
Power Shifting in Thrifty Interconnection Network

Jian Li Wei Huang Charles Lefurgy
IBM Research - Austin

Austin, TX
jianli, huangwe, lefurgy@us.ibm.com

Lixin Zhang∗

Institute of Computing Technology
Chinese Academy of Sciences

Beijing, China
zhanglixin@ict.ac.cn

Wolfgang E. Denzel
IBM Research - Zurich

Rueschlikon, Switzerland
wde@zurich.ibm.com

Richard R. Treumann
IBM System & Technology Group

Poughkeepsie, NY
treumann@us.ibm.com

Kun Wang
IBM Research - China

Beijing, China
wangkun@cn.ibm.com

Abstract

This paper presents two complementary techniques to

manage the power consumption of large-scale systems with

a packet-switched interconnection network. First, we pro-

pose Thrifty Interconnection Network (TIN), where the net-

work links are activated and de-activated dynamically with

little or no overhead by using inherent system events to

timely trigger link activation or de-activation. Second, we

propose Network Power Shifting (NPS) that dynamically

shifts the power budget between the compute nodes and

their corresponding network components. TIN activates

and trains the links in the interconnection network, just-in-

time before the network communication is about to happen,

and thriftily puts them into a low-power mode when com-

munication is finished, hence reducing unnecessary network

power consumption. Furthermore, the compute nodes can

absorb the extra power budget shifted from its attached net-

work components and increase their processor frequency

for higher performance with NPS. Our simulation results

on a set of real-world workload traces show that TIN can

achieve on average 60% network power reduction, with the

support of only one low-power mode. When NPS is en-

abled, the two together can achieve 12% application per-

formance improvement and 13% overall system energy re-

duction. Further performance improvement is possible if

the compute nodes can speed up more and fully utilize the

extra power budget reinvested from the thrifty network with

more aggressive cooling support.

∗This work was performed while Lixin Zhang was with IBM Research

- Austin.

1 Introduction

Power and energy consumption has become a mounting

problem in servers, data centers and other large-scale sys-

tems. Energy use in these systems is projected to increase to

100 billion kWh in 2011, which will equate to 2.5% of the

total U.S. electricity consumption and $7.4 billion in energy

bills [5]. The looming system energy crisis and its corre-

sponding power delivery and cooling requirement demand

future computer systems to be built with much stringent

power constraint than those nowadays. This trend is even

more true for conventional power-hungry supercomputing

systems, which accommodate High Performance Comput-

ing (HPC) workloads. As a result, low power has become a

first-class design requirement for HPC systems [11].

A large-scale system running HPC workloads, can in-

clude hundreds of thousands of processing nodes con-

nected via a large packet-switched interconnection network.

A closer look into these systems reveals that the power

consumption of interconnection links (including link con-

trollers) constitutes not only a majority of the switch power,

but also a substantial percentage of the total system power.

For instance, the links in an IBM 8-port 12X switch can take

64% of the switch power [18]. The power consumption of

the interconnection network in HPC systems can contribute

up to around 30% the total system power [23]. When com-

pute nodes are energy proportional with respect to the com-

putation that they are performing, the network power con-

sumption can be an even more significant fraction of the

total cluster system power, e.g., 50% [3]. Current high-

speed links in the interconnection networks require contin-

uous pulse transmission to keep both ends synchronized,

even when no data is transmitting. Therefore, the average

power consumption of such links is almost identical to their

0

200

400

600

800

1000

1200

1400

1600

1
.E

-0
9

1
.E

-0
8

1
.E

-0
7

1
.E

-0
6

1
.E

-0
5

1
.E

-0
4

1
.E

-0
3

1
.E

-0
2

1
.E

-0
1

1
.E

+
0

0

1
.E

+
0

1

1
.E

+
0

2

N
u

m
b

e
r

o
f

M
e

s
s

a
g

e
s

Message Inter-arrival Time (sec)

0

5

10

15

20

25

30

35

1
.E

-0
9

1
.E

-0
8

1
.E

-0
7

1
.E

-0
6

1
.E

-0
5

1
.E

-0
4

1
.E

-0
3

1
.E

-0
2

1
.E

-0
1

1
.E

+
0

0

1
.E

+
0

1

1
.E

+
0

2

N
u

m
b

e
r

o
f

M
e

s
s

a
g

e
s

Message Inter-arrival Time (sec)

Figure 1: Distribution of MPI message inter-arrival time of SPPM

(top) and WRF (bottom).

worst-case power consumption [34].

Current HPC system deployment typically assumes a

worst-case scenario for the power sources and cooling sys-

tems. We observe that HPC workloads rarely operate all

system elements at their maximum capacity simultaneously.

For example, infrequent communication patterns exhibited

by many workloads allow provisioned network links to stay

idle for long periods of time. This is similar, but at a dif-

ferent scale, to what happens within a local compute node,

where its processors and memory subsystems typically are

not both busy.

Fig. 1 shows the distribution of MPI (Message Passing

Interface) message inter-arrival time (time between arrival

of two messages) for SPPM [27] and WRF [26]. The un-

derutilization of interconnection networks is apparent in this

figure. Most messages finish transmission long before their

next message requests, resulting in a lot of I/O idle time.

In SPPM, a majority of messages are separated by 100 µs

or longer, while, in WRF, all the messages are separated

by at least 100 µs. Two main reasons contribute to these

phenomena. First, overlapping computation and commu-

nication is generally hard for many HPC workloads [2].

Consequently, they often exhibit distinct and bursty com-

putation and communication phases at run time. Second,

many scalable HPC workloads are often compute bound to

sustain the scalability and do not require much inter-node

communication. As a result, a large portion of the power

provisioned for communication-intensive workloads (e.g.,

FFT, PTRANS and GUPS) at HPC centers, may be wasted.

The power paid to provision resources that are not trans-

formed into useful computation or communication is called

…...Proc #0

w/ caches

Proc #N

w/ caches

Memory

Shared bus

Network adapter

Switch/Router

Switch/Router Switch/Router

…...Proc #0

w/ caches

Proc #N

w/ caches

Memory

Shared bus

Network adapter

Switch/Router

Complete communication path Path of network links

Compute

node 0

Compute

node M

Figure 2: A data transmission path in a large-scale interconnected

system.

stranded power.

Fig. 2 illustrates a data communication path in a system

from a sender compute node (compute node 0) to a receiver

compute node (compute node M). In this figure, each com-

pute node is an SMP (Symmetric Multi-Processor). When

a sender processor (processor N in compute node 0) initi-

ates a transfer, it fetches data from its local memory and

sends it through a bus shared with other processors in the

SMP node. The network adapter transforms the data mes-

sages into network packets. The packets then go through

a number of switches (i.e., network hops) in a multi-stage

network, before reaching the destination node. At the des-

tination, the network packets are reformatted by the receiv-

ing network adapter and then sent to the receiving processor

(processor N in compute node M). The receiving data is nor-

mally copied to the local memory of the receiving processor.

Note that some systems may have integrated switches and

routers, a.k.a. switchless network, but networking functions

still exist.

Based on the insights shown in Fig. 1 that interconnec-

tion network can be heavily underutilized, we explore a

technique to power up the network links, e.g., those con-

necting switches and routers in Fig. 2, from their low-power

states right before they are needed with no or very little

overhead, by relying on hints from built-in system events.

For instance, a data transfer is often preceded by a series

of special commands, such as memory-mapped I/O writes,

that sets up the switch. The first such inherent command

can be viewed as an indication that a data transfer is about

to happen, thus a link activation sequence should be started.

In addition to the power management of the interconnection

network, we propose to shift the “saved power” from the un-

derutilized network components (e.g., switch and links) to

their corresponding local compute nodes, with which they

share the same power supply or Power Distribution Unit

(PDU). Such power shifting reduces the stranded power as-

sociated with the interconnection network, when it is idle.

We then increase the processor frequency of the compute

nodes for improved performance under the same overall

power budget.

Overall, this paper makes the following contribu-

tions:

• We propose Thrifty Interconnection Network (TIN), which

includes a hardware approach that overlaps inherent sys-

tem events with link transition delay for significant net-

work power reduction without noticeable network perfor-

mance overhead. It also includes a software extension that

uses software-initiated commands as hints to activate and

release links.

• We propose Network Power Shifting (NPS) that dynam-

ically shifts the limited power budget between compute

nodes and their corresponding local network components

for the maximum application performance within a given

overall power budget.

• We simulate our techniques with a set of traces from real-

world MPI-based HPC workloads and demonstrate that

the proposed techniques have the potential of significant

power-performance benefits.

2 DESIGN

2.1 Thrifty Interconnection Network

Conventionally, the links in an interconnection network

are continuously in an operational state, i.e., full-power

data transmitting state. Alternatively, some researchers

have proposed to maintain the links at different low-power

modes based on the prediction of the intensity of future

data traffic [32]. Those proposals typically require sophis-

ticated prediction hardware to sustain the same communi-

cation performance level; therefore, their effectiveness is

largely dependent on their prediction accuracy. However,

unlike many commercial workloads, HPC workloads typ-

ically cannot tolerate performance loss due to mispredic-

tion [3]. Furthermore, some emerging workloads, such as

financial computing, cannot tolerate such performance loss

either. Therefore, in this work, we focus on non-prediction

power-saving techniques.

Our approach is based on an observation that significant

delay can exist from when a switch sees the first command

of a data transfer to when it sends out the first data packet.

For instance, a data transfer to a remote node may take the

following steps to start up: (1) The sender node sends a se-

ries of memory-mapped I/O writes to set up the network

adapter; (2) The network adapter interprets the commands

and determines the physical addresses of the sending mes-

sage; (3) The network adapter issues appropriate read re-

quests to fetch message data from local memory or caches;

(4) The switch sends out the fetched message data packe-

tized by the network adapter.

In a node with a snoop-based coherence protocol, each

operation between the network adapter and the processor or

memory can include a snoop phase, a response generation

phase, and a data transfer phase, each of which may take

many hundreds of cycles. We observed in some large-scale

Activate link !
before data arrives!

Cascade message !
completion!

MsgCnt == 0?!

Select energy-saving !
states based on slack!

Y!

Cascade message request !
to next switch!

along message path!

Increment message !
counter!

Decrement message !
counter!

Link Activation & Cascade! Link Release & Cascade!

Detect intrinsic !
hardware events !

(message request)!

Detect message !
completion!

Do nothing!
N!

Figure 3: Link management policy for link activation (left) and

release (right).

SMP systems that the snoop latency could be in the range

of hundreds of processor cycles and memory fetch latency

can be over a thousand processor cycles. As a result, each

of the write and fetch operations in aforementioned steps

(1) and (3), respectively, can take a thousand processor cy-

cles or more to complete. Multiple thousands of cycles may

have elapsed from when the network adapter sees the first

special write command to when the switch sends out the

first packet, even without contention. Therefore, we pro-

pose to use the snoop request of the first write command in

the aforementioned step (1) as a trigger to start activating

the proper link or links at the first switch after the network

adapter. At each intermediate hop, a switch treats the trigger

signal as a special single-flit message to wake up the proper

links, which can be decided by the specific routing schemes

in place (Section 2.1.1). At the destination node, the special

message is discarded.

Note that our proposal differs from prior art in that we do

not use prediction to start link transition before data com-

munication arrives. In addition, since the technique is at the

granularity of links and the system node they attach to, it is

independent of the choice of network topology and routing

schemes.

2.1.1 Policy

Fig. 3 illustrates a high level flowchart of providing link

services in the thrifty network. First, when the network

adapter in the sender node detects a write from the local

node to start a data transmission, it immediately starts acti-

vating the local switch. Second, when the adapter receives

enough write commands such that it can determine the des-

tination address, it generates a special single-flit message as

a link activation message, to pass onto its local switch. The

switch determines the next hop of the transmission and ac-

tivate the associated link or links. It then forwards the link

activation message to the next switch in the path.

In order for the link activation message to traverse to the

next switch while the data network path is in a low-power

mode, a separate control network is needed and has to be

always powered on for the link activation message to flow

through. The control network is a companion network of

the data network that has the same reach of the latter. The

control network may be implemented by using designated

narrow links or consuming a small fraction of the data net-

work link width. Either way, it consumes much less power

than the data network.

When a next switch receives a link activation messages

from the control network, it powers up its own data links

and also forwards the activation message to the next hops

on the path. The cascading process continues until the acti-

vation signal reaches the destination node, forming a wave-

front of cascading link activations followed by data trans-

mission. The link activation message is discarded at the

destination node.

Choosing a data network path to be woken up by the con-

trol network is straightforward in a static routing scheme,

since it is deterministic. In an adaptive routing scheme,

the path to forward can be unpredictable. Since the role

of the control network is to wake up the data network in

time to sustain performance, we propose to wake up all

the necessary data paths that an adaptive routing scheme

may use. The control network routing scheme obtains the

path information from the one in the data network. It then

marks all the legitimate ports for the message and initiates

the activation in the corresponding data network links. The

hardware support is minimal for marking the to-be-woken-

up routes since existing data network routing schemes are

already there. Correspondingly, the data network routing

hardware has to be always on as the control network; how-

ever, the extra power consumption of these components are

much smaller compared to the others, e.g., switch crossbars,

port buffers and link controllers.

When the network adapter of the sender node finishes a

data transfer, it sends out a link release message through the

path. To remember the number of outstanding data trans-

fers and support link de-activation, each link maintains a

message counter. The counter is incremented whenever an

activation signal is received (message initiation) and decre-

mented whenever a release signal is received (message com-

pletion), on the same local link. When the counter of a

link reaches zero, the link and its controller fall into a low-

power mode, albeit the control network is always on. When

the counters of all links controlled by a switch reach zero,

the switch itself goes to a low-power mode. In the case of

unsolicited MPI messages, the message counter works in

the same fashion, incremented at a message initiation and

decremented at a message completion. When a link pow-

ers up, its message counter is reset to zero. The number of

in-flight messages on the same link should be well covered

by a 32-bit message counter, which is not critical in either

chip area or circuit timing. Counter overflow triggers a fault

RX!

TX!

Tx!
Link!
(Power)!
Contrl!

±Cnt!

Msg!
Decode! Laser!

Detector!

Request!

Complete!

Slack!

Link(s)!
Drv!

Amp!Quant!

Rx!
Link!
(Power)!
Contrl!

New! Existing!Modified!

Network Adapter! Switch!

To next TX or network adapter!

Switch!

Timer!

Figure 4: Hardware support for link management.

signal to the switch firmware.

In practice, the power-down of a link can start imme-

diately or be delayed for a short period of time using a

timer (Section 2.1.2) in case a new message will be pass-

ing through very soon. A particular low-power state can

also be selected based on the information contained in the

slack time signal (Section 2.1.2).

2.1.2 Hardware Support

Fig. 4 illustrates the hardware support for the thrifty net-

work link management. We use optical links as an exam-

ple, since it is more popular than electrical links to build

large-scale interconnection networks. The transmitter mod-

ule includes two new components, a message counter and a

timer. In addition, power-aware support is required in the

message decoder of the network adapter, the sender link

controller and the receiver link controller. Other compo-

nents are largely unchanged, such as the driver and laser

in the transmitter module, the photo detector, amplification

and quantization units in the receiver module.

The message decoder in the network adapter generates

three signals to the link power controller. The message re-

quest signal is triggered when the sender compute node sets

up the network adapter using a series of special writes (step

1 in Section 2.1), which will be followed by the network

address that relates to the link paths (step 2 in Section 2.1).

The message completion signal is typically triggered by the

tail of a message. A slack signal infers the inherent system

overhead. It is predetermined by the choice of the intra-

node communication protocol, which indicates the slack

time between the command to send data and the comple-

tion of assembling and packetizing the data, i.e., the latency

of moving data to the network adapter. It provides a hint

to the link power controller to choose a low-power state for

the installed system, such that the link activation completes

before data transfer happens.

The message counter monitors the propagation of the

data messages through the switch. The counter is incre-

mented by the assertion of a message initiation signal and

decremented by the assertion of a message completion sig-

nal. A zero output signal of such a counter is indicative of

a completion of the message flow (i.e., data traffic) through

the switch. In case of application errors or compute node

failures, the message counter may be in incorrect states. We

assume the recovery mechanism at the faulty source is able

to send a correction message (i.e., extra initiation or com-

pletion signals) to inform the downstream switches to ad-

just the message accounting, albeit after some delay. If a

disastrous failure happens, the whole system including TIN

will have to be restarted. Protocols and mechanisms to ef-

ficiently handle fault tolerance in TIN are interesting areas

for further study.

The timer receives the output count signal of the mes-

sage counter. In response to a zero output count signal, af-

ter a pre-determined time delay, it produces a signal, which

prompts the power controller to change the power state of

the associated link (for example, to switch the link from an

operational state to a low-power state).

The transmitter link power controller receives link initi-

ation signal (message request), link release signal from the

message counter, and a slack time signal from the timer.

The power controller can put a link in an operational (i.e.,

full power) state or one of the predetermined low-power

states. It also passes the link initiation, link release and

slack time signal to the next hop via the control network.

2.1.3 Software Extension

It is possible that some systems may not have sufficiently

long intervals in the intra-node protocol to completely over-

lap the time required to initiate a link into the operational

mode from certain deep low-power mode, e.g. one that re-

quires firmware support. In that case, prolonged link transi-

tion time will adversely affect performance. This activation

delay may be reduced or eliminated if run-time or programs

are able to issue link activation commands sufficiently ear-

lier. In this section, we discuss how software support for

link activation and release can be implemented in MPI. We

propose two new MPI primitives: one to activate a commu-

nication path (LINK ACTIVATION) and one to release it

(LINK RELEASE). They can be generated by certain MPI

run time system as in [24], or implemented as macros in

MPI code. In this paper, we use macros in MPI source code

as a case study.

Fig. 5 shows the pseudo MPI codelet for the software

initiation of the thrifty network. A LINK ACTIVATION

macro with tag L is placed before MPI CALL A to wake

up the corresponding links. The programmer needs to place

the command properly to ensure links are fully activated

before data transmission; otherwise, the system may run

slower due to insufficient leeway in the hardware. This

special command triggers a library call that bypasses the

……!
LINK_ACTIVATION(L) /* Command to inform network adapter to activate links that MPI_CALL_A will use. */!

……!
MPI_CALL_A(, , ,)!

LINK_RELEASE(L, SHUTDOWN) /* Command to hint network adapter to shutdown corresponding links. */!
……!
LINK_ACTIVATION(M) /* To activate a different set of links. */!

……!
MPI_CALL_B(, , ,)!

LINK_RELEASE(M, KEEP_ON) /* If too close together, this command and the next, LINK_ACTIVATION(M),

can be eliminated. */!
……!

LINK_ACTIVATION(M)!
……!

MPI_CALL_C(, , ,)!
LINK_RELEASE(M, SHUT_DOWN) !
LINK_ACTIVATION(N) /* To activate a different set of links. */!

……!
MPI_CALL_D(, , ,)!

LINK_RELEASE(N, SHUT_DOWN)!
……!

Figure 5: Pseudo MPI codelet for the software initiated link

activation/de-activation.

MPI protocol layers and directly communicates with the

network adapter. The network adapter then issues a spe-

cial single-flit message to the local switch for the proposed

on-demand (data) link services, via the always-on control

network. A LINK RELEASE macro with the same tag L is

placed right after the MPI CALL A, which decrements the

message counters (Section 2.1.2). However, link shutdown

is only triggered by the link message counter in the hard-

ware (Section 2.1.2). Because multiple software threads

may communicate via the same link at run time, only the

hardware message counter can guarantee all the traffic over

the link is completed.

If two adjacent MPI calls share the same communica-

tor and rank, e.g., the same tag M in Fig. 5, the pro-

grammer can merge the adjacent LINK RELEASE and

LINK ACTIVATION macros to reduce unnecessary link

transitions. Therefore, a pair of LINK ACTIVATION and

LINK RELEASE can specify the start and end of a com-

munication phase that consists of multiple message trans-

missions.

2.2 Network Power Shifting

The thrifty network not only offers potential for power

reduction in the network, but also opens the opportunity

for extending the idea of power shifting within a compute

node [16] to power shifting between compute nodes and

their interconnection network. Power shifting was origi-

nally proposed to trade off performance for reducing peak

power consumption. In this work, we instead investigate the

potential of shifting the excess power budget from the inter-

connection network back to the compute nodes for better

performance improvement.

In this case, the stranded power saved by the network

can be reused by compute nodes to achieve higher chip fre-

quency and application performance. A related example is

Intel’s Nehalem R© processor which can shift power away

from underutilized cores and boost the frequency of the

remaining core(s) by a large margin (60% or even more).

Nehalem can optionally support chip-level frequency boost

for all the cores and still do not exceed the thermal design

!

!

y = 5E-08x2 - 0.0002x + 0.2602

0

0.2

0.4

0.6

0.8

1

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

N
o

rm
.

F
a

n
 P

o
w

e
r

Fan Speed (RPM)

Measured
Power

Poly.
(Measured

Power)

Figure 6: Measured fan power of a state-of-the-art system with

series fans and its trend line.

power of the whole chip. Circuit timing due to overclock-

ing can still be maintained as indicated from some Nehalem

results. In our network power shifting mechanism, power

delivery constraints are also met. This is because typically

only a portion of the excess power from network nodes can

be reclaimed by the compute nodes, while the two typically

share the same power supply.

A critical issue to apply power shifting for performance

improvement is the thermal constraint of the computing

node that is limited by its cooling capacity. We propose

to include cooling power in the overall node (compute

and adapter/switch/links) power budget and shift the excess

cooling power from an idle network node to its associated

computing node as well. In particular, we take advantage

of the reliability-aware redundant fan design in most mod-

ern server systems by turning on extra fan(s) for additional

cooling capacity and increased processor frequency, under

the same overall system power budget. The additional cool-

ing power for the compute nodes comes from the excess

cooling power shifted from the idle network switches and

links. Fig. 6 shows the relationship between the measured

fan power (normalized to its maximum) and speed in a state-

of-the-art server system. Its trend line is also shown as a

polynomial equation. Additionally, cooling capacity is pro-

portional to fan speed. We then apply these relational func-

tions to our simulated system configuration in our evalua-

tion (Sections 3 and 4). With a cooling configuration of up

to two series fans in operation, our analysis shows that up

to 36% chip-level frequency boost can be achieved. Yet, we

conservatively assume a two-fan cooling capability of up to

25% chip-level frequency boost in our evaluation.

In addition to the enhancement in the cooling system,

we also apply two on-chip Vdd supplies, one for the nom-

inal frequency and the other for the up-to 25% chip-level

frequency boost. Such a multi-Vdd design significantly re-

duces the DVS transition time to well under one microsec-

ond [4, 13, 21]. To fully explore the benefits of power shift-

ing, the voltage regulator modules of the network compo-

nents and particularly the computer nodes may have to be

over-provisioned.

Power shifting can be done between a pair of sender and

receiver and their interconnection network path, between a

group of senders and receivers, or among the whole inter-

connected system. However, since the links in the data (and

control) network typically do not follow the same topology

as the power supply distribution network, it can be diffi-

cult to determine to which compute node (if any) a link’s

power budget can be shifted. Therefore, we consider net-

work power shifting at the granularity of a stage, which in-

cludes one or more compute nodes and their attached net-

work components (adapter, switch and links), in a multi-

stage network path. In other words, a stage in a network

path, is equivalent to a node machine in an interconnected

cluster of machines.

When all the traffic has completely passed through the

first stage of the network path, its network adapter triggers

TIN to transition the locally attached network components

(switch and links) into a low-power mode. At the same

time, the network adapter informs the power management

mechanism in the locally attached compute node(s) to crank

up the processor chip frequency using the aforementioned

multi-Vdd frequency scaling mechanism. The same pro-

cess repeats at the remaining stages of the multi-stage net-

work path, until it ends at the destination stage. On the

other hand, when the network traffic is about to happen, the

network adapter signals the locally attached compute nodes

to scale back to nominal frequency before signaling the lo-

cally attached network components to power on, in order

to maintain the overall power budget. The compute nodes

keep operating during frequency scaling.

We consider an open loop control in this work. There-

fore, the extra firmware overhead for run-time power mea-

surement, which can be over a millisecond, can be avoided.

Without a feedback control, the network adapter maintains

an estimate of the power usage as network components are

powered on and off over the time. It sends proper signals

to its local compute nodes to request speed change in the

processor such that the system peak power budget is not vi-

olated. This mechanism requires built-in hardware support

for estimating the peak power of a network link and the peak

power for the processor running at nominal and frequency-

boost modes. This is similar to the power estimates that

manufacturers publish in data sheets today.

3 Evaluation Method

3.1 Simulation Framework

We use the MARS simulation framework [12] to evalu-

ate our designs. MARS is an end-to-end trace-driven sim-

ulation framework that can simulate systems with hundreds

of thousands of interconnected processors. MARS simu-

lates both the processors and the interconnection network in

detail. It features several network topologies, flexible rout-

ing schemes, arbitrary application task placements, point-

to-point statistics collection, and data visualization support.

MARS itself is a parallel program that runs over MPI. It has

been used for the performance evaluation of two industry

trace 0

trace 1

trace 2

.
.

.

MPI trace
files

Config.

MPI Replay &
Task

Placement

T
a

s
k

 P
la

c
e

m
e

n
t

trace M

Post-process

Data

Visualization

HCA and Switch
–! Abstract processor
model

Interconnection

Network of

Certain Topology

Network
–! Parallel simulation support

.
 .

.

 .

.

.
.

.
.

.
.

.
.

.

Pre-process

Trace

Synthesizer

Customized

Traffic Gen.

P0

Pn

HCA/
Switch

Node 0

.
.

.

P0

Pn

HCA/
Switch

Node 1

.
.

.

P0

Pn

HCA/
Switch

Node N

.
.

.

Figure 7: MARS: An end-to-end simulation framework for large-

scale systems.

large-scale systems.

Fig. 7 illustrates the components of MARS. The core part

of MARS is a compound module of detailed HCA (Host

Channel Adapter, a.k.a., network adapter) and switch simu-

lation models, which have an interface to a processor model.

A few processors can share one HCA via a shared bus and

form an SMP node. The input to MARS can be MPI traces

collected from real hardware, traces generated by a trace

synthesizer, or a customized traffic generator. More than

one trace file (e.g., MPI task) can feed one processor. A

task placement module handles the dispatch of traces to

processors. The output of the simulation can include both

summary and detailed statistics from each node. The statis-

tics, e.g. network traffic patterns, can be analyzed by post-

process tools and be visualized as movie clips.

In the MPI trace-driven simulation, MARS respects the

communication dependency between MPI tasks, models the

acknowledgments in MPI handshaking and other MPI pro-

tocol operations, which affects the semantic flow and timing

of actions across the network and among compute nodes, in

addition to the network simulation. The wall-clock timing

dependencies in the collected traces do not affect the sim-

ulated semantic flow. Therefore, MARS is essentially an

execution-driven simulator of sequences of MPI commands

(not compute instructions) on top of the cycle-accurate net-

work simulation. We annotate the traces to trigger activa-

tion events and generate special single-flit messages for link

operations, taking into account the transition time of a low-

power link state. In the simulation, a second link activation

message collides with a first one if the link is still on. We

made no changes to the assumptions about the underlying

MPI library used in the system.

3.2 System Configuration

In this paper, we evaluate our techniques with a hierar-

chical direct interconnect architecture that has a point-to-

point three-level complete graph topology, as illustrated in

Fig. 8. A version of such a topology has been implemented

in the IBM PERCS system for the DARPA funded HPCS

program [8].

Each compute node is a multi-core chip in this system.

A switch module is associated with one or a few comput-

ing nodes. A small set of switch modules are directly and

fully interconnected via the first level links (level-1 links),

forming first-level groups, e.g., boards. Multiple boards are

directly and fully interconnected via a second level links

(level-2 links), forming second-level groups, e.g., racks. Fi-

nally, multiple racks are directly and fully interconnected

via the third level links (level-3 links), forming third-level

groups, e.g., the full system.

Such a hierarchical complete-graph topology tries to bal-

ance the number of hops to reach other nodes and the total

number of links required to build the network. Each net-

work packet traverses at most one global channel, level-3

links in this case. By reducing global channels, such a hier-

archical direct interconnect architecture can significantly re-

duce cost compared to other conventional topology such as

Fat Tree, while maintaining the same bisection bandwidth.

A general form of the topology has been studied by Kim et

al [20].

A property of this architecture is that routing between

arbitrary nodes may involve multiple intermediate hops via

links at the different hierarchy levels. For example, to reach

a destination in another rack, a level-1 link hop may be re-

quired to reach the appropriate switch module that has a

level-2 link to the right first-level group (board) that has

a level-3 link to the right second-level group (destination

rack) and vice versa on the destination rack. Fig. 9 shows

an example of the longest direct route that is possible in

the system. In the figure, Node S is the source node, Node

D is the destination node, Node I1-I6 are the intermediate

nodes, L1 is a level-1 link, L2 is a level-2 link, and L3 is a

level-3 link. In this case, a message traverses the network

with seven hops passing one level-3 link, two level-2 links,

four level-1 links, and six intermediate nodes. The reason

for intermediate boards, Board I1 and I2, is that only these

two boards may have the level-3 link connection between

source and destination racks.

The size of the full-up system can be calculated as fol-

lows. If we leave out one level-1 port for simplicity, the

number of compute nodes in a board is the same as the num-

ber of level-1 links (NL1) of a compute node, since all the

compute nodes in a board are fully connected. Since each

compute node has a number of level-2 links, the number of

boards in a rack is the number of level-1 links (NL1) of a

compute node times the number of level-2 links (NL2) of a

compute node, (NL1)x(NL1), forming a two-level complete

graph. Furthermore, the number of compute nodes in a rack

is (NL1)x(NL2)x(NL1). Since each compute node also has

a number of level-3 links, the number of racks in the full-

up system of a three-level complete graph is the number of

level-3 links (NL3) of a compute node times the number of

full rack-to-rack connectivity

level 3

(L3)

level 2
(L2)

level 1
(L1)

switch
module

switch
module

switch
module

switch
module

.. ..

..

full connectivity

..

.. ..

....

.. ...

...

full board-to-board connectivity
rack

boardboard

… … … …

switch
module

switch
module

switch
module

switch
module

.. ..

rack

board

..

...

… … … …

..

board

.. ..

..

..

..

......

..

..

...

switch
module

switch
module

switch
module

switch
module

.. ..

rack

board

..

...

… … … …

..

board

.. ..

..

..

..

......

..

..

Network subsystem

hierarchy levels

full board-to-board connectivity full board-to-board connectivity

full connectivity full connectivity boardfull connectivity full connectivity full connectivity

Figure 8: A hierarchical direct interconnect architecture with a three-level complete graph.

Node S Node I3

Node I2Node I1

Board S Board I1

Rack S

Node I4 Node D

Node I6Node I5

Board I2 Board D

Rack D

L1 L2 L1

L3

L1 L2 L1

Figure 9: Example direct route in the hierarchical network topol-

ogy of a three-level complete graph. S, I and D represent Source,

Intermediate and Destination, respectively. E.g., “Node I1” means

the first intermediate node.

compute nodes in a rack, (NL1)x(NL2)x(NL1). Therefore,

the number of racks in the full-up system equals to (NL3) x

(NL1)x(NL2)x(NL1). Finally, the size of the full-up system

is the number of nodes in a rack times the number of racks

in the full-up system, i.e., (NL1)x(NL2)x(NL1) x NL3 x

(NL1)x(NL2)x(NL1) nodes.

The main parameters for the simulated system are listed

in Tab. 1. The simulated processor model is an abstraction

of an IBM POWER5-like processor R©, with 2 GHz cores at

45 nm processor technology and corresponding cache mem-

ory. Apparently, setting nominal frequency at 2 GHz is very

low for what 45 nm technology can achieve. The reason is

that we expect future power-efficient HPC systems to be

built with lower-frequency and power-efficient processors,

similar to IBM’s BlueGene R© approach. Extrapolating from

Intel Nehalem’s turbo mode specification and our own ex-

periments in Section 2.2, we assume the compute node can

be over-clocked by up to 25% to 2.5 GHz. We scale pro-

cessor frequency with two Vdd supplies, 0.65v and 0.95v

for 2GHz and 2.5GHz, respectively. The switching delay

between the two frequencies is well under 1µs [4, 13, 21].

The switches also run at 2 GHz. In this experimental setup

under study, one switch chip is connected to one compute

node for simplicity. Recall the topology in Fig. 8 and the

analysis above, these parameters represent a system of up

to (NL1)x(NL2)x(NL1) x NL3 x (NL1)x(NL2)x(NL1) =

(4x2x4) x 4 x (4x2x4) = 4096 nodes connected by the cor-

responding three-level hierarchical direct network.

We carefully choose three low-power modes to quantify

Table 1: System configuration

Processor POWER5-like @ 2 GHz with caches, 45 nm,
0.65v and 0.95v supply voltages, 120 W peak power

Switch 3-stage with buffers @ 2 GHz, 45 nm,
50 W peak power including link power
11 ports (4 + 2 + 4 + one to local compute node)

Level-1 link 4 @ 2 GB/s bidirectional, 3 ns latency, 3 feet long
Level-2 link 2 @ 2 GB/s bidirectional, 6 ns latency, 6 feet long
Level-3 link 4 @ 1 GB/s bidirectional, 30 ns latency, 30 feet long

Control link width 1/8 of its companion data link
Optical transceivers 3 W peak power
Memory/storage/etc 80 W peak power

their power-performance tradeoffs, by consulting appropri-

ate literature and industry data sheets [1, 9, 19, 22, 28, 34].

We assume optical links are deployed in the target system,

each of which along with its transceivers consumes three

watts [1]. Regarding link power management, links are

re-synchronized at each activation and it may take a few

hundred nanoseconds depending on the system size. On

the other hand, powering down and up the majority of a

(switch/router) chip in an SMP node with firmware support

can take up to a millisecond. We conservatively take this

assumption from existing server designs, while the exact

time may vary dependent on the SMP node size. There-

fore, we choose three transition time: 1µs, 2µs and 1ms.

They correspond to three low-power modes of increasing

power savings and transition delay: (1) power-gated links

where the power supply to the links are shut off to save both

dynamic and static power of the links of a switch (Low-

Power Mode 1, LPM1); (2) clock-gated switch buffers and

power-gated crossbar in the switches (Low-Power Mode

2, LPM2), in addition to power-gated links in LPM1; and

(3) all network components, including all switch buffers,

crossbars and links, are power-gated (Low-Power Mode 3,

LPM3). A power-gated link (LPM1) means all data trans-

mission related components are power off and consume

zero power, except that the control link and its logic are al-

ways on, which use one-eighth of their corresponding data

links width and consume one-eighth of the corresponding

data link power. Recall that activation and release messages

go through the control links. (Our evaluation in Section 4

takes this into account.) In LPM2, a switch with clock-

gated buffers and power-gated crossbar consumes 50% of

the nominal switch power [22, 28]. In LPM3, a power-

gated switch (LPM3) consumes almost zero power and we

ignore the residue power of the remaining monitor logic.

Power consumption during a transition is modeled as a lin-

ear function between its start and end power states. We

further assume 64% of the nominal switch power comes

from link power. We also conservatively assume 20% of

total system power budget is allocated to the interconnec-

tion network at the design phase for future large-scale sys-

tems [3, 8, 23]. Peak power consumption by main memory,

storage and other node components are 80 W.

Since the overhead of frequency scaling with dual volt-

age supply is much smaller than the aforementioned link

transition time, the chip frequency-boost transition time of

processors is contained in the link transition time in our sim-

ulation.

We use MPI traces collected from a few supercomput-

ing centers to drive the simulations. These workloads are:

AMBER [10], GYRO [15], HYCOM [17], LAMMPS [31],

POP [33], SPPM [27], UMT2K [25] and WRF [26].

4 SIMULATION RESULTS

In this section, we first evaluate the thrifty interconnec-

tion network and network power shifting techniques on a

simulated 32-node cluster partition that runs 32 MPI tasks

for each workload. In this 32-node partition, only level-1

and -2 links are used for data communication. We then use

WRF, a popular weather forecast workload, to explore the

power-performance of TIN and NPS in a larger-scale sys-

tem, where all three levels of links are populated for data

communication. We allocate one MPI task per compute

node and use direct routes in the simulation experiments.

In addition to LPM1, LPM2 and LPM3 (Section 3.2),

we add an Ideal low-power mode in this study. Ideal means

both zero transition delay and zero power consumption in

the links and switches. It also applies zero transition delay

for the voltage and frequency scaling in the compute nodes.

Ideal serves as the upper bound. To further understand the

trade-off, in the following we also plot results of an “in-

telligent” scheme that always chooses the best of LPM1,

LPM2 and LPM3. Effectively, this is the minimal power

and energy consumption and maximum performance of the

three. This scheme is the upper bound of adaptive power

management that can choose one of the three low power

modes at run time. Therefore, we call it Optimal Adaptive

(O-Adaptive).

4.1 Network Power Reduction with TIN

Fig. 10 shows the average power consumption of TIN,

normalized to the original network power without TIN sup-

port, in a 32-node system. The ideal thrifty network power

is only 18% of the nominal power. This is because these

!

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

N
o

rm
a
li
z
e
d

 N
e
tw

o
rk

 P
o

w
e
r

Applications

Ideal
O-Adaptive
LPM1
LPM2
LPM3

Figure 10: Normalized average power consumption of the thrifty

interconnection network (lower is better).

applications present high parallel efficiency; therefore, the

network is idle for most of the time. When the link activa-

tion/deactivation overhead is included, the network power

increases to around 56%, 41% and 66% of the nominal

power for LPM1, LPM2 and LPM3, respectively. Interest-

ingly, LPM2 achieves the lowest overall power consump-

tion among the three, even though its power consump-

tion for each individual application may not be the lowest.

Since LPM2 with 2us transition latency (1us one-way) per-

forms best, it turns out that the software initiated network

link service was hardly invoked to achieve the best power-

performance on the studied workloads. In these workloads,

the cut-off LPM latency for software initiation is around

10us. On the other hand, we expect software initiated link

activation commands to be conservative to avoid shorter

than expected time to activate links.

AMBER, HYCOM and SPPM prefer LPM3, which has

the most power reduction even with the highest overhead.

This is because these applications are dominated by long

message intervals. However, GYRO, LAMMPS and POP

have no power reduction at all with LPM3, due to dominat-

ing short message intervals.

If multiple low-power modes are allowed to adapt to the

varied application communication patterns, further power

reduction can be achieved, as the O-Adaptive scheme

shows. Nonetheless, LPM2 alone achieves very close

power savings to O-Adaptive, thanks to its balanced moder-

ate transition time and power consumption.

Note that, our results do not include the savings for re-

ducing the cooling system load and are therefore relatively

conservative. In typical data centers, removing 1W of IT

power reduces cooling power by 0.2W to 1W, depending

on the efficiency of the data center facilities. Therefore, we

expect more savings in data-center power and energy bill,

when the cooling system power is included. On the other

hand, we do utilize cooling power shifting for enhanced fre-

quency boost as discussed in Section 2.2 and evaluate it next

in Section 4.2.

4.2 Performance Improvement with TIN and NPS

Fig. 11 shows the application performance improvement

with TIN and NPS, in a 32-node system. The extra power

budget from the thrifty interconnect network is reinvested

!

!

!

0.99

1.04

1.09

1.14

1.19

N
o

rm
.
S

y
s
te

m
 P

e
rf

o
rm

a
n

c
e

Applications

Ideal

O-Adaptive

LPM1

LPM2

LPM3

Figure 11: Normalized performance with power shifting over

thrifty network (higher is better).

onto the compute nodes with up to 25% higher chip fre-

quency. This corresponding compute speedup is bounded

by frequency boost since memory access does not speed up

accordingly. As a result, an average speedup of almost 17%

(22% maximum with HYCOM and WRF) is obtained in

the ideal case. Similar to the network power consumption

in Section 4.1, LPM2 achieve an average performance boost

of 12% that is very close to O-Adaptive.

Many of the power-performance results show that not

all the extra power budget shifted from the interconnection

network is used by the processors in the compute nodes,

since we assume the frequency boost can only be up to 25%

higher than the nominal. We expect more performance gain

if this limitation is relaxed (Section 2.2) and the compute

nodes can speed up more. Another interesting fact that may

contribute to the sub-optimal performance improvement is

an opportunity cost that, the speedup of a compute node in

one compute phase effectively reduces the corresponding

message inter-arrival time on its links, which leads to fewer

opportunities for the same links to transition into a low-

power mode. Nonetheless, our statistics reveal insignificant

effect of this opportunity cost for the studied workloads and

system setup.

Since we only increase chip frequency beyond its nom-

inal, we do not observe compute performance loss when a

compute node cannot boost its processor frequency in time.

On the other hand, as long as the links are woken up in time

with intrinsic system events for LPM1 and LPM2 or soft-

ware hints for LPM3, data communication over the links is

not delayed. As a result, we do not observe performance

loss with TIN and NPS for the studied workloads.

Note that, it is also interesting to consider distributing ex-

cess power to other nodes when reaching a nodes frequency

cap. We haven’t experimented with this approach for two

reasons: (1) Boosting the frequency of other nodes that are

probably not in the critical path will not improve overall per-

formance; (2) there is a potentially high overhead of track-

ing and scheduling other nodes not on the same paths.

!

!

0.8

0.85

0.9

0.95

1

N
o

rm
a
li
z
e
d

 S
y
s
te

m
 E

n
e
rg

y
 U

s
e

Applications

Ideal

O-Adaptive

LPM1

LPM2

LPM3

Figure 12: Normalized system energy use with power shifting

over thrifty network (lower is better).

4.3 System Energy Improvement with TIN and NPS

The power saved by the thrifty interconnection network

cannot always be completely re-invested in the compute

node speedup, due to the cap of 25% frequency boost. In

addition, the performance improvement with power shifting

shown in Fig. 11 reduces application execution time. As a

result, total system energy is reduced.

Fig. 12 shows the system energy use with TIN and

NPS, which is normalized to the original system, in a 32-

node system. Since the performance, i.e., execution time,

varies modestly among applications and their thrifty net-

work modes (Section 4.2), the system energy comparison

across them shows a profile that is similar to the network

power comparison (Fig. 10 in Section 4.1), but to a smaller

scale. Similar to Section 4.2, LPM2 achieves very close

energy reduction of 13% to O-Adaptive.

4.4 Scalability Study

We use WRF, a popular weather code, as a case study

for larger-scale systems. We conservatively choose a few

strong scaling WRF traces, where the WRF problem size

remains the same when the number of MPI tasks increases,

to study the scalability of TIN and NPS. Note that the WRF

problem size in this large-scale study is larger than the WRF

problem size in previous sections. Fig. 13A, 13B and 13C

shows the network power, application performance and

overall system energy, respectively, of WRF with 512,

1024, 2048 and 4096 MPI tasks. For fair comparisons, the

network power and system energy are calculated only for

the compute and switch nodes that are in use.

Since we use strong scaling traces, the network commu-

nication becomes more pronounced in larger scale runs. As

a result, network power usage with TIN steadily increases,

yet with a much slower pace than the MPI tasks increase.

The application performance improvement of NPS also de-

creases, due to the smaller weight of compute phase in over-

all execution time. As a result, the overall system energy

use also gradually increases. We, therefore, expect TIN and

NPS to be more effective in weak scaling than strong scal-

ing WRF runs.

0.2

0.4

0.6

WRF_512 WRF_1024 WRF_2048 WRF_4096

N
o

rm
a
li
z
e
d

 N
e
tw

o
rk

 P
o

w
e
r

Applications

Ideal

LPM1

LPM2

LPM3

0.99

1.01

1.03

1.05

1.07

1.09

1.11

1.13

1.15

1.17

WRF_512 WRF_1024 WRF_2048 WRF_4096

N
o

rm
.
S

y
s
te

m
 P

e
rf

o
rm

a
n

c
e

Applications

Ideal

LPM1

LPM2

LPM3

0.8

0.85

0.9

0.95

WRF_512 WRF_1024 WRF_2048 WRF_4096

N
o

rm
a
li
z
e
d

 S
y
s
te

m
 E

n
e
rg

y
 U

s
e

Applications

Ideal

LPM1

LPM2

LPM3

Figure 13: Network power (top, A, lower is better), system per-

formance (middle, B, higher is better) and system energy (bottom,

C, lower is better) of WRF with 512, 1024, 2048 and 4096 MPI

tasks.

5 Related Work

Lim et al. proposed an MPI run time system that dy-

namically reduces CPU performance during communica-

tion phase of MPI programs [24]. The run time system

identifies communication phases and selects processor fre-

quency in order to minimize energy-delay product, with-

out profiling or training. The analysis and subsequent volt-

age/frequency scaling are done within MPI. In our work,

we shift the saved power budget from the thrifty intercon-

nection network to boost the compute node frequency for

better application performance. Our software support for

the thrifty network can be also be implemented in an MPI

run time system.

Peh and Dally proposed flit-reservation flow control, in

which control flits traverse the network, reserve buffers and

channel bandwidth before data flits arrive [29]. Duato et

al. proposed to use probes that traverse a separate control

network, set up circuits on the data network for subsequent

messages and improve performance by removing flow con-

trol mechanisms from the data network [14]. In our work,

the separate control network is used to trigger the activa-

tion and shutdown of the data network to improve network

power efficiency without performance loss.

Kim et al. [19] proposed to use adaptive routing to route

data traffic to a smaller set of links in space when the over-

all link utilization is low. The unused links can then be dy-

namically shut down to save power, while the active links

operate at higher utilization. In our work, we propose to

utilize the time slack between command and data to hide

the power-mode transition delay of the same data link. The

two approaches are complementary to each other.

Shang et al. proposed a hardware-based prediction

mechanism to change the supply voltage and frequency of

links dynamically as a function of traffic [32]. History-

based prediction is used. Links never shut down to main-

tain periodical pulse transmission to keep both ends of a

link synchronized. Soteriou and Peh also explored the de-

sign space of power-aware interconnection networks [34].

Alonso et al. proposed hardware-based mechanisms, as

a function of traffic, to switch on and off all but one ac-

tive links in a path. The always-on link in a path main-

tains the connectivity in the network. All the links together

provide multiple alternative paths for the source and desti-

nation pairs [6, 7]. In our thrifty interconnection network,

network links are activated and released with the transition

time overlapping the inherent system events.

Pelley et al. proposed to reorganize power feeds to cre-

ate shuffled power supply distribution topologies, and use

Power Routing, a data-center level mechanism to schedule

workload dynamically across redundant power feeds [30].

In our work, power shifting operates locally between a com-

pute node and its attached network switch and links.

6 Conclusions

We have presented two complementary techniques to

tackle the looming power crisis in future cluster systems.

First, we propose Thrifty Interconnection Network (TIN),

where the network links are activated and released with the

transition time overlapping the inherent system events. Sec-

ond, we propose Network Power Shifting (NPS), which dy-

namically shifts the total power budget between the com-

pute nodes and its local network components. Our simu-

lation results on an industry-strength simulation infrastruc-

ture with a set of real-world HPC workload traces show that,

TIN can achieve on average 60% network power reduction,

with the support of only one low-power mode, i.e., LPM2.

When NPS is enabled, the two together can achieve 12%

application performance improvement and 13% overall sys-

tem energy reduction. Further performance improvement is

possible if the compute nodes can speed up more and fully

utilize the extra power budget reinvested from the thrifty

network with more aggressive cooling support.

Acknowledgments

We owe a debt gratitude to Ram Rajamony for his guid-

ance and support. Thomas F. Wenisch, Don DeSota, Evan

Speight, Mark W. Stephenson, Edgar A. Leon Borja, An-

thony N. Hylick, Chris Craik and Kshitij Sudan have offered

helpful insights to refine the ideas in this work. We also ap-

preciate the insightful comments and constructive sugges-

tions from the anonymous reviewers. This material is based

upon work supported by the Defense Advanced Research

Projects Agency under its Agreement No. HR0011-07-9-

0002. Details presented in this paper may be covered by

existing patents or pending patent applications.

References

[1] Avago Technologies data sheet of optical transmitters, re-
ceivers and transceivers. http://www.avagotech.com/.

[2] Don DeSota, Personal Communication, IBM System Tech-
nology Group.

[3] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu.
Energy proportional datacenter networks. In ISCA, pages
338–347, 2010.

[4] K. Agarwal and K. Nowka. Dynamic power management by
combination of dual static supply voltages. ISQED, pages
85–92, 2007.

[5] U. E. P. Agency. Report to Congress on Server and Data
Center Energy Efficiency. U.S. Environmental Protection
Agency, 2007.

[6] M. Alonso, S. Coll, J. M. Martı́nez, V. Santonja, P. López,
and J. Duato. Dynamic power saving in fat-tree interconnec-
tion networks using on/off links. In IPDPS, 2006.

[7] M. Alonso, J. M. Martı́nez, V. Santonja, P. López, and J. Du-
ato. Power saving in regular interconnection networks built
with high-degree switches. In IPDPS, 2005.

[8] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel,
B. Drerup, T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni,
and R. Rajamony. The PERCS High-Performance Intercon-
nect. In Hoti: Proceedings of the 18th Annual Symposium
on High-Performance Interconnects, 2010.

[9] A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and
M. B. Ritter. Exploitation of optical interconnects in fu-
ture server architectures. IBM J. Res. Dev., 49(4/5):755–775,
2005.

[10] D. A. Case, T. T. C. III, T. Darden, and et al. The Amber
biomolecular simulation programs. J. Computational Chem-
istry, 26(16):1668–1688, 2005.

[11] DARPA. Ubiquitous High Performance Computing (UHPC)
Broad Agency Announcement (BAA). 2010.

[12] W. E. Denzel, J. Li, P. Walker, and Y. Jin. A framework
for end-to-end simulation of high-performance computing
systems. In International conference on Simulation tools
and techniques for communications, networks and systems
(SIMUTools), pages 1–10, 2008.

[13] L. Di, M. Putic, J. Lach, and B. H. Calhoun. Power Switch
Characterization for Fine-Grained Dynamic Voltage Scaling.
In ICCD, pages 605–611, 2008.

[14] J. Duato, P. Lopez, F. Silla, and S. Yalamanchili. A high per-
formance router architecture for interconnection networks.
In Proc. Int. Conf. On Parallel Processing, pages 61–68,
1996.

[15] M. R. Fahey and J. Candy. GYRO: A 5-D Gyrokinetic-
Maxwell solver. SC Conference, 2004.

[16] W. Felter, K. Rajamani, T. Keller, and C. Rusu. A
performance-conserving approach for reducing peak power
consumption in server systems. In ICS, pages 293–302,
2005.

[17] G. Halliwell, R. Bleck, and E. Chassignet. Atlantic Ocean
simulations performed using a new hybrid-coordinate ocean
model. In EOS Transactions. American Geophysical Union
(AGU), Fall 1998 Meeting, 1998.

[18] IBM. IBM InfiniBand 8-port 12x switch. http://www-
3.ibm.com/chips/products/infiniband.

[19] E. J. Kim, K. H. Yum, G. M. Link, N. Vijaykrishnan,
M. Kandemir, M. J. Irwin, M. Yousif, and C. R. Das. Energy
optimization techniques in cluster interconnects. In ISLPED,
pages 459–464, 2003.

[20] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-
Driven, Highly-Scalable Dragonfly Topology. In ISCA,
pages 77–88, 2008.

[21] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. System
level analysis of fast, per-core DVFS using on-chip switching
regulators. In HPCA, 2008.

[22] A. K. Kodi, A. Sarathy, and A. Louri. iDEAL: Inter-
router Dual-Function Energy and Area-Efficient Links for
Network-on-Chip (NoC) Architectures. In ISCA, pages 241–
250, 2008.

[23] P. M. Kogge. Architectural Challengies at the Exascale Fron-
tier (invited talk). In Simulating the Future: Using One Mil-
lion Cores and Beyond, 2008.

[24] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. MPI and
communication - Adaptive, transparent frequency and volt-
age scaling of communication phases in MPI programs. In
SC, page 107, 2006.

[25] M. M. Mathis and D. J. Kerbyson. A general performance
model of structured and unstructured mesh particle transport
computations. J. Supercomput., 34(2):181–199, 2005.

[26] J. Michalakes, J. Dudhia, D. Gill, and et al. Design of a next-
generation regional weather research and forecast model. In
Proceedings of the Eighth Workshop on the Use of Parallel
Processors in Meteorology, pages 16–20, 1998.

[27] A. A. Mirin, R. H. Cohen, B. C. Curtis, and et al. Very
high resolution simulation of compressible turbulence on the
IBM-SP system. In Supercomputing ’99: Proceedings of the
1999 ACM/IEEE conference on Supercomputing (CDROM),
page 70, New York, NY, USA, 1999. ACM.

[28] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S.
Yousif, and C. R. Das. ViChaR: A Dynamic Virtual Channel
Regulator for Network-on-Chip Routers. In MICRO, pages
333–346, 2006.

[29] L.-S. Peh and W. J. Dally. Flit-Reservation Flow Control. In
HPCA, pages 73–84, 2000.

[30] S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch, and
J. Underwood. Power routing: dynamic power provisioning
in the data center. In ASPLOS, pages 231–242, 2010.

[31] S. J. Plimpton. Fast parallel algorithms for short-range
molecular dynamics. J. Computational Physics, 117:1–19,
1995.

[32] L. Shang, L.-S. Peh, and N. K. Jha. Dynamic voltage scal-
ing with links for power optimization of interconnection net-
works. In HPCA, 2003.

[33] R. D. Smith, J. K. Dukowicz, and R. C. Malone. Parallel
ocean general circulation modeling. Phys. D, 60(1-4):38–61,
1992.

[34] V. Soteriou and L.-S. Peh. Design-space exploration of
power-aware on/off interconnection networks. In ICCD,
pages 510–517, 2004.

