

IBM Research and U. Tennessee, Knoxville

Server-level Power Control

Charles Lefurgy, Xiaorui Wang, Malcolm Ware

Server power supplies

- Datacenter must wire to label power
- However, real workloads do not use that

2/17

The problem

Server power consumption is not well controlled.

- System variance (workload, configuration, process, etc.)
- Design for worst-case power

Results:

- Power supplies are significantly over-provisioned
- Therefore, datacenters provision for power that cannot be used
- High cost, with no benefit in most environments

Our approach

- Use "better-than-worst-case" design
 - Example: Intel's Thermal Design Power (TDP)
 - Power, like temperature, can be controlled
- Reduce design-time power requirements
 - Run real workloads at full performance
 - Use smaller, cost-effective power supplies
- Enforce run-time power constraint with feedback control
 - Slow system when running power virus

Our contributions

- Control of peak server-level power (to 0.5 W in 1 second)
- Derivation and analysis [see paper]
 - Guaranteed accuracy and stability
- Verified on real hardware
- Better application performance than previous methods

Caveats

- Our prototype is a blade server
 - The results of the study also apply to rack-mount servers.
- Power controller uses clock throttling, not dynamic voltage and frequency scaling (DVFS)
 - At the time of the study, only clock throttling was available on our prototype system.
 - DVFS is not available on all processors (lower speed grades)
 - Recently, we have built a prototype using DVFS

Rest of the talk

- Power measurement
- Power control
 - Open loop controller
 - Ad-hoc controller
 - Proportional controller
- Experimental results
- Conclusions

Power measurement

HS20 8843 (Intel Xeon blade)

Measure 12V bulk power

0.1 W precision, 2% error

controller firmware on service processor (Renesas H8 2168)

Measurement/calibration circuit
Sense resistors

Options for power control

Open-loop

- No measurement of power
- Chooses fixed speed for a given power budget
- Based on most power hungry workload

Ad-hoc

- Measures power and compares to power budget
- +1/-1 adjustments to processor clock throttle register

Proportional Controller ("P control")

- Designed using control theory
- Guaranteed controller performance

Open loop design

- P4MAX workload used as basis for open-loop controller
- Graph shows maximum 1 second power for workload

Processor performance setting (effective frequency)

10/17

Proportional controller design

Settle to within 0.5 W of desired power in 1 second

Based on BladeCenter power supply requirements

Every 64 ms

- Compare power to target power
- Use proportional controller to select desired processor speed
 - 12.5% 100% in units of 0.1%

Clock throttling

- Intel processor: 8 settings in units of 12.5% (12.5% 100%)
- Use delta-sigma modulation to achieve finer resolution

Why not use ad-hoc control?

Settles to 216.0 W CPU speed: 68.8%

5 W Violation

Settles to 211.0 W CPU speed: 65.8%

No violation

Steady-state error

- P controller has no steady-state error (x=y)
- Ad-hoc controller has steady-state error
 - Add safety margin of 6.1 W to ad-hoc

Comparison of 3 controllers

- Run each controller with 5 power budgets
- Compare throughput of workloads

Table shows settings used for each controller

Power budget	Open-loop processor performance setting	Ad-hoc (with safety margin) set point	P control set point
250 W	75%	238.9 W	245.0 W
240 W	62.5%	229.1 W	235.2 W
230 W	62.5%	219.3 W	225.4 W
220 W	50%	209.5 W	215.6 W
210 W	37.5%	199.7 W	205.8 W

Application performance summary

P controller

- 31-82% higher performance than open-loop
- 1-17% higher performance than ad-hoc
 - Quicker settling time

Power supply reduction

- 308 W: Label power of HS20 blade
- 260 W: Real workloads run at full performance
 - A reduction of 15% in supply power.
- Fit 15% more servers per circuit

Conclusions

- Power is a 1st class resource that can be managed.
 - Power is no longer the accidental result component configuration, manufacturing variation, and workload.
- Reduce power supply capacity, safely.
 - Relax design-time constraints, enforce run-time constraints.
 - Install more servers per rack.
- Power control is a fundamental mechanism for power management in a power-constrained datacenter.
 - Move power to critical workloads.