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Motivation
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• Problem: embedded code size
– Constraints: cost, area, and power
– Fit program in on-chip memory
– Compilers vs. hand-coded assembly

• Portability
• Development costs

– Code bloat

• Solution: code compression
– Reduce compiled code size
– Take advantage of instruction repetition

• Implementation
– Hardware or software?
– Code size?
– Execution speed?
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Software decompression

• Previous work
– Decompression unit: whole program [Tauton91]

• No memory savings

– Decompression unit: procedures [Kirovski97][Ernst97]
• Requires large decompression memory
• Fragmentation of decompression memory

• Slow

• Our work
– Decompression unit: 1 or 2 cache-lines

– High performance focus

– New profiling method
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Dictionary compression algorithm

• Goal: fast decompression
• Dictionary contains unique instructions
• Replace program instructions with short index
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Decompression

• Algorithm
1. I-cache miss invokes decompressor (exception handler)
2. Fetch index
3. Fetch dictionary word
4. Place instruction in I-cache (special instruction)

• Write directly into I-cache
• Decompressed instructions only exist in I-cache
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CodePack

• Overview
– IBM

– PowerPC
– First system with instruction stream compression

– Decompress during I-cache miss

• Software CodePack

Dictionary CodePack

Codewords (indices) Fixed-length Variable-length
Decompress granularity 1 cache line 2 cache lines
Decompression overhead 75 instructions 1120 instructions
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Compression ratio

•

– CodePack: 55% - 63%
– Dictionary: 65% - 82%
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Simulation environment

• SimpleScalar

• Pipeline: 5 stage, in-order

• I-cache: 16KB, 32B lines, 2-way

• D-cache: 8KB, 16B lines, 2-way

• Memory: 10 cycle latency, 2 cycle rate
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Performance

• CodePack: very high overhead
• Reduce overhead by reducing cache misses
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Cache miss

• Control slowdown by optimizing I-cache miss ratio
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Selective compression

• Hybrid programs
– Only compress some procedures

– Trade size for speed
– Avoid decompression overhead

• Profile methods
– Count dynamic instructions

• Example: Thumb
• Use when compressed code has more instructions
• Reduce number of executed instructions

– Count cache misses
• Example: CodePack

• Use when compressed code has longer cache miss latency
• Reduce cache miss latency
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Cache miss profiling

• Cache miss profile reduces overhead 50%
• Loop-oriented benchmarks benefit most

– Approach performance of native code

Pegwit (encryption)
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CodePack vs. Dictionary

• More compression may have better performance
– CodePack has smaller size than Dictionary compression

– Even with some native code, CodePack is smaller
– CodePack is faster due to using more native code

Ghostscript
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Conclusions

• High-performance SW decompression possible
– Dictionary faster than CodePack, but 5-25% compression ratio difference
– Hardware support

• I-cache miss exception
• Store-instruction instruction

• Tune performance by reducing cache misses
– Cache size
– Code placement

• Selective compression
– Use cache miss profile for loop-oriented benchmarks

• Code placement affects decompression overhead
– Future: unify code placement and compression
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Web page

http://www.eecs.umich.edu/compress


