

TAPO: Thermal-Aware Power Optimization Techniques for Servers and Data Centers

Wei Huang

IBM Research

© 2011 IBM Corporation

Overview

- Team work at IBM Research:
 - Austin: Malcolm Allen-Ware, John Carter, Mootaz Elnozahy, Tom Keller, Charles Lefurgy, Jian Li, Karthick Rajamani, Juan Rubio
 T. J. Watson: Hendrik Hamann
- Objective: Power Optimization of an entire system (e.g., server, DC), with explicit consideration of Cooling Power
- Hierarchical Techniques:
 - Server-level power (TAPO-server):
 - Fan power vs. leakage power
 - Goal: minimize aggregate fan+leakage power
 - Prototyped on a POWER 750 Express server (POWER7-based).
 - Datacenter-level power (TAPO-dc):
 - HVAC power vs. server fan power
 - Goal: minimize aggregate HVAC+server power
 - Analysis based on realistic models

Background

- Thermal setpoints are fixed
 - Server temperature setpoint, e.g. 70C for POWER7 processors
 - Data Center (DC) HVAC chiller setpoint (cooled water), e.g. 10C
 - System dynamics are not considered, can be power inefficient → overcooling and wasting cooling power.
- Cooling-related power components
 - DC HVAC power (chiller, blower, etc)
 - Comparable to IT power
 - Characteristics: warmer environment, higher chiller setpoint, lower chiller power
 - Server fan power:
 - Has been part of IT power, but really should be considered separately
 - PUE is not an accurate indicator
 - Strong superlinear (~ quadratic or cubic) relationship to fan speed
 - Server (processor) leakage power:
 - Strongly temperature dependent
 - To reduce leakage, want more server fan power to cool chips down

Overview

- Team work:
 - Austin: Wei Huang, Malcolm Allen-Ware, John Carter, Mootaz Elnozahy, Tom Keller, Charles Lefurgy, Jian Li, Karthick Rajamani, Juan Rubio
 Watson: Hendrik Hamann
- Objective: Optimize power and/or performance of an entire system (e.g., server, DC), with explicit consideration of cooling power

Hierarchical Techniques:

- Server-level power (TAPO-server):
 - Fan power vs. leakage power
 - Goal: minimize aggregate fan+leakage power
 - Prototyped on a POWER 750 Express server.
- Datacenter-level power (TAPO-dc):
 - o HVAC power vs. server fan power
 - o Goal: minimize aggregate HVAC+server power
 - o Analysis based on realistic models

TAPO-server

- Optimize server fan + processor leakage power, what is the power saving potential?
 - Manual characterization:
 - POWER7-based server
 - Turbo frequency (3.864GHz), CPU-intensive workload, L2 resident, 32 SMT4 cores

© 2011 IBM Corporation

Search for optimal thermal setpoint in TAPO-server

- Change processor thermal setpoint
 - Indirectly change fan speed
- On the curve:
 - Left: fan speed low, more thermal-induced leakage power
 - Right: system is cool, but more fan power

TAPO-server discussions

- Power convergence threshold: 5 Watts.
- Sampled every 32ms.
- Entirely depends on measurements, no models involved.
- reduce peak power at peak performance.
- Save ~5% peak power, a perfect solution would have been 5.4%
- No observed performance loss (frequency and voltage are fixed).
- Regardless of workload, chip variations and environment, TAPOserver should adaptively find the optimal point.
- Slow convergence: wait long enough (30 seconds to 2 minutes) for temperature to settle down after fan speed changes.
- For safety, there is an upper limit on thermal threshold (if exceeded, use DVFS to prevent thermal emergency).

TAPO-server results

Prototyped new model-based control method reduces convergence time to ~1 minute

Overview

- Team work:
 - Austin: Wei Huang, Malcolm Allen-Ware, John Carter, Mootaz Elnozahy, Tom Keller, Charles Lefurgy, Jian Li, Karthick Rajamani, Juan Rubio
 Watson: Hendrik Hamann
- Objective: Optimize power and/or performance of an entire system (e.g., server, DC), with explicit consideration of cooling power

Hierarchical Techniques:

- Server-level power (TAPO-server):
 - o Fan power vs. leakage power
 - o Goal: minimize aggregate fan+leakage power
 - o Prototyped on a P7 HV32 server.
- Datacenter-level power (TAPO-dc):
 - HVAC power vs. server fan power
 - Goal: minimize aggregate HVAC+server power
 - Analysis based on realistic models

TAPO-dc results

- Assuming a rack of ten POWER 750 Express servers
- Fully utilized DC cooling zone

Fully Utilized Datacenter

TAPO-dc results (cont'd)

10% utilized DC cooling zone

10% Utilized Datacenter

TAPO-dc results (cont'd)

• 60% utilized DC cooling zone

60% Utilized Datacenter

1

binary, wide COP

optimal, wide COP

■ binary, narrow COP

S optimal, narrow COP

TAPO-dc control method

- No single thermal setpoint is optimal
- Dynamically searching for optimal point is not tractable
 - Thermal mass, HVAC complexity
- Binary control, based on utilization level

0.18

0.16

0.14

0.12

0.1

0.08

Conclusions and Ongoing work

- Finding the right thermal setpoint helps save total system power, without performance hit
 - TAPO-server and TAPO-dc
- Ongoing work
 - Prototype TAPO-dc in a real data center
 - Make TAPO-server converge faster
 - Understand the delicate interactions among the two techniques
 - Warmer ambient from TAPO-dc makes TAPO-server more valuable
 - TAPO-server lowers server fan power, favoring TAPOdc with warmer chiller setpoint to reduce HVAC power.
 - Reliability concerns of server components running at slightly hotter temperatures

Thank you. Questions?

More materials...

Overview

- It is a team work:
 - o Austin: Wei Huang, Malcolm Allen-Ware, John Carter, Mootaz Elnozahy, Tom Keller, Charles Lefurgy, Jian Li, Karthick Rajamani, Juan Rubio
 - Watson: Hendrik Hamann
- **Objective:** Optimize power and/or performance of an entire system (e.g., server, DC), with explicit consideration of **cooling power**

Hierarchical Techniques:

- Server-level power (TAPO-server):
 - o Fan power vs. leakage power
 - o Goal: minimize aggregate fan+leakage power
 - o Prototyped on a P7 HV32 server.
- Datacenter-level power (TAPO-dc):

 - o HVAC power vs. server fan power
 o Goal: minimize aggregate HVAC+server power
- Server-level performance (TAPO-shift):
 - Load imbalance in different cooling zones
 - State of the art can't fully exploit power shifting from an idle zone to an active zone, due to thermal limitations
 - Goal: maximize active zone performance, within power and thermal budgets

TAPPO-shift

• Power shifting:

- Idea: Shift unused power budget in underutilized parts to boost performance of highly utilized parts
- Total power constraint, thermal constraint
- Shifting among <u>cooling zones</u>. Example: socket to socket, server to server, rack to rack, DC zone to DC zone, etc

Limitations:

- Each cooling zone is design independently, without cooling capability for significantly more power
- On the other hand, server processors can be overclocked by ~25% above nominal – hard to achieve in reality due to thermal limits

TAPPO-shift

- <u>Solution</u>: over-provisioned cooling capacity (by a large margin) in each cooling zone
- <u>Cost</u> is small: better/more fans
- <u>Benefit</u>: higher performance (e.g. processor can run at much higher frequency with shifted power)
- Within the same overall power budget across cooling zones, no thermal violation

TAPPO-shift results

- Use P7 power-frequency relationship (cubic)
- Use P7 HV32 system power and fan power (almost cubical to rpm)
- 4 sockets divided into two cooling zones (each has separate fan control and better fans)
- Potentially 16% higher than P7 Turbo frequency

Combined TAPPO techniques – qualitative example

- Two DC cooling zones, Zone1 is 80% utilized, Zone2 is 10% utilized
- Workload migration to make Zone2 idle
- Observations:
 - Migration itself does not save power, but turning off idle zone does!
 - TAPPO-dc and -server can save about 9% power in this example
 - Combined with TAPPO-shift, can boost active zone utilization by 10% with about the same power

Migrating 80% and 10% utilized cooling zones in a datacenter

2011 IBM Corporation