
shutdown delay has a more direct effect. At any given time
t, if N machines are active and J of them can be shutdown, a
shutdown delay of D implies that there will be excess energy
consumption proportional to Jx D for this particular instance
of the shutdown delay. Figure 4 shows the N; curves for
different shutdown delays for the Financial1200 profile from
figure 1.

4 Experimental Platform

In this section, we describe the environment in which we ran
our experiments. The three major components of this envi-
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Figure 4: Effect of Shutdown Delay

ronment are the Super Dense Server that host the web site,
the request distribution mechanism, and our modified TPC-
W workload.

4.1 System - Super Dense Servers

Our experiments are done on a prototype Super-Dense Server
(SDS) cluster that has been designed for energy-efficient web
serving [18]. In a previous study we found that the SDS clus-
ter used half the energy of a conventional 1.2GHz Pentium
IIT Xeon Intel rack server while providing similar peak per-
formance. Measuring energy-saving software techniques on
hardware that is inefficient may tend to magnify the benefit
of the software technique. Therefore, we have chosen the
SDS cluster as the platform for this study.

The cluster prototype consists of 8 custom-built low-
energy server blades, a Ziatech management blade, and a
Zynx network switch blade. All of the blades plug into a
CompactPCI [19] chassis that in turn supplies power and
cooling. Each blade has a 500 Mhz Intel Pentium III proces-
sor with a 256K L2 cache, 256 MB of DDR-266 SDRAM, a
USB port, two 100 Mb/sec Ethernet connections, and a Sili-
con Integrated Systems 635 chipset that combines the func-
tion of both north and south bridges onto a single chip. We
only use 1 100 Mb/s Ethernet connection on each server in
this study. Unlike similar designs [2, 3, 4], our server blades
do not contain a disk or KVM connections (Keyboard, video
and mouse). In addition, there is no graphics co-processor.
Eliminating these items reduces the energy consumption of
the blade. An H8 8-bit microcontroller on each server blade
provides status and management functions, including the
ability to power on/off all devices on the server (besides the
HB8 itself).

Due to a manufacturing error, our prototype server blades
do not properly receive interrupts from external devices on
the PCI bus. This problem was overcome by modifying the
Linux kernel and network device driver to poll for interrupts.
However, this could potentially reduce the gap between the
energy consumption of an idle blade and that of a heavily
loaded blade. In our runs, a blade’s power consumption



varies between 13.3 W to 14.8 W depending on activity.

The management blade includes a 20 GB laptop disk.
This disk provides the system image for the server blades via
NFS. The management blade can power-on and power-off
the server blades by sending commands to the H8 microcon-
trollers via the I2C network across the backplane. The switch
blade takes a 2 Gb/s connection from outside the cluster and
distributes it over the CompactPCI backplane to the server
blades at 100 Mb/s.

The server blades use DHCP to boot and download a
Linux kernel from the management blade. Since each blade
has known, static hardware, the kernel is configured with
the right network driver and no other device drivers. This
removes boot-time delays due to device probing. Booting
takes 20 seconds and starting up web services takes an ad-
ditional 10 seconds. Since the blade is diskless and has no
non-volatile state it can be shutdown and powered-off in un-
der 1 second.

Energy is measured by attaching sense resistors on the
power plug for the chassis so that every component in the
system is accounted for, except the fans which use a separate
external power supply. A National Instruments data acquisi-
tion board in a stand-alone PC system measures the current
and voltage from the wall power at 10 K samples per second,
converts this to energy, and adds it to the count of total en-
ergy used during the experiment. The time-stamped energy
counts are sent to a user-level daemon, Pard, which also con-
trols the request-distribution infrastructure that is discussed
next.

4.2 Request Distribution Infrastructure

The two primary tasks of any power-aware request distribu-
tion strategy are to distribute incoming requests among active
servers and set the power-state of each server.

Request distribution is performed using the Linux Vir-
tual Server [20] (LVS) software. LVS is run in Direct Rout-
ing mode which modifies the IP headers of the reply pack-
ets so that servers can respond directly to the clients with-
out sending packets back through the load-balancer. Since
the load-balancer only sees the short client requests, its net-
work load is reduced. LVS supports many policies to dis-
tribute the connections. We use a modification of the Least
Connections (LC) Policy that we call Least Active Connec-
tions (LAC). LC balances the load between servers using a
weighted formula for load involving the number of active and
inactive connections with a higher weight for active connec-
tions. It directs new incoming connections to the server with
the lowest value for this formula. LAC uses just the active
connections for making this decision for two reasons: (1) An
active connection has significantly greater load than an in-
active connection and even more so for dynamic workloads
that we use, and (2) LVS does not see servers close inac-
tive connections, so they remain in the LVS connections table
(till they timeout) causing incorrect estimates for the load on

Shutdown delay . .pm ... Startup delay

Figure 5: Server state transition diagram

the servers. Additional minor modifications help in remov-
ing any remaining temporary imbalances in connections (and
load) between servers. The modified LAC tries to ensure that
all active servers see the same number of active connections.
At any instant the server with the least load receives the new
incoming connection.

Managing server power-states with our PARD algo-
rithms is done by a user-level daemon, Pard, which also runs
on the load-balancer. LVS has been modified to interact with
it. Besides managing power, Pard also collects energy mea-
surements, resource usage statistics and operational informa-
tion from the server machines and other support machines.
This data is correlated and logged to produce data for our
studies. Pard obtains information from LVS that includes the
number of connections on each servers. It uses this infor-
mation and an internal algorithm to decide on the number
of servers to be kept powered-on. If the number of servers
needs to be increased, it starts up the necessary number of
additional servers (sends the appropriate signal to the man-
agement blade to wake up servers, boot them, start server
daemons, etc.), waits until they are ready to serve incoming
connections and then directs LVS to begin scheduling con-
nections to them. If the number of servers needs to be re-
duced, Pard selects servers to power-down and directs LVS
to stop using them. Once all the connections on these servers
have closed, Pard directs the management blade to power
them off.

Figure 5 shows the state transition diagram for servers un-
der Pard’s control. Pard initially places a server in the Off
state. When Pard activates a server, it moves it to Wakeup.
The server remains in Wakeup until its boot sequence is com-
plete and all server daemons necessary for servicing requests
are running. Pard monitors the progress of the startup of
server daemons detecting when they are actually ready to ser-
vice requests. At this point, Pard moves the server to the Busy
state and signals LVS to start using the server for incoming
connections. The Startup delay, discussed in the earlier sec-
tion corresponds to the time between a server’s startup until
it moves to the Busy state. When Pard decides that a server
should be turned off, it places the server in the Standby state



and directs LVS not to use it. LVS will not send any new con-
nections to that server anymore. Pard then waits until all the
existing connections on the server close. Then the server is
moved to the Retire state. Any required shutdown processes
are completed in the Retire phase and then Pard signals the
server to switch off. The Shutdown delay, discussed previ-
ously, corresponds to the time between a server’s Standby
phase and when its switched off.

The basic algorithm to determine the required number of
servers is called Simple Threshold (ST). Pard obtains the
load (in terms of the number of connections) at any instant,
L,, from LVS and feeds this value to ST. ST uses a simple
threshold parameter T to determine the number of servers
necessary as given in Equation 5.

Ny, = LT &)

As mentioned before, the capacity C of servers is mea-
sured in terms of the number of active connections for a par-
ticular workload. C is determined as the maximum num-
ber of sustainable active connections on a single server while
meeting the QoS constraint. Thus, to meet the QoS constraint
no server should be serving more than C connections. Since,
LAC distributes the load evenly among the active servers this
amounts to the average load per server not exceeding C con-
nections. For a given startup delay D, this places a lower
bound on the number of servers required to be powered-on at
time t, V¢, as outlined in Equation 6. Here, ﬁt,H D represents
the maximum value of the load from ¢ to ¢t + D.

N > Lyyp/C (6)

Given full knowledge of the system and workload, the re-
sponsibility for enforcing the QoS constraints comes down
to choosing the appropriate value for the threshold parame-
ter, T-

Lin/C < LT @
T = Intin(Lt/(th,t—&-D/C))

For a given profile a higher startup delay then could im-
ply a lower threshold to maintain the same QoS. This can be
illustrated by a simple example. Consider, a workload pro-
file with a portion where the load is increasing at the rate of
10 connections/second. Also consider, two startup delays 10
seconds and 20 seconds. At time t, if the load is 100 con-
nections, at t+10 it would be 200 connections and at t+20
it would be 300 connections. Let C for the system be 100
connections. Then at least 2 servers need to be powered-
on at t for a 10 second delay and 3 servers for a 20 sec-
ond startup delay, as otherwise, the load on the active servers
would exceed 100 connections. This then requires T to be 50
((Ly = 100/2) for the 10 second delay and 33 ((L: = 100/3)
for the 20 second delay.

4.3 Workload - Modified TPC-W

We use the specifications for the e-commerce benchmark,
TPC-W [8], to build our workload. This provides a dynamic
web workload that has characteristics certified as realistic,
by the Transaction Processing Performance Council. TPC-
W models an online retail book store. The specification gives
three different workloads - browsing, shopping, and ordering
- which have different ratios of browsing (read) to ordering
(write) interactions. We use the shopping workload, which is
deemed to be the most representative workload by the coun-
cil, in all our experiments. Details on the performance char-
acteristics of TPC-W can be found in a paper by Amza et
al. [21].

We implement all three tiers for the TPC-W architecture.
The database backend consists of MySQL [22] with our own
implementation of query result caching to scale it up. We use
Apache [23] for our web server with the PHP [24] module for
dynamic content generation including communication with
the database backend. We scale the web server tier by using
PHP script caching from Alternate PHP Cache [25]. We use
a separate machine with the Tux web server [26] for serving
the images required in TPC-W. The site users are emulated
by client programs running on separate machines which open
a connection per emulated user to the web server machines.
We use the Super Dense Server (section 4.1) for running our
Apache web servers with the PHP module. Our machine con-
figuration for the experiments is shown in table 1.

TPC-W is a peak performance benchmark, where for the
specific scale of implementation, the metric of importance is
the maximum achieved site throughput (in Web Interactions
per Second or WIPS) while meeting the 90%-ile response
time restrictions. We use this as our QoS constraint. For an
energy-savings oriented study where the focus is on resource
minimization when demand has been lowered, benchmarks
that place peak demand throughout the measurement period
are useless. To address this issue, we use a varying load pro-
file on top of the TPC-W workload. Each client program is
fed a varying load profile that consists of the number of em-
ulated site users for each time interval for the course of the
run. The clients maintain the number of connections to the
site according to this profile, thereby generating a varying
load to the site for the duration of the run. This approach
generates meaningful and interesting workloads for our ex-
periments that have both realistic dynamic content requests
and load that varies over time. Interested readers can contact
the authors for more details and for the profiles used in our
experiments.

We use the web logs for one day from two different web
sites - a major financial organization and the 1998 Winter
Olympics - to generate our load profiles. The 24 hour log
is compressed to a 30 minute profile. Requests received in
each 48 minute interval in the original log are counted for
1 minute in the compressed profile. The load profile thus



Table 1: Machine Arrangement for Experiments

Role Configuration Software

Database Server | IBM xSeries 330 - 2 1.26GHz Pentium III, 4G SDRAM | MySQL v 3.23.49a

Web Server 8 SDS blades Apache v 1.3.23 with PHP 4.1.2
Image Server IBM xSeries 330 - 2 1.26 GHz Pentium III, 4G SDRAM | Tux v 2.2

Clients 2 IBM xSeries 330: using 1.26GHz Pentium III C Client program

Table 2: Parameter values used across experiments

Parameter Symbol | Value

Capacity of one server C 140 connections
Total number of servers - 8

Startup Delay D 30 seconds
Shutdown Delay - 0

obtained is then scaled to whatever peak number of connec-
tions is required for a particular run. Thus, if the peak of the
compressed profile is 1000 requests and the peak for the run
desired is 1200 connections, each point on the compressed
profile would be multiplied by 1.2 to obtain the desired load
profile. Figure 2 shows the two load profile curves scaled to a
peak of 1200 connections. We will refer to the two workloads
throughout the rest of the paper as Financial and Olympics.

4.4 System-Workload Parameters

The cluster unit for our experiments is an SDS blade. We
use a total of 8 blades in our experiments. The non-variable,
base energy of our system is 87 Watts. This is the energy
for the system management blade, network switch blade and
the power inefficiencies in the power supply for the chassis.
A fully configured chassis similar to the one we use would
accommodate 24 blades, thereby, amortizing this cost over
a much larger number of blades. An active blade consumes
between 13.3W to 14.8W depending on load. In the rest of
the paper, all energy figures are for the variable energy in
the system which is over and above this fixed cost. This is
the energy whose conservation is addressed by the PARD
energy-saving schemes.

The parameter values for our experiments are in table 2.
The capacity, C, determined as 140 connections is the num-
ber of connections on a server for its peak TPC-W through-
put, while meeting the 90%-ile response time thresholds
given in the TPC-W specifications. The startup delay of a
server blade typically varies between 20 to 30 seconds. To
have repeatable experiments, we set Pard to wait 30 seconds
after server startup before it signals LVS to begin using the
server. Servers have essentially no shutdown delay. As soon
as Pard detects that a server has zero active connections, the
server is moved from Standby to Retire after which it powers
off in less than a second. Our setup does not have the ability

to migrate connections from one server to another inbetween
requests (discussed in section 3.2). So, even when Pard de-
cides that a server should be turned off, the server would con-
tinue to service requests on its existing connections while it is
in the standby state. With TPC-W (with a maximum session
time of an hour), connections could remain active for up to an
hour in standby causing an inordinate delay in shutting down
the server. We address this by having the client use non-
persistent connections, i.e. the clients use a new connection
for every dynamic content request from SDS. This reduces
our peak throughput a bit (from just above 150 connections
to 140 connections), but results in a better environment for
power-aware server studies.

5 Experiments and Analysis

In this section, we discuss the performance of different re-
quest distribution schemes and the energy savings measured.
First we examine the performance of Simple Threshold (ST).
Then, we consider two additional schemes with potentially
larger energy savings: (a) Spare servers and (b) History-
based. Their description, analytical evaluation and experi-
mental verification are provided together in this section.

5.1 Simple Threshold Results

In the ST approach, the threshold T is computed from Equa-
tion 7 as the highest value that would meet the QoS constraint
of having at most C connections per server at any time dur-
ing the run. Any higher value for 7 will result in failure to
meet the QoS constraint and a lower value will result in lower
energy savings. Thus, understanding the system-workload
context captured in Equation 7 is the key to obtaining the
best possible energy savings for ST. The threshold values
determined in this fashion are 100 for Financial and 89 for
Olympics. An online variation of ST could adjust T as load
knowledge becomes incrementally available - the details are
outside the scope of this paper.

Figures 6 and 7 show the number of active blades and
the energy consumption for Financial (area under the power
curve shown in the figure), respectively, for the ST approach
outlined in section 4.2. The required curve in figure 6 shows
the minimum number of blades required to service the load
at any time without violating the QoS restraint (number of
connections per blade cannot exceed 140). The active curve
shows the expected number of blades running under ST
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(from 5). The average number of blades active is 4.76 indi-
cating a 40% savings in blade energy, as opposed to the 51%
savings indicated by the required curve. Figure 7 shows the
actual energy consumption for both the ST Pard scheme and
when running the workload against all 8 server blades (No
Pard curve). Dividing the area of the Pard curve by the area
of the No Pard curve we get 36.7% as the actual energy sav-
ings - very close to 40% indicated by the average number of
active blades.

Figures 8 and 9 show the corresponding details for
Olympics. The required machines curve indicates that 32%
of energy can be saved, however, 7.2 blades are active under
ST on the average (implying 10% savings). The actual en-
ergy savings (ratio of the area of the Pard curve to the area
of the No Pard curve) is 7.1%.

The discrepancy between the measured savings and the
estimated savings (from active curve) is because machines
that are determined as not required by PARD (not counted
as active in the estimation) cannot be switched off till all ac-
tive requests on their connections have been served and the
connections closed. They remain in the standby state for a
while (longer with dynamic content responses) before go-
ing to retire and then off (refer figure 5). Our energy mod-
els do not account for this extra energy consumption. Some
additional discrepancy also arises from the on-off model as-
suming a fixed energy consumption for an active blade while
actual energy consumption varies a little with load.

Number of Machines
IS

Time (duration = 30m) ->

—&— Active —®— Required

Figure 8: Predicted servers (Olympics)
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5.2 New PARD Schemes

The performance of Simple Threshold falls short of the max-
imum achievable energy savings. Here, we use our knowl-
edge of the system-workload context to design new PARD
schemes with better energy savings. For each approach, we
compare the estimates for energy savings using our model
and the system-workload context with actual measurements
on our experimental platform.

5.2.1 Spare Servers

In order to handle spikes, the only mechanism in ST is to
have a low enough threshold such that enough servers would
be running when a spike occurs to handle it while maintain-
ing the required QoS. However, this results in excess servers
running even when spikes do not occur, thereby wasting en-
ergy. If we have spare servers that are always active to handle
spikes in load, we should be able to increase the load thresh-
old used for signaling the start of a new server potentially
saving energy.

Equation 8 shows the relationship between the load (L)
at time ¢, the peak load in the interval D seconds from ¢
(IA/LH D), the number of spare servers (S), and the thresh-
old setting (T's) with spare servers that needs to be honored
to meet our QoS constraint. It is a variation of Equation 7
in the context of spare servers. It states that the total num-
ber servers at time ¢ (including the spare servers) should be



Table 3: Spare Server Performance

Financial Olympics
Spares 0 I 2 3 4 6 0 T 2 3 4 5 6
T(s) 100 | 125 | IS5 | 194 | 258 | 388 | 776 89 119 | 179 | 241 | 358 | 482 | 965

Savings (%) 36.7 [ 325 ] 29.5 [ 25.1 | 189 | 13.8

7.5 7.1 | 11.8 ] 16.1 | 17.7 | 12.0 | 10.7 | 8.6

Predicted (%) 40.0 | 36.0 | 32.6 | 27.3 | 21.0 | I5.5

8.5 10.0 [ 142 | 19.8 | 19.8 | 149 [ 123 | 9.6

Shnostandby (%) | 39.7 [ 36.1 | 327 [ 27.1 | 21.0 | 155

8.65 [| 10.1 | 143 | 209 | 199 | 149 | 124 | 9.6

Son (%) 38.6 | 344 | 31.1 | 264 | 20.2 | 149

8.3 81 [ 13.0 [ 17.0 | 188 | 13.1 | 11.6 | 9.3

enough to keep the maximum load per server in the interval
from ¢ to t + D from exceeding C. For a given load profile,
we can see from Equation 8 that as .S increases T's can also
increase.

[A,LHD/C <= S+ L/Ts, forall timet )
(Z(Lt/Ts +5))/Run Time (9)

t

Naverage =

Equation 9 shows the average number of servers when us-
ing spare servers. Based on the load profile, increasing the
spare servers, S, can have a beneficial or detrimental effect
on the energy consumption. A detrimental effect is possible
because one may not be able to raise T's enough (also de-
pendent on the load) to compensate for the energy consumed
by the spare servers. Using the constraint expressed in Equa-
tion 8, the load profile, the value for the startup delay D (30s),
and the value for the capacity C (140 connections), we can
compute Ngyerage for any value of S for both the workloads.
Table 3 shows the T's and energy savings, Savings, for both
the workloads.

We see that Financial does not benefit from having spare
servers at all, while Olympics does best with 3 spare servers.
The Predicted row corresponds to the estimated energy sav-
ings computed as {1 — Ngyerage/8}. While the actual en-
ergy savings is close to Predicted it is still a little less. A
significant portion of this difference is due to some of the
servers continuing to remain in the standby state because of
active connections even after PARD determines they are not
needed. The row S,,, shows the savings ’estimated’ from the
actual number of servers on during the run. Syostandby Shows
the savings ’estimated’ by counting the standby servers as
off. The difference in the two numbers gives a measure of
the error introduced is the prediction because of servers re-
maining in standby till activity ceases on their connections.
The difference between .S,,, and Savings is largely due to the
variation in energy consumption depending on the amount of
activity on a server - the on-off model assumes a fixed energy
consumption for a busy server irrespective of activity.

The benefits for Olympics from spare servers is because
the load is high enough most of the time that the number of
required servers is higher than the number of spare servers.
Thus, the increase of Ngyerage due to S in equation 9 is
negligible. For ST, the steep slope in the beginning of the

Olympics profile requires a low threshold to ensure that av-
erage load does not exceed C. Using spare servers for this
segment of the workload allows the threshold to be set much
higher, resulting in significant savings during the rest of the
load profile. Thus, spare servers can be found more benefi-
cial than ST when the average load is high, and the load has
occasional steep spikes that require it to have a low threshold
in the absence of spare servers.

5.2.2 History-based Schemes

The idea of history-based schemes is that one could be fa-
miliar with the general characteristics of the load at a site
and could potentially modify ST to incorporate this knowl-
edge and come closer to achieving the maximum possible
energy savings. In this section, we consider three levels of
such information based on expected spikes in the workload.
The first approach assumes just the knowledge of the max-
imum spike (S,;,4,) encountered with the load. The second
approach assumes the knowledge of the maximum spike en-
countered for each system configuration available: this corre-
sponds to the number of servers required for each load point.
The rationale behind having this knowledge is the capacity to
handle spikes increases with the number of active servers in
the cluster. At any point in the workload, the additional load
that can be handled is IV * C' — L, where L is the load. The
higher, the value of N, the greater the spike that can be toler-
ated. Hence, associating a value of N for each spike (Sy) in
the load could help in better planning for starting additional
servers. The third approach assumes we have perfect knowl-
edge of the workload: the increase in load is known at every
point in time. We will refer to the three approaches by the
knowledge we have for each of them, as S,4., Sn, and S;.

The relationship between the knowledge available and
the prediction strategy for the number of servers required
is shown in the equations 10 to 12. NN, is the number of
powered-on servers (active plus those just turned-on) at time
t and L; is the load at time 7. Using these equations, and the
values for D (30s) and C (140 connections) for our platform,
we can compute the number of servers required at any time
t for each of the two workloads. Figures 10 and 11 show the
number of active servers for each scheme.

Nt - (Lt+Smar *D)/O (10)
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Figure 11: History-based schemes (Olympics)

Nt =
Nt ==

(Lt + Sy * D)/C (11)
(Li+ S;+D)/C = Liyyp/C (12

From these equations, we can compute the average num-
ber of servers active for the schemes 5,4, Sn, and S, for
Financial as 5.53, 4.68, and 4.07 respectively. They cor-
respond to potential energy savings of 30.8%, 41.5%, and
49.2% respectively. Even the scheme with the best knowl-
edge, S; falls about 2% short of the maximum achievable
savings (from the required curve for Financial in section 5.1)
because any extra servers for the future need to be started D
seconds (startup delay) earlier and consume that much extra
energy. For Olympics, the potential energy savings for Sy, 4z,
Sn, and Sy can be similarly computed to be 11.9%, 29.5%,
and 30.4%, respectively.

Figures 12 and 13 show the actual energy consumption
measured on our platform for S;, the best history-based
scheme, for the Financial and Olympics, respectively. They
are given in contrast to the ST scheme and the no Pard
scheme. The actual energy saved by S; for Financial and
Olympics compared to not using Pard are 45.6% and 26.1%
which are quite close to the predicted savings of 49.2% and
30.4%, respectively. Exploiting additional knowledge of
the system-workload context brings significant improvement
over the original ST scheme which saved 36.7% and 7.1%
for Financial and Olympics, respectively. The small discrep-
ancies between the predicted and actual savings are largely
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due to the time a server spends in the standby state between
the busy and retire states and due to the fixed active energy
cost assumption for the estimates.

6 Conclusions

Power-aware request distribution attempts to provide signif-
icant energy savings in server clusters by matching resource
utilization to the load imposed on the servers. The problem
domain spans four dimensions - energy, quality of service,
system characteristics and workload characteristics. We es-
tablish the interaction between the system-workload charac-
teristics and energy savings, for the power-aware request dis-
tribution problem. We identify the key characteristics for the
system and workload that influence the impact of energy-
saving schemes. We show analytically the role of these char-
acteristics and specific system-workload parameters on the
maximum achievable energy savings. Our work shows that
knowing the system-workload context is critical to under-
standing the value of any energy-saving proposals.

We verify our conclusions with actual energy measure-
ments on our prototype for energy-conserving server clus-
ters. To do so, we develop an effective method for generating
workloads from a commercial benchmark (specifically using
TPC-W) and real-world server logs. This addresses the need
for two essential characteristics in workloads for this prob-
lem domain: (a) commercial/well-accepted workloads, and



(b) real-world variations in load profile.

We show that our model along with the proper under-
standing of the system-workload context can be effectively
used to analyze not just our basic energy-conserving ap-
proach (Simple Threshold - ST) but other solutions too: (a)
Spare Servers, which is a variation of the ST scheme, and
(b) History-based schemes, which use the knowledge about
the load profile to save additional energy. Our experimen-
tal studies verify our analytical conclusions for both the new
classes of solutions.

In this study, our goal was to understand the role of
the system-workload context on energy-saving schemes for
server clusters. In future work, we would like to address
workloads that are not connection-oriented - using the appro-
priate load metric in place of connections might suffice. We
plan to study the effect of the system-workload context on
the trade-offs between energy-savings and QoS. We are also
interested in developing robust online algorithms for energy-
savings which would utilize the important system-workload
factors we identified in this paper.
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