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Overview

� Team work at IBM Research:
� Austin: Malcolm Allen-Ware, John Carter, Mootaz Elnozahy, Tom 

Keller, Charles Lefurgy, Jian Li, Karthick Rajamani, Juan Rubio

� T. J. Watson: Hendrik Hamann

� Objective: Power Optimization of an entire system (e.g., server, 

DC), with explicit consideration of Cooling Power

� Hierarchical Techniques:

� Server-level power (TAPO-server):

� Fan power vs. leakage power

� Goal: minimize aggregate fan+leakage power

� Prototyped on a POWER 750 Express server (POWER7-based).

� Datacenter-level power (TAPO-dc):
� HVAC power vs. server fan power

� Goal: minimize aggregate HVAC+server power

� Analysis based on realistic models
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Background

� Thermal setpoints are fixed

� Server temperature setpoint, e.g. 70C for POWER7 processors 

� Data Center (DC) HVAC chiller setpoint (cooled water), e.g. 10C

� System dynamics are not considered, can be power inefficient ����
overcooling and wasting cooling power.

� Cooling-related power components

� DC HVAC power (chiller, blower, etc)

� Comparable to IT power

� Characteristics: warmer environment, higher chiller setpoint, lower chiller 
power

� Server fan power:

� Has been part of IT power, but really should be considered separately 

� PUE is not an accurate indicator

� Strong superlinear (~ quadratic or cubic) relationship to fan speed

� Server (processor) leakage power:

� Strongly temperature dependent
� To reduce leakage, want more server fan power to cool chips down
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TAPO-server

� Optimize server fan + processor leakage power, what is the power saving 

potential?

� Manual characterization:

� POWER7-based server

� Turbo frequency (3.864GHz), CPU-intensive workload, L2 

resident, 32 SMT4 cores 
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Search for optimal thermal setpoint in TAPO-server

� Change processor thermal setpoint
� Indirectly change fan speed 

� On the curve:

� Left: fan speed low, more thermal-induced leakage power

� Right: system is cool, but more fan power
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TAPO-server discussions

� Power convergence threshold: 5 Watts.

� Sampled every 32ms.

� Entirely depends on measurements, no models involved.

� reduce peak power at peak performance.

� Save ~5% peak power, a perfect solution would have been 5.4%

� No observed performance loss (frequency and voltage are fixed).

� Regardless of workload, chip variations and environment, TAPO-

server should adaptively find the optimal point.

� Slow convergence: wait long enough (30 seconds to 2 minutes) for

temperature to settle down after fan speed changes.

� For safety, there is an upper limit on thermal threshold (if exceeded, 

use DVFS to prevent thermal emergency).
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TAPO-server results

Prototyped new model-based control method reduces convergence time to ~1 minute
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Overview

� Team work:
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� Server-level power (TAPO-server):
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� Prototyped on a P7 HV32 server.
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� Goal: minimize aggregate HVAC+server power
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TAPO-dc

� Tradeoff between HVAC power and server fan power

� Use chilled water setpoint to adjust HVAC power

� Based on published component power models

� Two chiller designs (COP 3.0-6.0 and 4.1-5.5) 

� T_inlet = T_chiller + 10C

� Server inlet temperature range: 20C ~ 40C

y = 5E-08x
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TAPO-dc results

� Assuming a rack of ten POWER 750 Express servers

� Fully utilized DC cooling zone

Fully Utilized Datacenter
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TAPO-dc results (cont’d)

� 10% utilized DC cooling zone

10% Utilized Datacenter
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TAPO-dc results (cont’d)

� 60% utilized DC cooling zone

60% Utilized Datacenter
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TAPO-dc control method
� No single thermal setpoint is optimal

� Dynamically searching for optimal point 
is not tractable

� Thermal mass, HVAC complexity

� Binary control, based on utilization 
level

Monitor average utilization level of a DC cooling 
zone (e.g. over 1 hour)

Utilization level is 
low? (eg. <50%)

Set HVAC set point to high 
temperature (e.g. 35C)

Wait for fixed period or for stabilization 

of DC thermals (e.g. 1 hour)
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Conclusions and Ongoing work

� Finding the right thermal setpoint helps save total system power, 
without performance hit

� TAPO-server and TAPO-dc

� Ongoing work

� Prototype TAPO-dc in a real data center

� Make TAPO-server converge faster

� Understand the delicate interactions among the two 
techniques

� Warmer ambient from TAPO-dc makes TAPO-server 
more valuable

� TAPO-server lowers server fan power, favoring TAPO-
dc with warmer chiller setpoint to reduce HVAC power.

� Reliability concerns of server components running at 
slightly hotter temperatures 
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Thank you. Questions?
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More materials…
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Overview
� It is a team work:

� Austin: Wei Huang, Malcolm Allen-Ware, John Carter, Mootaz Elnozahy, 
Tom Keller, Charles Lefurgy, Jian Li, Karthick Rajamani, Juan Rubio

� Watson: Hendrik Hamann

� Objective: Optimize power and/or performance of an entire system (e.g., server, 
DC), with explicit consideration of cooling power

� Hierarchical Techniques:
� Server-level power (TAPO-server):

� Fan power vs. leakage power
� Goal: minimize aggregate fan+leakage power
� Prototyped on a P7 HV32 server.

� Datacenter-level power (TAPO-dc):
� HVAC power vs. server fan power
� Goal: minimize aggregate HVAC+server power

� Server-level performance (TAPO-shift):
� Load imbalance in different cooling zones
� State of the art can’t fully exploit power shifting from an idle zone to an 

active zone, due to thermal limitations 
� Goal: maximize active zone performance, within power and thermal

budgets
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TAPPO-shift

� Power shifting:

� Idea: Shift unused power budget in underutilized parts to 

boost performance of highly utilized parts

� Total power constraint, thermal constraint

� Shifting among cooling zones. Example: socket to socket, 
server to server, rack to rack, DC zone to DC zone, etc

� Limitations:

� Each cooling zone is design independently, without cooling 
capability for significantly more power

� On the other hand, server processors can be overclocked by 
~25% above nominal – hard to achieve in reality due to 

thermal limits
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TAPPO-shift

� Solution: over-provisioned cooling capacity (by a large 

margin) in each cooling zone

� Cost is small: better/more fans

� Benefit: higher performance (e.g. processor can run at 

much higher frequency with shifted power)

� Within the same overall power budget across cooling 

zones, no thermal violation
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TAPPO-shift: an illustrative example
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TAPPO-shift results

Power scaling with DVFS (4 early samples)

R2 = 0.9982
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Combined TAPPO techniques – qualitative example

� Two DC cooling zones, Zone1 is 80% utilized, Zone2 is 10% utilized

� Workload migration to make Zone2 idle

� Observations:

� Migration itself does not save power, but turning off idle zone does!

� TAPPO-dc and -server can save about 9% power in this example

� Combined with TAPPO-shift, can boost active zone utilization by 10% 

with about the same power  
Migrating 80% and 10% utilized cooling zones in a datacenter
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