
Reducing Code Size with Run-time
Decompression

Charles Lefurgy, Eva Piccininni,
and Trevor Mudge

Advanced Computer Architecture Laboratory
Electrical Engineering and Computer Science Dept.

The University of Michigan, Ann Arbor

High-Performance Computer Architecture (HPCA-6)

January 10-12, 2000



2

Motivation

Embedded Systems

Original Program

ROM
Program

RAM

I/O

CPU

Compressed Program

R
O

MRAM

I/O

CPU

• Problem: embedded code size
– Constraints: cost, area, and power
– Fit program in on-chip memory
– Compilers vs. hand-coded assembly

• Portability
• Development costs

– Code bloat

• Solution: code compression
– Reduce compiled code size
– Take advantage of instruction repetition

• Implementation
– Hardware or software?
– Code size?
– Execution speed?



3

Software decompression

• Previous work
– Decompression unit: whole program [Tauton91]

• No memory savings

– Decompression unit: procedures [Kirovski97][Ernst97]
• Requires large decompression memory
• Fragmentation of decompression memory

• Slow

• Our work
– Decompression unit: 1 or 2 cache-lines

– High performance focus

– New profiling method



4

Dictionary compression algorithm

• Goal: fast decompression
• Dictionary contains unique instructions
• Replace program instructions with short index

lw r2,r3

lw r2,r3

lw r15,r3

lw r15,r3

lw r15,r3

32 bits

.text segment

Original program

5

5

30

30

30

16 bits

.text segment (contains indices)

Compressed program

lw r2,r3

lw r15,r3

32 bits

.dictionary segment



5

Decompression

• Algorithm
1. I-cache miss invokes decompressor (exception handler)
2. Fetch index
3. Fetch dictionary word
4. Place instruction in I-cache (special instruction)

• Write directly into I-cache
• Decompressed instructions only exist in I-cache

Proc.

�

ô

í÷

D-cache

I-cache

Memory

Add r1,r2,r3

5

Dictionary

Indices...



6

CodePack

• Overview
– IBM

– PowerPC
– First system with instruction stream compression

– Decompress during I-cache miss

• Software CodePack

Dictionary CodePack

Codewords (indices) Fixed-length Variable-length
Decompress granularity 1 cache line 2 cache lines
Decompression overhead 75 instructions 1120 instructions



7

Compression ratio

•

– CodePack: 55% - 63%
– Dictionary: 65% - 82%

size original
size compressed

ratio ncompressio =

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

cc1
ghosts

cr
ip

t go

ijp
eg

m
peg

2enc

pegwit

perl

vorte
x

Compression 
ratio

Dictionary

CodePack



8

Simulation environment

• SimpleScalar

• Pipeline: 5 stage, in-order

• I-cache: 16KB, 32B lines, 2-way

• D-cache: 8KB, 16B lines, 2-way

• Memory: 10 cycle latency, 2 cycle rate



9

Performance

• CodePack: very high overhead
• Reduce overhead by reducing cache misses

Go

0
2
4
6
8

10
12
14
16
18
20
22

4KB 16KB 64KB
I-cache size (KB)

Slowdown 
relative to 

native 
code

CodePack

Dictionary

Native



10

Cache miss

• Control slowdown by optimizing I-cache miss ratio

0

5

10

15

20

25

30

35

40

0% 2% 4% 6% 8%

I-cache miss ratio

Slowdown 
relative to 

native code

CodePack 4KB
CodePack 16KB
CodePack 64KB
Dictionary 4KB
Dictionary 16KB
Dictionary 64KB



11

Selective compression

• Hybrid programs
– Only compress some procedures

– Trade size for speed
– Avoid decompression overhead

• Profile methods
– Count dynamic instructions

• Example: Thumb
• Use when compressed code has more instructions
• Reduce number of executed instructions

– Count cache misses
• Example: CodePack

• Use when compressed code has longer cache miss latency
• Reduce cache miss latency



12

Cache miss profiling

• Cache miss profile reduces overhead 50%
• Loop-oriented benchmarks benefit most

– Approach performance of native code

Pegwit (encryption)

1.00

1.02

1.04

1.06

1.08

1.10

1.12

60% 70% 80% 90% 100%

Compression ratio

Slowdown 
relative to 

native code

CodePack: dynamic instructions

CodePack: cache miss



13

CodePack vs. Dictionary

• More compression may have better performance
– CodePack has smaller size than Dictionary compression

– Even with some native code, CodePack is smaller
– CodePack is faster due to using more native code

Ghostscript

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

60% 70% 80% 90% 100%
Compression ratio

Slowdown 
relative to native 

code

CodePack: cache miss

Dictionary: cache miss



14

Conclusions

• High-performance SW decompression possible
– Dictionary faster than CodePack, but 5-25% compression ratio difference
– Hardware support

• I-cache miss exception
• Store-instruction instruction

• Tune performance by reducing cache misses
– Cache size
– Code placement

• Selective compression
– Use cache miss profile for loop-oriented benchmarks

• Code placement affects decompression overhead
– Future: unify code placement and compression



15

Web page

http://www.eecs.umich.edu/compress


