
Improving Energy Efficiency by Making DRAM Less
Randomly Accessed

Hai Huang, Kang G. Shin
University of Michigan

{haih,kgshin}@eecs.umich.edu

Charles Lefurgy, Tom Keller
IBM Austin Research Lab

{lefurgy,tkeller}@us.ibm.com

ABSTRACT
Existing techniques manage power for the main memory by pas-
sively monitoring the memory traffic, and based on which, predict
when to power down and into which low-power state to transi-
tion. However, passively monitoring the memory traffic can be far
from being effective as idle periods between consecutive memory
accesses are often too short for existing power-management tech-
niques to take full advantage of the deeper power-saving state im-
plemented in modern DRAM architectures. In this paper, we pro-
pose a new technique that will actively reshape the memory traffic
to coalesce short idle periods — which were previously unusable
for power management — into longer ones, thus enabling existing
techniques to effectively exploit idleness in the memory.

Categories and Subject Descriptors
D.4.2 [Main Memory]: Storage Management; H.3.4
[Performance Evaluation]: Systems and Software

General Terms
Experimentation, Measurement, Performance

Keywords
DDR, low power, memory system

1. INTRODUCTION
This paper focuses on improving energy efficiency of main mem-

ory built with DRAM. This is motivated by a continual increase in
the power budget allocated to the memory subsystem. For example,
it has been reported that as much as 40% of the total system energy
is consumed by the main memory subsystem in a mid-range IBM
eServer machine [8]. As applications are becoming increasingly
data-centric, we expect main memory to remain as a significant en-
ergy consumer because achieving good overall system performance
will be more likely to depend on having higher-performance and
larger-capacity DRAM.

Recently, various power-saving techniques have been proposed
by exploiting power-management capabilities built into modern
DRAM devices. Lebeck et al.[7, 4] studied the effects of static and
dynamic memory controller policies on power and performance us-
ing extensive simulation in a single-process environment. Delaluz

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’05,August 8–10, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-137-6/05/0008 ...$5.00.

et al. [2] proposed various threshold predictors to determine after
how long of an idle period should the memory controller transi-
tion a DRAM device to a low-power state. Regardless of which
memory controller policy or threshold predictor we use, the pres-
ence of idle period in DRAM is essential for reducing power. How-
ever, not all idle periods can be exploited because state transitions
take non-negligible amount of time and energy. Rather, it is only
beneficial to transition a memory device to a low-power state if it
stays idle for longer than this state’s break-eventime [4]. How-
ever, the break-even time can vary significantly among the differ-
ent low-power states, and the deeper power-saving states usually
have longer break-even time as more components are disabled and
would take more time and energy to transition out of these states
to service new memory requests. Therefore, for us to utilize these
deep power-saving states, long idle periods in the memory traffic
are essential. Unfortunately these long idle periods are not com-
monly found in realistic workloads as physical memory is usually
randomly accessed and driven completely by the current process’
execution. Since existing power-management techniques only pas-
sively monitor memory traffic, due to lack of these long idle pe-
riods, deep power-saving states are rarely fully exploited. In this
paper, we propose a new technique to minimize short and unusable
idle periods and create longer ones. From such reshaped memory
traffic, existing techniques are able to make better use of the idle-
ness in the memory, thus saving more energy. Lebeck et al. [7]
briefly mentioned a frequency-based technique that is similar to our
work, but they failed to recognize how such technique can be used
to complement existing power-management techniques. Further-
more, unlike their work, we propose a practical technique that could
be implemented in real systems using conventional operating sys-
tems and hardware. A more thorough evaluation is also presented
here to fully assess benefits and problems of this technique.

In addition to these hardware-controlled techniques, some
software-controlled techniques have also been proposed. Delaluz et
al. [3] demonstrated a simple scheduler-based power-management
policy. Huang et al. [5] later implemented Power-Aware Virtual
Memory to improve upon this work. Even though software tech-
niques usually have less performance impact, hardware techniques
can save more energy by leveraging finer-grained run-time infor-
mation, which is mostly unavailable to system software. Software-
hardware cooperative technique [6] has also been proposed.

In the next section, we will first give some background infor-
mation on the current state-of-art of DRAM technology. Section 3
describes our memory traffic reshaping mechanism. Our simula-
tion setup and evaluation are presented in Section 4, and finally, we
conclude the paper in Section 6.

2. BACKGROUND
In this paper, we use the terminology of the Double-Data Rate

(DDR) memory architecture to describe our approach, simply be-
cause DDR is becoming the most common type of memory used
in today’s PC and server systems. However, by no means our ap-
proach is limited to only DDR; one can easily apply this technique
to other memory types, e.g., SDR and RDRAM. We will now give
some background information on DDR memory architecture and



Device8 bits

64 bits

Module
Rank 1

Rank 0

Top View

Side View

Figure 1: A memory module, or a DIMM, that is composed of
2 ranks (front and back), and each with 8 devices.

discuss its performance–energy tradeoff.

2.1 Double-Data Rate Memory Model
DDR is usually packaged as modules, or DIMMs, each of which

usually contains either 1, 2, or 4 ranks, which are commonly com-
posed of 4, 8, or 16 physical devices (shown in Figure 1). When
managing power for the memory, a rank is the smallest physical
unit we can control. Power can be reduced on a rank when some
of its subcomponents (i.e., row and column decoders, sense ampli-
fiers, bus drivers, etc.) are disabled by switching this rank to one
of the several pre-defined low-power states. However, if a rank is
accessed while at a low-power state, performance penalty, called re-
synchronization cost, is incurred to transition this rank from the cur-
rent low-power state to an active state so it can be accessed again.

Pre

SR

IO

PD

ns 5tCK =

ns 5tCK =ns 5tCK =

ns 1000t XSRD =

read/write
State Power

IO Read/Write 1200 mW
PRE Precharge 137.5 mW
PD Powerdown 12.5 mW
SR Self Refresh 10 mW

(a)
PLL Power Register Power

Low-power 0.05 mW Low-power 0.025 mW
High-power 750 mW High-power 117.5 mW

(b)

Figure 2: Part (a) shows the power dissipation of each state
and the delays to transition between them for a single 512-Mbit
DDR-400 device. For Read/Write state, we show its maximum
power dissipation when all banks on a device are actively read-
ing. Part (b) shows the power dissipation of a TI PLL device
(one per DIMM) and a TI register.

DDR has many power states defined and even more possible tran-
sitions between them [10]. These states and transitions are simu-
lated in our memory simulator, which we used to evaluate our work
in Section 4.3. However, for simplicity of presentation, we only
show four of these power states here — Read/Write, Precharge,
Powerdown, and Self Refresh — listed in a decreasing order of
power dissipation. In Figure 2(a), we show the power dissipation
of these states and the state transition delays. Note that the power
numbers shown here are for a single device. Therefore, to calcu-
late the total power dissipated by a rank, we need to multiply this
power by the number of devices in the rank. For a 512MB reg-
istered DIMM consisting of 8 devices, the expected power draw
values are 10.47 W, 1.97 W, 0.97 W, and 0.08 W (including energy
consumed by PLL and registers), respectively for the four power
states considered here. Details of these power states are as follows.

• Read/Write: Dissipates the most power, but it is only briefly

entered when a read/write operation is in progress.

• Precharge: When a rank is neither reading nor writing,
Precharge is the highest power state, or the most-ready state,
in which read and write operations can start immediately at
the next clock edge.

• Powerdown: When this state is entered, the input clock sig-
nal is gated except for the auto refresh signal. I/O buffers,
sense amplifiers and row/column decoders are all deactivated
in this state.

• Self Refresh: In addition to all components that are deacti-
vated in Powerdown, the phase-lock loop (PLL) device and
registers can also be put to low-power state. This gives max-
imum power reduction as the PLL and the registers (Fig-
ure 2(b)) can consume a significant portion of the total en-
ergy on each DIMM. However, when exiting from Self Re-
fresh, a 11 µsecdelay is incurred — 10 µsecis due to re-
synchronizing both the PLL and the registers and the other 1
µsecis due to re-synchronizing DRAM’s internal Delay Lock
Loop (DLL) device with the PLL.1

Write

0.08%

Read

0.25%
Auto Refresh

2.08%

Register

5.23%

Activation

0.85%

Data Queue

0.05%

Precharge

52.56%

PLL

38.90%

Figure 3: Breakdown of the energy consumed by DRAM.

2.2 Power Management
Even though read and write operations dissipate the most amount

of power, they do not consume a significant amount of energy due
to their short duration. Instead, most of the energy is consumed
when memory is idling. We show in Figure 3 that for a SPECjbb
workload, energy is mostly consumed in Precharge state and by the
peripheral components, i.e., PLL and registers (details on the work-
load and on our memory simulator are given in Section 4). This
suggests that power can be significantly reduced by transitioning
memory devices and the peripheral components to their low-power
state during idle periods.

Powerdown is one of the two low-power states implemented in
DDR memory devices, and it uses 49% of the Precharge power.
Having only a 5 nsec re-synchronization latency, using Powerdown,
power can be reduced even with short idle periods; however, it is
not nearly as power-efficient as Self Refresh where we can also
put the PLL and the registers to their low-power state. Its bene-
fit is clearly shown in Figure 3. However, due to having a much
longer re-synchronization latency when exiting from Self Refresh,
idle periods of at least 19 µsecare needed just to break even. This
is more than 3 orders of magnitude larger than the break-even time
for entering Powerdown. We calculate the break-even time using
the Energy×Delay metric as shown in [4]. Its calculation is omit-
ted here due to space limitation.

Unfortunately, in realistic workloads, due to the randomness in
memory accesses, long idle periods are rarely observed. As a re-
sult, it inhibits the use of Self Refresh, which severely limits the

1Registered memory is almost always used in server systems to bet-
ter meet timing needs and provide higher data integrity, and the PLL
and registers are critical components to take into account when eval-
uating registered memory in terms of performance and energy.

2



time

time

Powerdown Standby

Memory accesses

Self Refresh

Existing memory traffic

Altered memory traffic

Figure 4: In the first case (above figure), gaps between con-
secutive memory accesses are too short for entering low-power
states to obtain any savings. In the second case, by delaying
and batching memory accesses, we can create longer idle pe-
riods, thus allowing power management to take advantage of
various low-power states.

time

Memory accesses

Powerdown StandbySelf Refresh

time

time

time

Rank 0

Rank 3

Rank 1

Rank 2

Figure 5: An example showing that if memory traffic is left
unshaped, power management cannot take full advantage of
deeper power-saving states since most idle periods are too short.

amount of power saved from using existing power-management
techniques. This is illustrated by an example shown in Figure 4,
where we show that simply making power-management decisions
based on the monitored memory traffic is often not enough — the
observed memory traffic might not present the necessary energy-
saving opportunities. However, if we can alter the traffic pattern in
a certain way, it is possible to create longer idle periods, from which
power can be more effectively reduced. Unfortunately, the partic-
ular technique we show in Figure 4 is not very useful in practice
as we cannot control memory accesses at such a fine granularity.
Additionally, by delaying and batching memory accesses, we pay a
severe performance penalty. In the following section, we illustrate
a more practical and low-overhead method of reshaping memory
traffic to improve energy efficiency.

3. MEMORY TRAFFIC RESHAPING
To reshape the memory traffic for our benefit, we must make

memory accesses less random and more controllable. Conventional
memory traffic often seems random because (1) the operating sys-
tem arbitrarily maps virtual pages to physical pages, and (2) differ-
ent pages are often accessed very differently at run-time. As a re-
sult of such randomness, the interarrival characteristic of memory
requests observed on each rank might not be favorable for existing
techniques to manage power.

To give an example, we use a 4-rank system shown in Figure 5.
Due to the arbitrary OS’s page mapping, memory requests are likely
to be randomly distributed among the 4 ranks. This creates a large
number of small and medium-sized idle periods. The smaller idle
periods are often completely useless and cannot be used for saving
energy. As for the medium-sized ones, we can transition memory
devices to Powerdown and obtain a moderate amount of power sav-
ings. However, to significantly reduce power, we need to take ad-
vantage of Self Refresh’s ultra-low power property. Unfortunately,

time

Memory accesses

Powerdown StandbySelf Refresh

time

time

time

Rank 0

Rank 3

Rank 1

Rank 2

Figure 6: An example showing that if memory traffic can be
loosely controlled (e.g., by migrating pages), some ranks will, as
a result, have much longer idle periods, thus allowing the use of
the deeper power-saving states.

as it can be seen from this example, due to the lack of long idle
periods, Self Refresh is very infrequently utilized.

3.1 Hot Ranks and Cold Ranks
To elongate idle periods, we introduce the concepts of hot and

cold ranks. Hot ranks are used to hold frequently-accessed pages,
which leaves infrequently-used and unmapped pages on cold ranks.
Hot ranks are created by migrating frequently-accessed pages from
cold ranks to hot ranks. The mechanism to migrate pages from one
rank to another was previously described in full detail in [5]. The
result of making this differentiation among ranks is shown in Fig-
ure 6. Here we assume that Rank 0 and 1 are used as hot ranks and
Rank 2 and 3 are used as cold ranks. Essentially, we are increasing
the utilization of hot ranks and decreasing the utilization of cold
ranks. As a result, the additional memory requests imposed upon
these hot ranks will “fill-in” between the idle gaps. As most of these
gaps were small and could not be used for saving power, by ser-
vicing additional requests during such times, we are making more
efficient use of the power dissipated by the hot ranks. Although this
might cause hot ranks to lose some energy-saving opportunities to
use Powerdown (e.g., Rank 1 shown in Figure 5 and Figure 6), but
as a result of that, more valuable opportunities are created on cold
ranks where Self Refresh can be more utilized. In our experiments,
we found that the average interarrival time was elongated by almost
2 orders of magnitude on cold ranks.

3.2 Reducing Migration Overhead
Migrating pages causes additional memory traffic, which results

in more queuing delays and contentions. Therefore, only a small
number of pages can be moved without causing noticeable over-
head. Fortunately, empirical observations from our experiments
gave us some hints that allow us to do just that and still be able to
reshape the memory traffic according to our needs. Memory traces
collected from several workloads indicate that only a small percent-
age of pages are responsible for a majority of the memory traffic.
This is shown in Figure 7, and we summarize the results in Ta-
ble 3.2. From this table, it is clear that we can reshape the memory
traffic to meet our needs by migrating only a very small percentage
of pages. For example, if we want to control 90% of all memory
traffic, we only need to control 1.5–14.3% of all pages. Only half
of these pages would need to be migrated because pages are ran-
domly allocated, and on average, 50% of the frequently-accessed
pages should have already been allocated on the hot ranks and do
not need to move. Furthermore, since migration overhead is only
a one-time cost, the longer a migrated page stays hot, the more we
can amortize its migration cost over time. We can also think of
other heuristics that we can use to further reduce the number of
migrations and the migration overheads. For example, we can use
process profiling to better predict the appropriate initial location
where we should allocate pages for each process so that the number
of page migrations can be reduced. Additionally, we can reduce mi-

3



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  50000  100000  150000  200000

N
um

be
r 

of
 A

cc
es

se
s

Page Number

Low Memory Intensive Workload

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  50000  100000  150000  200000

N
um

be
r 

of
 A

cc
es

se
s

Page Number

High Memory Intensive Workload

Figure 7: Number of times each physical page in the mem-
ory is accessed for low memory-intensive workload and high
memory-intensive workload. These workloads are described in
Section 4.

75 90 95 99
Percentile Percentile Percentile Percentile

LowMem Workload 5.68% 14.27% 18.60% 25.81%
HighMem Workload 0.53% 1.49% 4.98% 16.38%

Table 1: Shows what percentage of all pages is responsible for
75%, 90%, 95% or 99% of all memory accesses.

gration overhead by avoiding moving heavily-shared pages, page-
cache pages, and buffer-cache pages as there are more overheads
in moving these types of pages. In particular, to move a shared
page, we would need to change the page table entries of each of the
processes sharing this page; the more processes sharing this page,
the more page tables we would need to modify. Therefore, the best
candidate pages to migrate are frequently-accessed private pages.

3.3 Implementation
To determine which page to migrate, we keep a count on the

number of times each page was accessed. This is used by a kernel
thread to find frequently access pages on cold ranks so these pages
can be migrated. Currently, the page access-count table is main-
tained by the memory controller in our simulator. Alternatively, the
same can be achieved by using software page faults to avoid hard-
ware modification — sampling may be used to reduce page fault
overheads.

4. EVALUATION
In this section, we evaluate the energy benefits in reshaping the

memory traffic. We first describe our simulation setup and the
workloads we used, in Section 4.1 and 4.2, respectively. In Sec-
tion 4.3, we show results from our simulations.

4.1 Simulation Setup
Mambo [1] is a full-system simulator that can simulate various

PowerPC R© machine architectures, and it is currently in active use
by multiple research and development groups at IBM. We used it

Component Parameter

Processor 64-bit 1.6 GHz PowerPC
DCache 64KB 2-way Set-Associative
ICache 32KB 4-way Set-Associative

L2-Cache 1.5MB 4-way Set-Associative
DTLB 512 entries 2-way Set-Associative
ITLB 512 entries 2-way Set-Associative

DERAT 128 entries 4-deep
IERAT 128 entries 4-deep
SLB 16 entries

Memory DDR-400 768MB (64Mbx8)

Linux Kernel 2.6.5-rc3 w/ PAVM patch

Table 2: System parameters used in Mambo. All cache lines are
128 Bytes long.

Pre

AR

SR ACT

IO

PPD APD

ns 15t RP =>

ns 15t RCD =

I/O burst

ns 40tRAS =>

ns 5t CK =

ns 5tCK =ns 5tCK =

ns 5t CK =

nsec 70tRFC =

Every 7.8125 us

ns 5tCK =

ns 1000t XSRD =

State Power
PRE Precharge 137.5 mW
PPD Precharge-Powerdown 12.5 mW
ACT Active 150 mW
APD Active-Powerdown 112.5 mW
SR Self-refresh 10 mW
AR Auto-refresh 27.5 mW
IO Read/Write 1200 mW

CL = 15 ns

ns 10t RRP =>

To different
banks

Figure 8: Detailed DDR state machine that we simulate in our
memory simulator. Some minor states and transitions are omit-
ted from this graph for better viewing.

for running workloads and collecting memory traces. In our simu-
lation study, the Mambo-simulated machine is parameterized as that
shown in Table 2. We also implemented a trace-driven main mem-
ory simulator using the CSIM [9] library. It can accurately model
performance and power dissipation of the memory by simulating
a detailed DDR state machine (shown in Figure 8). Furthermore,
it can also simulate various effects of queuing and contention oc-
curring at the memory controller, synchronous memory interfaces
(SMIs), and on various buses. Power dissipation of memory devices
is calculated by keeping track of the state information for each bank
on a per-cycle basis, as was described by [11].

4.2 Workloads
In our evaluation, we use two workloads, classified as either “low

memory-intensive” or “high memory-intensive”, based on L2 miss
rates [12], to study the effect of memory access intensity on our
proposed technique. For the low memory-intensive workload, we
run SPECjbb having 8 warehouses in parallel with bzip2and crafty
from the SPEC CPU2K benchmarks, and for the high memory-
intensive workload, we run SPECjbb in parallel with mcf and art
from the SPEC CPU2K benchmarks. Referenceinput sets are used
for all the SPEC CPU2K benchmarks.

4.3 Results
Our memory simulator can simulate various power-management

4



 value thresholdMaximum       Th
rank xon Refresh  Selfenter   toThreshold        Th[x]

rank xon  T  within accessesmemory  ofNumber    [x]N
intervalrefresh  1)(i and ibetween  interval Time         T

usec) (7.8 intervalrefresh  Auto         t

Max

1ii 1ii

thth
1ii

REFI

 

 

=
=
=

+=
=

++
+

Refresh) enter(Self                    
 thenTh[x]) exceeded has  time(idle if               

rdown)enter(Powe               
Refresh) Selfin currently not  is(rank x  if          

Th  Th[x]                    
)Th  (Th[x] if               

 t[x]N  Th[x]  Th[x]               
else          

 t- Th[x]  Th[x] else               
Th[x]/2  Th[x]                    

 then) t (Th[x] if               
 then0)[x]N( if          

 rank x    each For      
intervalrefresh  i  theof end At the

:Algorithm Prediction Threshold

Max

Max

REFI1ii

REFI

REFI

1ii

th

=
>

∗+=

=
=
<
==

+

+

Figure 9: Threshold prediction algorithm used in the
hardware-controlled power-management technique.

techniques. To compare our technique with the previously-
proposed ones, we evaluate five techniques in power and perfor-
mance, which are listed as follows.

• No Power Management (NOPM): Here, no power-
management technique is used, and ranks are transitioned to
Precharge when they are idle.

• Immediate Powerdown (IPD): This is the simplest form of
hardware power management. It is a static technique where
the memory controller immediately transitions a rank to Pow-
erdown when all memory requests on this rank have com-
pleted.

• Immediate Self Refresh (ISR): Same as IPD, but transitions
to Self Refresh instead of to Powerdown.

• Dynamic Hardware Technique (HW): This is a dynamic
hardware power-management technique and is similar to the
History-Based Predictor described in [2]. It monitors past
memory accesses, and based on which, predictions after how
long of an idle period should it transition a rank to Self Re-
fresh (the threshold prediction algorithm is shown in Fig-
ure 9). Transitions to Powerdown have a zero threshold,
which was previously shown to be the most efficient [7].

• HW with a Reshaped Memory Traffic (HWx): Using the
same HW technique as above but with a reshaped memory
traffic. The x in HWx represents the percentage of all pages
that we migrate when reshaping the memory traffic, i.e., HW0
is the same as HW.

Results for the low memory-intensive and the high memory-
intensive workloads are shown in Tables 3 and 4, respectively. In
these tables, we show the average power dissipation, the normalized
runtime (with respect to no power management), and the average re-
sponse time of memory accesses for each of the power-management
techniques. We can see that even with the simplest static power
management, IPD, a significant amount of power (45.73–48.89%)
can be reduced without causing much impact on the performance
(1.8–5.0%). Using ISR, additional power can be reduced. How-
ever, due to having a static policy to transition into Self Refresh and
a much higher resynchronization latency when exiting from Self
Refresh, ISR’s overwhelming performance penalty (99.2–279.5%)
makes it almost impractical to use in realistic workloads. On the

Normalized Average
Power Management Power Runtime Response Time

NOPM 49.97 W 1.000 72.01 ns
IPD 25.54 W 1.018 82.17 ns
ISR 6.23 W 1.992 697.60 ns
HW 10.24 W 1.035 90.14 ns
HW5 6.26 W 1.056 95.91 ns

Table 3: Summary of the energy and performance results for
the low memory-intensive workload.

Normalized Average
Power Management Power Runtime Response Time

NOPM 52.15 W 1.000 84.13 ns
IPD 28.30 W 1.050 92.18 ns
ISR 14.47 W 3.795 537.45 ns
HW 14.79 W 1.056 93.21 ns
HW5 9.52 W 1.190 106.25 ns

Table 4: Summary of the energy and performance results for
the high memory-intensive workload.

other hand, using the dynamic hardware technique (HW), we show
that if Self Refresh is utilized more carefully, a significant amount
of power can be reduced (71.64–78.57%) but without significantly
affecting the performance (3.5–5.6%).

4.3.1 Effect of Reshaping on Memory Traffic
Among these four techniques, HW is by far the most effective be-

cause it can dynamically adapt its power-management decisions as
the memory traffic’s characteristic changes. To understand the im-
plications of memory traffic reshaping, we re-evaluated HW with a
reshaped memory traffic. However, before we delve into that, we
will first look at the effects of migrating frequently-accessed pages
from cold ranks to hot ranks on the existing memory traffic. In
Figure 10, we show how the idle time characteristic (i.e., the distri-
bution of the total idle time among different-sized idle periods) on a
hot rank and a cold rank has changed after we reshaped the memory
traffic. Due to the need to serve more memory requests, the aver-
age idle period on hot ranks decreased from 3,630 nsec to 472 nsec.
This causes some opportunities to be lost for entering low-power
state, but since we can benefit from entering Powerdown even with
short idle periods, not much is really lost here. Moreover, by redi-
recting a significant number of memory accesses from cold ranks to
these hot ranks, much longer idle periods are created on cold ranks.
We found that after the migration, the average idle period increased
from 1,520 nsec to 122,210 nsec (Figure 10(b)). This created more
valuable opportunities where Self Refresh can be exploited.

Results of using HW to manage power on a reshaped memory
traffic are shown in Tables 3 and 4, labeled as HW5, for the low
memory-intensive and the high memory-intensive workloads, re-
spectively. Here, we migrated 5% of pages to reshape the memory
traffic. By doing so, we achieved 35.63–38.87% additional power
savings than the original HW technique. However, due to the ad-
ditional contention created at the hot ranks and the extra memory
accesses needed to migrate pages, the performance is degraded.
In the low memory-intensive workload, the performance degrada-
tion is only 2.0% compared to HW. However, in the high memory-
intensive workload, performance is degraded by 12.7%. The reason
for this is that pages are much more frequently accessed in the high
memory-intensive workload,2 and therefore, as a result of migrating
frequently-accessed pages onto the hot ranks, the contention created
on hot ranks is much more severe in the high memory-intensive
workload.

To study the effect of memory traffic reshaping in more detail,
we compare the results of migrating 1%, 5%, and 10% of pages.
These are shown in Figure 11, where we normalized average power

2Both workloads run for the same amount of time, but the high
memory-intensive workload has 6 times more memory accesses
than the low memory-intensive workload.

5



10
3

10
4

10
5

10
6

10
7

0

2

4

6

8

10

12

14
x 10

7

Interarrival Time (ns)

Id
le

 T
im

e
 (

n
s
)

10
3

10
4

10
5

10
6

10
7

0

2

4

6

8

10

12

14
x 10

7

Interarrival Time (ns)

Id
le

 T
im

e
 (

n
s
)

(a)

10
5

10
6

10
7

10
8

10
9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

8

Interarrival Time (ns)

Id
le

 T
im

e
 (

n
s
)

10
6

10
7

10
8

10
9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

8

Interarrival Time (ns)

Id
le

 T
im

e
 (

n
s
)

(b)

Figure 10: Part (a) shows idle time characteristic of a hot rank be-
fore (left) and after (right) migrating frequently-accessed pages. Part
(b) shows idle time characteristic of a cold rank before (left) and after
(right) migrating frequently-accessed pages. These are derived from
the low memory-intensive workload. High memory-intensive workload
gives similar result, thus is omitted here.

and average runtime to that of using HW with a unshaped memory
traffic. Here we can see, migrating only 1% of pages gives only lim-
ited benefits in power reduction. On the other hand, migrating 10%
of pages does not give any additional energy benefit beyond that of
migrating 5%. In addition, it also suffers from more performance
penalty due to having to migrate more pages. Therefore, migrating
5% of pages gives the best result for the workloads we ran.

4.3.2 Discussion
When memory is extensively accessed, as in the high memory-

intensive workload, performance degradation due to contention on
hot ranks can be more of a concern. However, this can be allevi-
ated by implementing a detection mechanism that stops migration
or even triggers a “reverse migration” when excessive contention is
observed on hot ranks. However, this only minimally alleviates the
problem. As we can see from Figure 11, migrating 1% as opposed
to 5% of pages does not give much benefit in reducing performance
penalty.

To solve the problem at its root, it calls for an alternative main
memory design, where we should use high-performance, highly
parallel memory on hot ranks and low-performance/low-power
memory on cold ranks. This allows faster access time for more
frequently-accessed pages and fewer contentions on hot ranks. It
also allows for more energy savings with the use of low-power
memory on cold ranks. Additionally, by using low-performance
memory on cold ranks, this heterogenous main memory design can
potentially lower the monetary cost of building the main memory
subsystem.

5. ACKNOWLEDGMENT
We would like to thank Karthick Rajamani for his help on Mem-

sim and Jim Peterson on Mambo at IBM Austin. This work is par-
tially funded by AFOSR, Grants F49620-01-1-0120 and FA9550-
05-0287.

1.00 1.01 1.02 1.03
1.00

0.81

0.61 0.61

0

0.2

0.4

0.6

0.8

1

1.2

HW HW1 HW5 HW10

Normalized Response Time Normalized Power

1.00

1.09
1.13 1.13

1.00

0.82

0.64 0.64

0

0.2

0.4

0.6

0.8

1

1.2

HW HW1 HW5 HW10

Normalized Response Time Normalized Power

Figure 11: Effects of actively reshaping memory traffic by
migrating 1%, 5%, and 10% of pages for the low memory-
intensive workload (above) and high memory-intensive work-
load (below).

6. CONCLUSION
In this paper, we propose how to actively reshape memory traffic

to produce longer idle periods so we can more effectively exploit
idleness in the memory. Our extensive simulation in a multitask-
ing system shows that a 35.63–38.87% additional energy can be
saved by complementing existing power-management techniques
with this proposed technique. Our result also indicates that an al-
ternative main memory design could be more efficient than today’s
homogenous design in power efficiency, performance and cost.

7. REFERENCES

[1] P. Bohrer et al., “Mambo — A Full System Simulator for the
PowerPC Architecture”, ACM SIGMETRICS Performance Evaluation
Review, 31(4), 8–12, 2004.

[2] V. Delaluz et al., “Hardware and Software Techniques for Controlling
DRAM Power Modes”, IEEE Transactions on Computers,
50(11),1154–1173, 2001.

[3] V. Delaluz et al., “Scheduler-based DRAM Energy Power
Management”, Design Automation Conference 39, 697–702, 2002.

[4] X. Fan and C. S. Ellis and A. R. Lebeck, “Memory Controller Policies
for DRAM Power Management”, International Symposium on Low
Power Electronics and Design (ISLPED), 129–134, 2001.

[5] H. Huang and P. Pillai and K. G. Shin, “Design and Implementation of
Power-Aware Virtual Memory”, USENIX Annual Technical
Conference, 57–70, 2003.

[6] H. Huang et al.. “Cooperative Software–Hardware Power
Management for Main Memory”, Workshop on Power-Aware
Computer Systems, 2004.

[7] A. R. Lebeck et al., “Power Aware Page Allocation”, Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 105–116, 2000.

[8] C. Lefurgy and K. Rajamani and F. Rawson and W. Felter and M.
Kistler and Tom Keller, “Energy Management for Commercial
Servers”, IEEE Computer, 39–48, 2003.

[9] Mesquite Software, “http://www.mesquite.com”.
[10] Micron, “http://www.micron.com”.
[11] Micron, “http://download.micron.com/pdf/technotes/TN4603.pdf”.
[12] Karthikeyan Sankaralingam et al., “Exploiting ILP, TLP, and DLP

with the Polymorphous TRIPS Architecture”, ISCA, 422–433, 2003.

6


