
Efficient Execution of Compressed Programs

by

Charles Robert Lefurgy

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

 in The University of Michigan
2000

Doctoral Committee:

Professor Trevor Mudge, Chair
Professor Richard Brown
Assistant Professor Steve Reinhardt
Assistant Professor Gary Tyson

There is a right physical size for every idea.

— Henry Moore (1898-1986). English sculptor.

©
All Rights Reserved

Charles Robert Lefurgy
2000

ii

To my parents, Clark and Sarah.

iii

Acknowledgments

Trevor Mudge served as my advisor during the course of my graduate studies. His

persistent question-asking helped shape the course of my research.

Eva Piccininni and Ed Kohler developed an ARM microprocessor that supports

software-assisted decompression based on the results of my research. Eva wrote the first

software version of our CodePack-like compression/decompression software. She also

performed many experiments for optimizing hybrid programs in compressed code sys-

tems. Eva was especially helpful as a coauthor on our publications which presented the

initial research results of this dissertation. Ed developed the first hardware description of a

microprocessor with instruction set extensions for executing compressed programs. In

addition, he mapped the design onto an FPGA for running large application simulations.

Ed and Eva were both helpful in implementing and critiquing initial versions of the soft-

ware decompression method that is the basis for much of this dissertation.

A significant amount of my time in graduate school was spent working with the

MIRV team to build a C compiler. Although I did not ultimately use this compiler for my

dissertation research, working on that project has broadened my understanding of com-

puter architecture. I thank the members of the MIRV team, Matt Postiff, David Greene,

David Helder, and Kris Flautner, for answering the countless questions I had about com-

pilers.

Finally, I would like to thank my parents, Clark and Sarah, who supported me

throughout my academic endeavors. My father sparked my interest in computers when he

presented me with my first programming book at age eight.

iv

Table of Contents

Dedication ii

Acknowledgments iii

List of Tables vi

List of Figures viii

Chapter 1 Introduction 1

1.1 Data compression 2
1.2 Text compression 4
1.3 Repetition in object code 6
1.4 Scope 6
1.5 Organization 7

Chapter 2 Background 9

2.1 General code compression techniques 10
2.2 Decompression of individual instructions 12
2.3 Decompression at procedure call 18
2.4 Decompression within the memory system 19
2.5 Decompression at load-time 20
2.6 Compiler optimizations for compression 24
2.7 Conclusion 28

Chapter 3 Instruction-level compression 29

3.1 Introduction 29
3.2 Overview of compression method 30
3.3 Experiments 34
3.4 Discussion 43
3.5 Conclusion 44

Chapter 4 Hardware-managed decompression 46

4.1 Introduction 46
4.2 Related work 47
4.3 Compression architecture 47
4.4 Simulation environment 50
4.5 Results 53
4.6 Conclusion 60

Chapter 5 Software-managed decompression 62

5.1 Introduction 62

v

5.2 Related work 63
5.3 Software decompressors 64
5.4 Compression architecture 66
5.5 Simulation environment 71
5.6 Results 73
5.7 Conclusion 76

Chapter 6 Optimizations for software-managed decompression 79

6.1 Introduction 79
6.2 Hybrid programs 81
6.3 Memoization 88
6.4 Memoization and selective compression 105
6.5 Conclusion 112

Chapter 7 Conclusion 131

7.1 Research contributions 131
7.2 Future work 134
7.3 Epilogue 136

Appendix A Program listings 137

A.1 Macros 138
A.2 Dictionary 139
A.3 Dictionary Memo-IW 141
A.4 Dictionary Memo-IL 144
A.5 Dictionary Memo-EW 147
A.6 Dictionary Memo-EL 151
A.7 CodePack 155
A.8 CodePack Memo-IW 162
A.9 CodePack Memo-IL 170
A.10 CodePack Memo-EW 178
A.11 CodePack Memo-EL 188

Bibliography 197

vi

List of Tables

Table 3.1: Maximum number of codewords used in baseline compression 38

Table 4.1: Benchmarks 51

Table 4.2: Simulated architectures 52

Table 4.3: Compression ratio of .text section 53

Table 4.4: Composition of compressed region 54

Table 4.5: Instructions per cycle 55

Table 4.6: Index cache miss ratio for cc1 56

Table 4.7: Speedup due to index cache 56

Table 4.8: Speedup due to decompression rate 57

Table 4.9: Comparison of optimizations 57

Table 4.10: Variation in speedup due to instruction cache size 58

Table 4.11: Performance change by memory width 59

Table 4.12: Performance change due to memory latency 60

Table 5.1: Simulation Parameters 71

Table 5.2: Compression ratio of .text section 74

Table 5.3: Slowdown compared to native code 74

Table 6.1: Taxonomy of cache access instructions 93

Table 6.2: Memoization table contents 97

Table 6.3: Performance of memoization 104

Table 6.4: Memory on System-on-Chip 108

Table 6.5: Area and performance as a function of I-cache size (cc1) 113

Table 6.6: Area and performance as a function of I-cache size (ghostscript) 113

Table 6.7: Area and performance as a function of I-cache size (go) 113

Table 6.8: Area and performance as a function of I-cache size (ijpeg) 113

Table 6.9: Area and performance as a function of I-cache size (mpeg2enc) 114

Table 6.10: Area and performance as a function of I-cache size (pegwit) 114

Table 6.11: Area and performance as a function of I-cache size (perl) 114

Table 6.12: Area and performance as a function of I-cache size (vortex) 114

Table 6.13: Decompression buffer performance and area (cc1) 115

Table 6.14: Decompression buffer performance and area (ghostscript) 117

Table 6.15: Decompression buffer performance and area (go) 119

vii

Table 6.16: Decompression buffer performance and area (ijpeg) 121

Table 6.17: Decompression buffer performance and area (mpeg2enc) 123

Table 6.18: Decompression buffer performance and area (pegwit) 125

Table 6.19: Decompression buffer performance and area (perl) 127

Table 6.20: Decompression buffer performance and area (vortex) 129

viii

List of Figures

Figure 1.1: Instruction bit patterns 7

Figure 2.1: Dictionary compression 10

Figure 2.2: Custom instruction sets 16

Figure 2.3: BRISC 17

Figure 2.4: Procedure compression 18

Figure 2.5: Compressed Code RISC Processor 19

Figure 2.6: Slim binaries 21

Figure 2.7: Wire code 22

Figure 2.8: Procedure abstraction 25

Figure 2.9: Mini-subroutines 26

Figure 3.1: Example of compression 31

Figure 3.2: Compressed program processor 34

Figure 3.3: Compression ratio using 2-byte and 4-byte codewords 36

Figure 3.4: Compression ratio difference between 4-byte and 2-byte codewords 37

Figure 3.5: Effect of dictionary size and dictionary entry length 37

Figure 3.6: Composition of dictionary for ijpeg 39

Figure 3.7: Bytes saved according to dictionary entry length 39

Figure 3.8: Composition of compressed PowerPC programs 40

Figure 3.9: Nibble aligned encoding 41

Figure 3.10: Nibble compression for various instruction sets 42

Figure 3.11: Comparison of compression across instruction sets 42

Figure 3.12: Comparison of MIPS-2 with MIPS-16 43

Figure 4.1: CodePack decompression 48

Figure 4.2: Example of L1 miss activity 52

Figure 5.1: Dictionary compression 65

Figure 5.2: L1 miss exception handler for dictionary decompression method 72

Figure 5.3: Effect of instruction cache miss ratio on execution time 77

Figure 6.1: Memory layout for dictionary compression 83

Figure 6.2: Selective compression 84

Figure 6.3: Procedure placement in hybrid programs 87

Figure 6.4: Memoization overview 88

ix

Figure 6.5: Memory hierarchy 89

Figure 6.6: Memoized decompressor 98

Figure 6.7: Memo-IW 99

Figure 6.8: Memo-IL 100

Figure 6.9: Memo-EW 101

Figure 6.10: Memo-EL 103

Figure 6.11: Memoization performance results 105

Figure 6.12: Memory usage 107

Figure 6.13: Performance and area of decompression buffer (cc1) 116

Figure 6.14: Performance and area of decompression buffer (ghostscript) 118

Figure 6.15: Performance and area of decompression buffer (go) 120

Figure 6.16: Performance and area of decompression buffer (ijpeg) 122

Figure 6.17: Performance and area of decompression buffer (mpeg2enc) 124

Figure 6.18: Performance and area of decompression buffer (pegwit) 126

Figure 6.19: Performance and area of decompression buffer (perl) 128

Figure 6.20: Performance and area of decompression buffer (vortex) 130

1

Chapter 1

Introduction

Embedded microprocessors are highly constrained by cost, power, and size. This is

particularly true for high-volume, low-margin consumer applications. Reducing micropro-

cessor die area is an important way to save cost because it not only allows more dies to be

put on a wafer, but it can vastly improve die yield. For control-oriented embedded applica-

tions, the most common type, a significant portion of the die area is used for program

memory. Therefore, using smaller program sizes implies that smaller, cheaper dies can be

used in embedded systems. An additional pressure on program memory is the relatively

recent adoption of high-level languages for embedded systems. As typical code sizes have

grown, high-level languages are being used to control development costs. However, com-

pilers for these languages often produce code that is much larger than hand-optimized

assembly code. Thus, the ability to compile programs to a small representation is impor-

tant to reduce both software development costs and manufacturing costs.

High performance systems are also impacted by program size due to the delays

incurred by instruction cache misses. A study at Digital [Perl96] measured the perfor-

mance of an SQL server on a DEC 21064 Alpha. Due to instruction cache misses, the

application could have used twice as much instruction bandwidth as the processor was

able to provide. This problem is exacerbated by the growing gap between the cycle time of

microprocessors and the access time of commodity DRAM. Reducing program size is one

way to reduce instruction cache misses and provide higher instruction bandwidth

[Chen97a].

Research contribution
Both low-cost embedded systems and high-performance microprocessors can ben-

efit from small program sizes. This dissertation focuses on program representations of

2

embedded applications, where execution speed can be traded for improved code size. We

examine code compression methods which reduce program code size by using data com-

pression techniques. In general, the usual techniques of text compression, typified by Ziv-

Lempel compression, cannot be directly applied to programs because they require that the

complete program be compressed or decompressed at once. If a program cannot be incre-

mentally decompressed then the operation of decompressing the complete program will

require more (temporary) memory than the uncompressed program — defeating the origi-

nal reason for employing compression. Incremental decompression avoids this problem.

However, incremental decompression requires that information about program labels

(jump and call targets) be recoverable incrementally too.

Previous research in this area has suggested that compressed code systems will

execute programs slower than native code systems, especially when the decompression is

done in software. The primary goal of this research is to demonstrate that compressed pro-

grams can still execute with a high level of performance. First, we shows that even simple

instruction-level compression methods can attain interesting levels of compression. This is

important for building fast decompressors that will operate with high performance. Sec-

ond, we show a hardware decompression method that can often eliminate the decompres-

sion penalty and sometimes execute compressed programs faster than native programs.

Third, we examine the performance of decompression in software. Software decompres-

sion is interesting because it reduces the die area and cost of embedded microprocessors

while allowing greater design flexibility. However, the decompression overhead is

extremely high compared to hardware decompression. We present methods that greatly

reduce the software decompression overhead and demonstrate that compressed multime-

dia applications execute with nearly the same performance as native programs.

This chapter introduces data compression and its application to program compres-

sion. It concludes with an overview of the organization of this dissertation.

1.1 Data compression

The goal of data compression is to represent information in the smallest form that

still holds the information content. Traditional data compression methods make several

3

assumptions about the data being compressed. First, it is assumed that the compression

must be done in a single sequential pass over the data because typical data may be too

large to contain in storage (main memory or disk) at one time. One example of such data is

a continuous stream of video. Second, this single pass approach takes advantage of history

of recent symbols in the data stream. History information allows compressors to utilize

repetition in the data and modify the compression technique in response to the changing

characteristics of the data stream. This constrains the decompressor to start at the begin-

ning of the data stream. The decompressor cannot begin decompressing at an arbitrary

point in the data stream because it will not have the history information that the decom-

pression algorithm depends upon. Third, most data compression methods use bit-aligned

output to obtain the smallest possible representations.

In contrast, compression algorithms for computer programs use a significantly dif-

ferent set of assumptions in order to retain acceptable levels of performance.

First, programs are small enough to fit in storage, so the compressor can optimize

the final compressed representation based on the entire program instead of using only

recent history information. However, compression cannot be applied to the program as a

whole, because it would be necessary to decompress the entire program at once to execute

it – invalidating any execution-time size advantage. Therefore, programs must use incre-

mental decompression. As the program executes, units of it are decompressed and exe-

cuted. As more of the program is decompressed, previously decompressed units must be

discarded due to system memory constraints. The unit of compression could be a proce-

dure, a cache line, or an individual instruction. This allows the decompressed unit and the

complete compressed program to use less memory than the original native code program.

Second, since decompression will occur as the program is executing, it is desirable

to begin decompression at arbitrary points in the program. This is important to consider

when choosing the unit of incremental decompression. For example, since program execu-

tion can be redirected at branch instructions it would be ideal for the decompression to

begin at any branch target. This effectively splits the program into blocks of instructions

defined by branch targets. The unpredictable nature of the execution path between pro-

gram runs is likely to constrain the length of history information available to the compres-

sor.

4

The third assumption about compressed programs is that a decompressed block

may not be entirely executed due to branch instructions that cause early exit from the

block. While larger block sizes may improve performance of history-based compression

methods, they will also decrease program performance by causing time to be wasted

decompressing instructions that are not executed. Therefore, techniques such as Ziv-Lem-

pel compression which rely on the recent history information of large compression buffers

may be unsuitable for compressing programs that require high-performance or high levels

of compression. Unfortunately, smaller block sizes may also decrease program perfor-

mance. Small blocks require the decompressor be invoked more frequently. This can be

detrimental to performance if the invocation overhead is significant.

Fourth, most microprocessors have alignment restrictions which impose a mini-

mum size on instructions. For example, compressors may restrict their encodings to begin

on byte boundaries so that the decompressors can quickly access codewords. This would

require the use of pad bits to lengthen the minimum size of codewords.

Finally, an advantage that programs have over typical data is that portions of the

program (statements, instructions, etc.) can be rearranged to form an equivalent program.

The code-generation phase of a compiler could assist in generating compression-friendly

code. This may allow the compressor to find more compressible patterns.

1.2 Text compression

Lossless compression or text compression refers to a class of reversible compres-

sion algorithms that allow the compressed text to be decompressed into a message identi-

cal to the original. They are particularly tailored to use a linear data stream. These

properties make text compression applicable to computer programs, which are linear

sequences of instructions. Surveys of text compression techniques have been written by

Lelewer and Hirschberg [Lelewer87] and Witten et al. [Witten90]. Compression algo-

rithms that are not lossless are called lossy. These algorithms are used for compressing

data (typically images) that can tolerate some data loss in the decompressed message in

exchange for a smaller compressed representation. Since computer programs must be exe-

cuted without ambiguity, lossy compression is not suitable for them.

5

Text compression methods fall into two general categories: statistical and dictio-

nary [Bell90]. Statistical compression uses the frequency of singleton characters to choose

the size of the codewords that will replace them. Frequent characters are encoded using

shorter codewords so that the overall length of the compressed text is minimized. Huffman

encoding of text is a well-known example. Dictionary compression selects entire phrases

of common characters and replaces them with a single codeword. The codeword is used as

an index into the dictionary entry which contains the original characters. Compression is

achieved because the codewords use fewer bits than the characters they replace.

There are several criteria used to select between using dictionary and statistical

compression techniques. Two very important factors are the decode efficiency and the

overall compression ratio. The decode efficiency is a measure of the work required to re-

expand a compressed text. The compression ratio is defined by the formula:

(Eq. 1.1)

Dictionary decompression uses a codeword as an index into the dictionary table,

then inserts the dictionary entry into the decompressed text stream. If codewords are

aligned with machine words, the dictionary lookup is a constant time operation. Statistical

compression, on the other hand, uses codewords that have different bit sizes, so they do

not align to machine word boundaries. Since codewords are not aligned, the statistical

decompression stage must first establish the range of bits comprising a codeword before

text expansion can proceed.

It can be shown that for every dictionary method there is an equivalent statistical

method which achieves equal compression and can be improved upon to give better com-

pression [Bell90]. Thus statistical methods can always achieve better compression than

dictionary methods albeit at the expense of additional computation requirements for

decompression. It should be noted, however, that dictionary compression yields good

results in systems with memory and time constraints because one entry expands to several

characters. In general, dictionary compression provides for faster (and simpler) decoding,

while statistical compression yields a better compression ratio.

compression ratio
compressed size

original size
--------------------------------------=

6

1.3 Repetition in object code

Object code generated by compilers mostly contains instructions from a small,

highly used subset of the instruction set. This causes a high degree of repetition in the

encoding of the instructions in a program. In the programs we examined, only a small

number of instructions had bit pattern encodings that were not repeated elsewhere in the

same program. Indeed, we found that a small number of instruction encodings are highly

reused in most programs.

To illustrate the repetition of instruction encodings, we profiled the SPEC CINT95

benchmarks [SPEC95]. The benchmarks were compiled for PowerPC with GCC 2.7.2

using -O2 optimization. In Figure , the results for the go benchmark show that 1% of the

most frequent instruction words account for 30% of the program size, and 10% of the most

frequent instruction words account for 66% of the program size. On average, more than

80% of the instructions in CINT95 have bit pattern encodings which are used multiple

times in the program. In addition to the repetition of single instructions, we also observed

that programs contain numerous repeated sequences of instructions. It is clear that the rep-

etition of instruction encodings provides a great opportunity for reducing program size

through compression techniques.

1.4 Scope

This dissertation only addresses the problem of compressing instruction memory.

Some embedded applications require much more data memory than instruction memory.

For such applications, compressing data memory may be more beneficial. However, the

characteristics of program data are highly application specific. No single compression

algorithm is suitable for all types of data. The data size problem is has been partly

addressed by the wide variety of application specific data compression formats available

(JPEG, MPEG, gzip, etc.). On the other hand, the program code in different applications

tends to look similar because the same language, the instruction set, is used to express the

7

program. Therefore, a single compression algorithm can compress a range of applications

quite well.

Another important issue for embedded systems is power dissipation. Since a com-

pressed program may trade an improved size for a longer running time, it is possible that it

will dissipate more power than a larger program that runs for a shorter time. However,

requirements for embedded systems vary widely. A cell phone must run on batteries, but a

printer is plugged into an outlet. The suitability of code compression depends on the

underlying requirements of the embedded system. Regardless, embedded systems can

always benefit from lower manufacturing costs made possible by using smaller micropro-

cessor dies. Therefore, the focus of this dissertation is how to utilize die area to execute

compressed programs efficiently.

1.5 Organization

The organization of this dissertation is as follows. Chapter 2 reviews previous

work to obtain small program sizes. This chapter provides important background for

understanding the remainder of the dissertation. Chapters 3, 4 and 5 are largely indepen-

dent and can be read in any order. Chapter 3 contains the results of a preliminary experi-

Figure 1.1: Instruction bit patterns
This graph shows the unique instruction bit patterns in a program as a percentage of static program instruc-
tions. The data is from the go benchmark compiled for PowerPC. The x-axis is sorted by the frequency of bit
patterns in the static program.

0% 20% 40% 60% 80% 100%

Unique Instruction Bit Patterns in Program

0%

20%

40%

60%

80%

100%

S
ta

tic
 P

ro
gr

am
 In

st
ru

ct
io

ns

Most frequent Least frequent
sorting of bit patterns

8

ment that applies text compression techniques to programs at the instruction level.

Chapter 4 provides an in-depth study of using hardware-managed decompression.

Chapter 5 implements decompression in software. In some applications, the overhead of

decompression is comparable to that in hardware-managed decompression. However,

many applications experience considerable slowdown. This slowdown is addressed in

Chapter 6 which presents optimizations for software decompression. Finally, Chapter 7

concludes the dissertation and suggests possible future work.

9

Chapter 2

Background

This chapter surveys previous program compression techniques. Previous methods

have performed compression in the compiler, assembler, linker, or in a separate post-com-

pilation pass. Most program compression systems do compression only during initial pro-

gram creation and do not re-compress the program as it is running. Decompression can be

performed on individual instructions immediately before execution, when a procedure is

called, in the memory system as instructions are fetched, or when the program is loaded

into memory. Because the point at which decompression occurs varies widely among sys-

tems, we organize our presentation according to the decompression methods. Some of the

questions to consider when comparing compression schemes are:

• When is compression done? (In compiler or post-compilation pass?)
• What is the compression algorithm? (Ziv-Lempel, arithmetic, etc.)
• What is compressed? (Instructions, data, or both?)
• When does the system detect that decompression must occur? (During a cache miss,

during a procedure call, etc.)
• How are instructions decompressed? (With software or hardware assistance?)
• Where is decompressed code stored? (In the instruction cache or main memory?)
• How is the decompressed code managed? (How much decompressed code is available

at once? What gets replaced when more instructions are decompressed?)

This chapter begins with an overview of general techniques that are found in many

compressed code systems. This is followed by a discussion of individual compressed code

systems organized by decompression method. The chapter ends with a discussion on the

role of compiler optimizations in producing small programs.

10

2.1 General code compression techniques

This section reviews some common techniques that many compressed code sys-

tems use.

2.1.1 Dictionary compression

Dictionary compression uses a dictionary of common symbols to remove repeti-

tion in the program. A symbol could be a byte, an instruction field, a complete instruction,

or a group of instructions. The dictionary contains all of the unique symbols in the pro-

gram. Each symbol in the program is replaced with an index into the dictionary. If the

index is shorter than the symbol it replaces, and the overhead of the dictionary is not large,

compression will be realized. Figure 2.1 shows an example of dictionary compression

where the symbols are entire machine instructions.

In order for compression to be achieved, Equation 2.1 must hold.

(Eq. 2.1)

In this equation, n is the number of static instructions in the program, w is the num-

ber of bits in a single instruction, and d is the number of symbols in the dictionary. Of

course, this equation does not account for the size of specific implementations of the

decompressor which also uses microprocessor die area.

Original program Compressed program

w bits w bits

dictionary

add r1,r2,r4

add r1,r2,r3

add r1,r2,r3

add r1,r2,r4

add r1,r2,r3

5

30

30

add r1,r2,r3 30

indices

add r1,r2,r4 5

n instructions

d entries

Figure 2.1: Dictionary compression

2dlog bits

nw n 2 d()log dw+>

11

If the dictionary contains all the symbols required to reconstruct the original pro-

gram, then it is said to be complete. If the dictionary is not complete, then an escape mech-

anism is necessary to tell the decompressor not to use the dictionary, but instead to

interpret some raw bits in the compressed program as symbols for the decompressed pro-

gram. This will result in some expansion of the compressed program. Using some raw bits

in the compressed program prevents the dictionary from growing very large and holding

symbols that do not repeat frequently in the original program.

Lefurgy et al. [Lefurgy97] use dictionary entries that each hold one or more

instructions. Taunton [Taunton91] divides 32-bit instructions into 24-bit and 8-bit fields.

The 24-bit field is encoded with its dictionary entry and the 8-bit field is left raw. This is

done because the repetition of the entire 32-bit instruction is lower than the 24-bit field

and would cause the dictionary to be very large. Citron considers a similar encoding for

32-bit buses between the CPU and main memory [Citron95].

2.1.2 Difference encoding

A table of values can be compressed by using difference or delta encoding. The

first value is coded explicitly. The next value is encoded as the difference between it and

the first value. The remaining values are encoded as the difference between them and the

previous value. When the difference between values is small (such as in a sorted list), then

the difference can be encoded in fewer bits than the original values. This has been used to

compress decoding tables within compressed programs [Taunton91, Wolfe92, IBM98].

2.1.3 Data packing

Codewords can have sizes that do not align to machine-word boundaries. This

slows down access to them. Therefore, fields within codewords are often packed in pairs

to improve data alignment. For example, consider using 12-bit codewords that consist of a

4-bit control nibble followed by an 8-bit index. Two codewords might be packed together

so that the first byte contains both 4-bit nibbles, the second byte contains the first index,

and the third byte contains the second index. On a byte-aligned processor, this allows the

decompressor to use a natural byte load instruction to access each part of the code word.

12

A second reason to use data packing is for speed of parsing and simplification of

decompression logic. CodePack [IBM98] uses data alignment to quickly parse codewords

in the compression stream. Two control fields of either 2 or 3 bits each are followed by

two variable-length index fields. The second control field always starts at either the third

or fourth bit of the stream, so it is easy to find. If the control and index fields alternated,

there would be a much larger range of possibilities for the starting position of the second

control field. This would have complicated the decompression logic. However, since the

control fields are easy to find and tell the decompressor how long the index fields are, the

following codewords can quickly be located in the compressed stream. Data packing may

enable multiple codewords to be identified and decompressed in parallel if the time to find

codewords is much shorter than the time to decompress the codewords. Taunton mentions

the possibility of breaking variable-sized fields in codewords into separate streams to

improve load and buffering efficiency [Taunton91]. This allows a single load to be used

for each data item, rather than constructing larger items from individual byte loads due to

misalignment.

2.2 Decompression of individual instructions

This section reviews decompression techniques that target individual instructions.

A conventional microprocessor must fetch and decode an instruction before it is

executed. The decoding process expands the native instruction word into many control

signals within the microprocessor. Thus, the encoding of the instruction set can be consid-

ered a form of compression since the number of control signals is typically greater than

the number of bits in the instruction word. In this case, the decompression of the instruc-

tion is done by the hardware decode stage of the microprocessor.

The decoding of an instruction may also be done in software by an interpreted-pro-

gram system. In this case, the application program is written in a highly encoded instruc-

tion set that the underlying processor cannot decode or execute. Instead, an interpreter

program written in the native instruction set fetches and decodes the instructions in the

application. The interpreter is responsible for executing a series of native code instructions

13

to emulate the behavior of the interpreted instruction. These native code instructions are

then decoded in the normal manner on the microprocessor.

These decompression techniques described below are divided into two categories.

The first category covers the design of instruction sets which are decoded in hardware by

the decode stage of a conventional microprocessor. The second category covers inter-

preted-program environments which decode instructions in software. Both systems

decode (or decompress) each instruction individually.

2.2.1 Instruction set design

In our experiments, we have observed that the size of programs encoded in con-

ventional instruction sets can differ by a factor of two. This shows that instruction set

design is important to achieve a small program size. Bunda et al. [Bunda93] studied the

benefit of using 16-bit instructions over 32-bit instructions for the DLX instruction set. 16-

bit instructions are less expressive than 32-bit instructions, which causes the number of

instructions executed in the 16-bit instruction programs to increase. They report that the

performance penalty for executing more instructions was often offset by the increased

fetch efficiency.

Dual-mode instruction sets
The work of Bunda et al. can be extended to a microprocessor that utilizes both a

32-bit instruction set and a 16-bit instruction set. A control bit in the processor selects the

current instruction set used to decode instructions. This allows a program to have the

advantages of wide, expressive instructions for high-performance and short instructions

for code density. ARM and MIPS are examples of such dual-mode instruction sets. Thumb

[ARM95, Turley95] and MIPS-16 [Kissell97] are defined as the 16-bit instruction set sub-

sets of the ARM and MIPS-III architectures.

 A wide range of applications were analyzed to determine the composition of the

subsets. The instructions included in the subsets are either frequently used, do not require

a full 32-bits, or are important to the compiler for generating small object code. The origi-

nal 32-bit wide instructions have been re-encoded to be 16-bits wide. Thumb and MIPS-

14

16 are reported to achieve code reductions of 30% and 40%, respectively [ARM95,

Kissell97].

Thumb and MIPS-16 instructions have a one-to-one correspondence to instruc-

tions in the base architectures. In each case, a 16-bit instruction is fetched from the

instruction memory, decoded to the equivalent 32-bit wide instruction, and passed to the

processor core for execution. The 16-bit instructions retain use of the 32-bit data paths in

the base architectures.

The Thumb and MIPS-16 instructions are unable to use the full capabilities of the

underlying processor. The instruction widths are shrunk at the expense of reducing the

number of bits used to represent register designators and immediate value fields. This con-

fines programs to eight registers of the base architecture and significantly reduces the

range of immediate values. In addition, conditional execution is not available in Thumb

and floating-point instructions are not available in MIPS-16.

Compression in Thumb and MIPS-16 occurs on a per procedure basis. There are

special branch instructions to toggle between 32-bit and 16-bit modes.

Thumb and MIPS-16 instructions are less expressive than their base architectures.

Therefore, programs require more instructions to accomplish the same tasks. This requires

a program to execute more instructions, which reduces performance. For example, Thumb

code runs 15% - 20% slower on systems with ideal instruction memories (32-bit buses and

no wait states) [ARM95].

Custom encodings
A somewhat different approach was introduced by Larin and Conte [Larin99].

They assume that the embedded processor can be optimized to a specific program. They

use the compiler to generate both the compressed program and a custom programmed

logic array to fetch and decompress it. One technique they use is to customize the instruc-

tion set for the program by shortening instruction fields that are too wide. For example, if

only eight registers are used in the program, then the register fields can be shortened to 3

bits. Another technique they use is to Huffman code whole instructions, fields within

instructions, or bytes of the instructions. The trade-off here is that as the compressed pro-

gram becomes smaller, the Huffman decoder becomes larger.

15

One interesting note is that the compiler removes rare instructions and replaces

them with a group of equivalent common instructions that map to shorter Huffman codes.

Even though this form of strength-reduction lengthens the final compressed program, it

makes the decoder implementation easier by reducing the maximum codeword size that

must be decoded.

2.2.2 Interpretation

Interpreted-program environments are another method to attain small code size

[Klint81]. Typically, application source code is compiled to a space-efficient intermediate

form. An interpreter, compiled to native instructions, interprets the intermediate form into

native instructions that accomplish the required computation. Because the intermediate

code does not need to be concerned with host limitations (instruction word size and align-

ment), the intermediate instructions can be quite small. Typical interpreted programs for

32-bit instructions have speeds 5-20 times slower than native code and are up to 2 times

smaller [Fraser95, Ernst97]. Interpreted code for the TriMedia VLIW processor is 8 times

slower than native code and is 5 times smaller [Hooger99].

Directly Executed Languages
Flynn introduced the notion of Directly Executed Languages (DELs) whose repre-

sentation could be specifically tailored to a particular application and language [Flynn83].

A DEL is a program representation that is between the level of the source language and

machine language. DEL programs are executed by a DEL-interpreter which is written in

the machine language. The advantage of DELs are that they provide an efficient method to

represent programs. The DEL representation is small for several reasons. First, the DEL

representation uses the operators of the source language. Assuming that the high level lan-

guage is an ideal representation of the program, then these are obviously the correct oper-

ators to choose. Second, the DEL does not use conventional load/store instructions, but

directly refers to objects in the source language. For example, if a program specifies a

variable, the DEL-interpreter is responsible for finding the storage location of the variable

and loading it into a machine register. Third, all operators and operands are aligned to 1-

bit boundaries. The field size of operands changes depending on the number of objects the

16

current scope can reference. Fields are bits in length for a scope with objects.

For example, if a procedure references eight variables, each variable would be represented

as a 3-bit operand. The interpreter tracks scope information to know which set of variables

are legal operands at any point in the program.

Flynn measured conventional machine language representations of programs and

found them to be between 2.6 to 5.5 times larger than the DEL representation.

Custom instruction sets
Whereas Flynn used the high level language as a basis for the operators in DELs,

Fraser [Fraser95] used a bottom-up approach and created macro-instructions from instruc-

tions in the compiler intermediate representation (IR). He found repeating patterns in the

IR tree and used these as macro-instructions in his compressed code. The code generator

emits byte code which is interpreted when executed. This process is illustrated in

Figure 2.2. The overhead for this interpreter is only 4-8 KB. Fraser showed that this com-

pression method is able to reduce the size of programs by half when compared to SPARC

programs. However, the programs execute 20 times slower than the original SPARC pro-

grams.

BRISC
Ernst et al. [Ernst97] developed BRISC which is an interpretable compressed pro-

gram format for the Omniware virtual machine (OmniVM). The compression method is

illustrated in Figure 2.3. BRISC adds macro-instructions to the OmniVM RISC instruction

set. BRISC achieves small code size by replacing repeated sequences of instructions in the

N2log N

 A B

Intermediate Representation

All possible
sub-trees

code generator
generator

code generator instruction set
generator

interpreter
dictionary

bytecode

A B …

Figure 2.2: Custom instruction sets

17

OmniVM RISC code with a byte codeword that refers to a macro-instruction. Macro-

instructions that differ slightly may be represented using the same codeword and different

arguments. Such macro-instructions are templates that have fields which are supplied by

the arguments. The argument values are located in the instruction stream after the code-

word. The codewords are encoded using a order-1 Markov scheme. This allows more

opcodes to be represented with fewer bits. However, decoding becomes more complicated

since decoding the current instruction is now a function of the previous instruction opcode

and the current opcode. When BRISC is interpreted, programs run an average of 12.6

times slower than if the program was compiled to native x86 instructions. When BRISC is

compiled to native x86 instructions and executed, the program (including time for the

compilation) is only 1.08 times slower than executing the original C program which has

been compiled to x86 instructions.

Since the compressed program is interpreted, there is a size cost (either hardware

or software) for the interpreter. If the size of the interpreter is small enough so that the

interpreter and the BRISC program are smaller than a native version of the program, then

this system could be useful for achieving small code size in embedded systems.

More complicated compression algorithms have combined operand factorization

with Huffman and arithmetic coding [Lekatsas98, Araujo98].

(Order-1 Markov

A load r1,*(*)

B loadi *,8
add r2,*,r2

Dictionary

interpreter

bytecode

A 4 sp

loadi *,8 :r2
loadi r2,* :8
loadi *,* :r2,8

load r1,4(sp)
loadi r2,8
add r2,r1,r2

templatesIR (RISC-like)

generate encoded opcodes)select
templates templates

Figure 2.3: BRISC

18

2.3 Decompression at procedure call

Kirovski et al. [Kirovski97] describe a compression method that works at the gran-

ularity of procedures. Figure 2.4 illustrates procedure compression. Each procedure in the

program is compressed using a Ziv-Lempel compression algorithm. A segment of mem-

ory is reserved as a procedure cache for decompressed procedures. On a procedure call, a

directory service locates the procedure in compressed space and decompresses it into the

procedure cache. The directory maps procedures between compressed and decompressed

address space. For this scheme, a small map with one entry per procedure is sufficient.

When there is no room in the procedure cache, a memory management routine evicts pro-

cedures to free the resource. Procedures are placed in the procedure cache at an arbitrary

address. Intra-procedural PC-relative branches, the most frequent type, will automatically

find their branch targets in the usual way. Procedure calls, however, must use the directory

service to find their targets since they may be located anywhere in the procedure cache.

One appealing point of this compression technique is that it can use existing instruction

sets and be implemented with minimal hardware support (an on-chip RAM for the proce-

dure cache).

The authors obtained a 60% compression ratio on SPARC instructions. However,

it is not clear if this compression ratio accounts for the directory overhead, decompression

software, procedure cache management software, and the size of the procedure cache. One

Native

F: load r5,4
 ...

Compile LZ Compress Decompressor

P-cache
manager

Native

G: addi r7,8
 ...

HLL

F() {...}

HLL

G() {...}

LZ

F: 10010...

LZ

G: 00101...

Figure 2.4: Procedure compression

19

problem is that procedure calls can become expensive since they may invoke the decom-

pression each time they are used. When using a 64 KB procedure cache, the authors mea-

sured an average run-time penalty of 166%. When the two programs, go and gcc, were

excluded from the measurement, the average run-time penalty was only 11%. One possi-

ble reason for the high overhead is that whole procedures are decompressed, but few

instructions are executed in the procedure. Another reason is that executing procedure

calls may cause the caller to be evicted from the procedure cache before it has finished. In

this case, when the callee exits, the caller must be decompressed again. A final reason for

slow execution is that managing fragmentation in the procedure cache may be expensive.

2.4 Decompression within the memory system

Decompression within the memory system hides the process of decompression

from the microprocessor core. This allows the system to reuse the original core design

without modification. Decompression is triggered with the microprocessor fetches instruc-

tions. From the microprocessor’s perspective, decompression appears as a long latency

memory access.

2.4.1 Compressed Code RISC Processor

The Compressed Code RISC Processor (CCRP) [Wolfe92, Kozuch94] is an inter-

esting approach that employs an instruction cache that is modified to run compressed pro-

grams. The CCRP system is illustrated in Figure 2.5. At compile-time, the cache line bytes

Native

G: addi r6,8
 load r5,1

 ...

I-cache lines Memory image

LAT

Decoder

I-cacheLAT Buffer

CPU

Native
insn

Compressed
insn

HuffmanSeparate
I-cache lines

Figure 2.5: Compressed Code RISC Processor

20

are Huffman encoded. At run-time, cache lines are fetched from main memory, decom-

pressed, and put in the instruction cache. Instructions fetched from the cache have the

same addresses as in the original program. Therefore, the core of the processor does not

need modification to support compression. However, cache misses are problematic

because missed instructions in the cache do not reside at the same address in main mem-

ory. CCRP uses a Line Address Table (LAT) to map missed instruction cache addresses to

main memory addresses where the compressed code is located.

The authors report a 73% compression ratio for MIPS instructions. A working

demonstration of CCRP has been completed [Benes97, Benes98]. Implemented in 0.8µm

CMOS, it occupies 0.75 mm2, and can decompress 560 Mbit/s.

Lekatsas and Wolf explore other compression algorithms for CCRP [Lekatsas98].

Their SAMC (Semi-adaptive Markov Compression) algorithm combines a Markov model

with an arithmetic coder. Each instruction is partitioned into small blocks. Since each

instruction is partitioned the same way, blocks with the same location in each instruction

define a stream. All streams are compressed separately. This attains a 57% compression

ratio on MIPS programs. Their SADC (Semi-adaptive Dictionary Compression) algorithm

creates a dictionary of the instruction fields (opcode, register, immediate, and long imme-

diate). In addition, the dictionary contains entries consisting of common combinations of

adjacent fields (such as an opcode and a register). The dictionary indices are Huffman

encoded. This attains a 52% compression ratio on MIPS. However, the price of better

compression is a more complicated decompressor.

2.5 Decompression at load-time

This section describes systems that decompress programs when they are loaded

over a network or from a disk. These techniques are not directly applicable to memory-

limited computers because at execution time the compressed programs are expanded to

full-size native programs. Although these techniques do not save space at execution time,

they provide some of the smallest program representations.

21

2.5.1 Slim binaries

Franz and Kistler developed a machine-independent distribution format called slim

binaries [Franz94, Franz97]. The slim binary format is a compressed version of the

abstract syntax tree (AST) in the compiler. The compression is done by using a dictionary

of sub-trees previously seen in the AST. When the program is run, the loader reads the

slim binary and generates native code on-the-fly. The process is illustrated in Figure 2.6.

The benefit of slim binaries is that abstract syntax trees compress well so that the distribu-

tion format is very small. This reduces the time to load the program from disk into mem-

ory. The time for code-generation is partially hidden because it can be done at the same

time that the program is being loaded. Franz and Kistler reported that loading and generat-

ing code for a slim binary is nearly as fast as loading a native binary.

Even though the slim binary format represents programs in a very small format

(smaller than 1/3 the size of a PowerPC binary), this size does not include the size of the

code generator. Slim binaries may work well to reduce network transmission time of pro-

grams, but they are not suitable for embedded systems that typically run a single program

because the slim binary format is not directly executable. There is no program size benefit

at run-time because a full size native binary must be created to run the program. The only

size benefit is during the time the program is stored on disk or being transmitted over a

network.

HLL

main() {...}

IR

parse compress

transmit

decompress code generation

Object

NativeIR

j+1 P(*) …

mult r2,r9
add r0,r3

Object

j+1 P(*) …

Figure 2.6: Slim binaries

22

2.5.2 Wire codes

Ernst et al. [Ernst97] also introduced an encoding scheme that is suitable for trans-

mitting programs over networks. Figure 2.7 illustrates how it works. The authors com-

press the abstract syntax tree of the program in the following manner. First, the tree is

linearized and split into separate streams of operators and literal operands. The literal

operand stream is further separated into streams for each operand type. Second, each

stream is move-to-front encoded. Move-to-front coding works by moving symbols to the

front of the stream as they are referenced. Assuming that the symbols have temporal-local-

ity, the indices used to address the symbols in the stream will tend to have small values.

The indices are coded with a variable-length scheme that assigns short codes to the indices

with small values and long codes to the indices with large values. This results in a compact

representation for the frequently used symbols at the front of the stream. In the wire code,

the move-to-front indices are Huffman-coded. Finally, the results are passed through the

gzip program. They achieve very small code sizes (1/5 the size of a SPARC executable).

When the program is received, it must be decompressed and compiled before execution.

Therefore, this is not a representation that can be used at execution-time.

2.5.3 RISC iX

Taunton describes the use of dictionary compression for a low-cost computer using

the ARM processor [Taunton91]. Each page of text and data in the executable is com-

pressed. The decompressor is integrated with the operating system and each page is

HLL

F() {...}

IR

parse linearize

Streams

+ = +

move-to-front

Indices

1 2 2

Data

+ = <

Huffman

Indices

0 10 10

Data

+ = <
.gz

011101...

gzip
codingcoding

Figure 2.7: Wire code

23

decompressed as it is demand loaded. The compression algorithm saves 45-50% disk

space on a RISC iX system and causes programs to load 40% faster from disk. Taunton

notices that compressed programs load faster over the network on diskless machines than

native code. In addition, the RISC iX virtual memory system does not place text pages in

the swap area. Instead, it reloads them through the file system and decompresses them

again. This performance penalty was necessary to reduce disk space in a low-cost work-

station. Taunton also notes that shared libraries are a form of code compression for saving

space on disk and memory.

2.5.4 File system

Techniques used to save space in the file system compress both instructions and

data. These techniques could be useful in an embedded system that uses a file system in a

long-term, nonvolatile memory, for instance.

Cate and Gross
Cate and Gross [Cate91] investigate using the filesystem to automatically com-

press the least recently used files and decompress them when the user accesses them.

Using a PPM (prediction by partial matching) compression algorithm resulted in a com-

pression factor of 3. They compressed the least recently used 75% of files and kept other

files in their original non-compressed format. This resulted in a typical decompression

time of 50 seconds per user per day. Thus, compression can double the available disk stor-

age while causing minimum performance degradation.

Coffing and Brown
Coffing and Brown [Coffing97] augmented the Linux filesystem to support auto-

matic compression of files with gzip. Their system is based on that of Cate and Gross, but

uses different compression policies. First, they divide files into separate units and have the

ability to compress each unit independently. This improves random access time to large

files. When part of a file is accessed, the remaining units are speculatively decompressed

assuming that the user will want access to other sections of the file. Very large files are

never fully decompressed to avoid filling the disk. Small files whose compression may not

save at least one disk block are not compressed. One interesting problem the authors found

24

was that file fragmentation increased significantly as files were decompressed and re-

compressed.

Compression cache
Compression has also been used to improve virtual memory management. Douglis

[Douglis93] modified the Sprite operating system to compress pages of memory with the

LZRW1 algorithm [Williams91]. Before pages are written to backing store (disk), they are

first compressed and kept in a compression cache. The compression cache is a new level

in the virtual memory hierarchy between memory and disk. When the compression cache

is full, some compressed pages are written to backing store. In some cases, it allows the

working set of a program to remain entirely in main memory and use backing store. When

the working set it much larger than available memory, compression reduces the I/O to

backing store. Douglis found that applications had speedups ranging from 0.73 to 2.68.

Some benchmarks had slowdowns because 1) the number of incompressible pages was

very high so that the time taken to compress them was wasted, 2) many pages had low

compression ratios so the time to compress and decompress did not offset the I/O time,

and 3) the benchmarks had non-sequential data access patterns which did not allow the

cost of compression and decompression to be amortized over many data accesses.

2.6 Compiler optimizations for compression

Data compression works by taking advantage of predictability (repetition) in the

data stream. The compiler can therefore improve the compressibility of a program by gen-

erating code that is more regular and repetitious. Two techniques for accomplishing this

are procedure abstraction and register renaming.

2.6.1 Procedure abstraction

Procedure abstraction [Standish76] is a program optimization for procedure ori-

ented languages that replaces repeated sequences of common code with function calls to a

single function that performs the required computation. Figure 2.8 shows an example of

procedure abstraction with a high-level language. Compilers can apply procedure abstrac-

tion on an intermediate representation or native instructions. Sequences of code that are

25

identical, except for the values used, can be bound to the same abstracted function and

supplied with arguments for the appropriate values.

Kunchithapadam and Larus
Kunchithapadam and Larus apply procedure abstraction at the level of native

instructions by rewriting binary executables [Kunchit99]. They combined this optimiza-

tion with procedure layout so that the abstracted procedures were adjacent in memory to

the function that calls them the most. They find this optimization yields most of its benefit

when applied to straightline sequences of instructions. Using larger sequences that

included some control-flow only marginally improved their results. For many programs,

they found that code size decreased up to 5% and performance improved between 3-9%.

However, in some instances, they found that performance could decrease 5-27% which

suggests that the effect of procedure abstraction on cache performance needs more study.

Mini-subroutines
Liao et al. propose a software method for supporting compressed code [Liao95,

Liao96]. They find mini-subroutines which are common sequences of instructions in the

program. Each instance of a mini-subroutine is removed from the program and replaced

// Count 2 lists

G(p) {
 total = 0;
 while (p) {
 total++;
 p = p->next;
 }
 return(total);
}

F() {
 a = G(a_ptr);
 b = G(b_ptr);
}

// Count 2 lists

F() {
 total = 0;
 while (a_ptr) {
 total++;
 a_ptr = a_ptr->next;
 }
 a = total;

 total = 0;
 while (b_ptr) {
 total++;
 b_ptr = b_ptr->next;
 }
 b = total;
}

Figure 2.8: Procedure abstraction
Procedure abstraction is an optimization to reduce code size. The sections of code in procedure F are gener-
alized to form procedure G. Procedure F is re-written to call G.

Original program After procedure abstraction

26

with a call instruction. The mini-subroutine is placed once in the text of the program and

ends with a return instruction. Mini-subroutines are not constrained to basic blocks and

may contain branch instructions under restricted conditions. The prime advantage of this

compression method is that it requires no hardware support. However, the subroutine call

overhead will slow program execution. This method is similar to procedure abstraction at

the level of native instructions, but without the use of procedure arguments.

A hardware modification is proposed to support code compression consisting pri-

marily of a call-dictionary instruction. This instruction takes two arguments: location and

length. Common instruction sequences in the program are saved in a dictionary, and the

sequence is replaced in the program with the call-dictionary instruction. During execu-

tion, the processor jumps to the point in the dictionary indicated by location and executes

length instructions before implicitly returning. The advantage of this method over the

purely software approach is that it eliminates the return instruction from the mini-subrou-

tine. However, it also limits the dictionary to sequences of instructions within basic

blocks.

Figure 2.9 compares the mini-subroutine and call-dictionary methods. A potential

problem with these compression methods are that they introduce many branch instructions

into a program, thus reducing overall performance. The authors report a 88% compression

ratio for the mini-subroutine method and an 84% compression ratio for the call-dictionary

method. Their compression results are based on benchmarks compiled for the Texas

Instruments TMS320C25 DSP.

Figure 2.9: Mini-subroutines

Original (9 instructions)

F: lbz r9,0(r28)

multi r11,r9,24

addi r0,r11,1

cmpli cr1,0,r0,8

ble cr1,+64

lbz r9,0(r28)

multi r11,r9,24

addi r0,r11,1

cmpli cr1,0,r0,8

Mini-subroutine (8 instructions)

G: lbz r9,0(r28)

multi r11,r9,24

addi r0,r11,1

cmpli cr1,0,r0,8

return

F: call G

ble cr1,+64

call G

Call-dictionary (7 instructions)

G: lbz r9,0(r28)

multi r11,r9,24

addi r0,r11,1

cmpli cr1,0,r0,8

F: call G:4

ble cr1,+64

call G:4

27

2.6.2 Register renaming

Typically, very few opcodes are used by compilers to generate code. Inspite of this,

instructions usually differ from one another due to using different register names in their

register fields. Register renaming can improve repetition in the program by renaming the

registers of an instruction so that it matches another instruction in the program whenever

possible. This increases the number of instructions in the program that are identical and

allow the compressor to make use of the repetition.

Cooper and McIntosh
Cooper and McIntosh [Cooper99] use register renaming to increase opportunities

to apply procedure abstraction and cross-jumping [Wulf75]. They search the entire execut-

able binary for sequences of instructions (possibly spanning several basic blocks) that

have similar data-flow and control-flow. They then attempt to make the sequences identi-

cal by renaming registers in the live ranges that flow through the sequences. Once the

sequences are identical, then procedure abstraction or cross-jumping is applied. They

report a 5% average code size reduction and 6% average decrease in dynamic instructions

when their code reduction optimizations are applied to optimized programs.

Debray et al.
Debray et al. [Debray99] also combine the techniques of procedure abstraction and

register renaming in a binary-rewriting tool. The primary difference is that they use basic

blocks, rather than live ranges as the unit of renaming registers. They find basic blocks

with matching data-flow graphs and attempt to rename the registers within the basic

blocks so that the instructions match. Register move instructions are sometimes inserted

before and after the basic blocks to enable renaming. They look at the control-flow

between basic blocks so that blocks can be combined into larger units of abstraction. If

possible, identical blocks are moved into dominating, or post-dominating blocks to

remove copies. Otherwise, the identical basic blocks are then used as candidates for proce-

dure abstraction. Blocks of instructions in the function prologue and epilogue that save

and restore registers are treated specially. These are abstracted into procedures. However,

the entry point into the abstracted prologue and epilogue changes depending on what reg-

isters the caller needs to save and restore. The authors report a compression ratio ranging

28

from 73% to 81% for Alpha executables produced with gcc 2.7.2.2 with “-O2” optimiza-

tion (no loop-unrolling and no inlining). They also report performance increases of up to

18% and decreases of up to 28%.

2.7 Conclusion

It is clear that there are many opportunities on several levels to reduce the size of

programs. However, it is difficult to compare the results of the research efforts to date.

Each study uses a different compiler, instruction set, and compiler optimizations. It is not

meaningful to say that a program was compressed 20% or 50% without knowing what

standard this was measured against. Poorly written programs with no optimization may

compress very well because they are full of unnecessary repetition while programs that

already have an efficient encoding will seem not to compress very well. The value of the

techniques presented here is that they represent a range of solutions to program represen-

tation. These techniques are not mutually exclusive – it is possible to combine them since

they take advantage of different levels of representation.

29

Chapter 3

Instruction-level compression

In this chapter, we present a study that examines the feasibility of compressing

programs at the instruction-level. The results of this study show that ordinary programs

contain repetition at the instruction level that can be readily compressed. Programs are

compressed with a post-compilation analyzer that examines program object code and

replaces common sequences of instructions with a single codeword. A compression-aware

microprocessor could execute the compressed instruction sequences by fetching code-

words from the instruction memory, expanding them back to the original sequence of

instructions in the decode stage, and issuing them to the execution stages. We demonstrate

our technique by applying it to the PowerPC, ARM, i386, and MIPS-16 instruction sets.

3.1 Introduction

This chapter studies a compression method similar to the call-dictionary scheme

[Liao95]. Common sequences of native instructions in object code are replaced with code-

words. We extend this work by considering the advantages from using smaller instruction

(codeword) sizes. Liao considers the call-dictionary instruction to be the size of one or

two instruction words. This requires the dictionary to contain sequences with at least two

or three instructions, respectively, since shorter sequences would be no bigger than the

call-dictionary instruction and no compression would result. This method misses an

important compression opportunity. We will show that there is a significant advantage for

compressing patterns consisting of only one instruction.

Liao et al. do not explore the trade-off of the field widths for the location and

length arguments in the call-dictionary instruction. We vary the parameters of dictionary

size (the number of entries in the dictionary) and the dictionary entry length (the number

30

of instructions at each dictionary entry) thus allowing us to examine the efficacy of com-

pressing instruction sequences of any length.

This chapter is organized as follows. First, the compression method is described.

Second, the experimental results are presented. This chapter ends with conclusions about

the compression method and proposals for how it might be improved.

3.2 Overview of compression method

The compression method finds sequences of instructions (some of length one) that

are frequently repeated throughout a single program and replaces the entire sequence with

a single codeword. All rewritten (or encoded) sequences of instructions are kept in a dic-

tionary which, in turn, is used at program execution time to expand the singleton code-

words in the instruction stream back into the original sequence of instructions. Codewords

assigned by the compression algorithm are indices into the instruction dictionary.

The final compressed program consists of codewords interspersed with uncom-

pressed instructions. Figure 3.1 illustrates the relationship between the uncompressed

code, the compressed code, and the dictionary. A complete description of our compression

method is presented in Chapter 3.

3.2.1 Algorithm

The compression method is based on the technique introduced in [Bird96,

Chen97b]. A dictionary compression algorithm is applied after the compiler has generated

the program. We search the program object modules to find common sequences of instruc-

tions to place in the dictionary. The algorithm has three parts:

1. Building the dictionary
2. Replacing instruction sequences with codewords
3. Encoding codewords

Building the dictionary
For an arbitrary text, choosing those entries of a dictionary that achieve maximum

compression is NP-complete in the size of the text [Storer77]. As with most dictionary

methods, we use a greedy algorithm to quickly determine the dictionary entries. On every

31

iteration of the algorithm, we examine each potential dictionary entry and find the one that

results in the largest immediate savings. The algorithm continues to pick dictionary entries

until some termination criteria has been reached; this is usually the exhaustion of the code-

word space. The maximum number of dictionary entries is determined by the choice of the

encoding scheme for the codewords. Obviously, codewords with more bits can index a

larger range of dictionary entries. We limit the dictionary entries to sequences of instruc-

tions within a basic block. We allow branch instructions to branch to codewords, but they

may not branch within encoded sequences. We also do not compress branches with offset

fields. These restrictions simplify code generation.

Replacing instruction sequences with codewords
Our greedy algorithm combines the step of building the dictionary with the step of

replacing instruction sequences. As each dictionary entry is defined, all of its instances in

the program are replaced with a token. This token is replaced with an efficient encoding in

the encoding step.

Uncompressed Code

lbz r9,0(r28)

clrlwi r11,r9,24

addi r0,r11,1

cmplwi cr1,r0,8

ble
cr1,000401c8

cmplwi cr1,r11,7

bgt
cr1,00041d34

lwz r9,4(r28)

stb r18,0(r28)

b 00041d38

lbz r9,0(r28)

clrlwi r11,r9,24

addi r0,r11,1

cmplwi cr1,r0,8

bgt
cr1,00041c98

Compressed Code

CODEWORD #1

ble
cr1,000401c8

cmplwi cr1,r11,7

bgt
cr1,00041d34

CODEWORD #2

b 00041d38

CODEWORD #1

bgt
cr1,00041c98

Dictionary

 #1 lbz r9,0(r28)
clrlwi r11,r9,24
addi r0,r11,1
cmplwi cr1,r0,8

#2 lwz r9,4(r28)
stb
r18,0(r28)

... ...

Figure 3.1: Example of compression

32

Encoding codewords
Encoding refers the process of converting tokens to the actual representation of the

codewords in the compressed program. Variable-length codewords, (such as those used in

the Huffman encoding) are expensive to decode. A fixed-length codeword, on the other

hand, can be used directly as an index into the dictionary making decoding a simple table

lookup operation.

The baseline compression method uses a fixed-length codeword to enable fast

decoding. We also investigate a variable-length scheme. However, we restrict the variable-

length codewords to be a multiple of some basic unit. For example, we present a compres-

sion scheme with 8-bit, 12-bit, and 16-bit codewords. All instructions (compressed and

uncompressed) are aligned on 4-bit boundaries. This achieves better compression than a

fixed-length encoding, but complicates decoding.

3.2.2 Related issues

Branch instructions
One obvious side effect of a compression scheme is that it alters the locations of

instructions in the program. This presents a special problem for branch instructions, since

branch targets change as a result of program compression.

To avoid this problem, we do not compress relative branch instructions (i.e. those

containing an offset field used to compute a branch target). This makes it easy for us to

patch the offset fields of the branch instruction after compression. If we allowed compres-

sion of relative branches, we might need to rewrite codewords representing relative

branches after a compression pass; but this would affect relative branch targets thus

requiring a rewrite of codewords, etc. The result is again an NP-complete problem

[Szymanski78].

Indirect branches are compressed in our study. Since these branches take their tar-

get from a register, the branch instruction itself does not need to be patched after compres-

sion, so it cannot create the codeword rewriting problem outlined above. However, jump

tables (containing program addresses) need to be patched to reflect any address changes

due to compression.

33

Branch targets
Instruction sets restrict branches to use targets that are aligned to instruction word

boundaries. Since our primary concern is code size, we trade-off the performance advan-

tages of these aligned instructions in exchange for more compact code. We use codewords

that are smaller than instruction words and align them on 4-bit boundaries. Therefore, we

need to specify a method to address branch targets that do not fall at the original instruc-

tion word boundaries.

One solution is to pad the compressed program so that all branch targets are

aligned as defined by the original ISA. The obvious disadvantage of this solution is that it

will increase program size.

A more complex solution (the one we have adopted for our experiments) is to

modify the control unit of the processor to treat the branch offsets as aligned to the size of

the codewords. The post-compilation compressor modifies all branch offsets to use this

alignment.

One of our compression schemes requires that branch targets align to 4-bit bound-

aries. In PowerPC and ARM, branch targets align to 32-bit boundaries. Since branches in

the compressed program specify a target aligned to a 4-bit boundary, the target could be in

any one of eight positions within the original 32-bit boundary. We use 3 bits in the branch

offset to specify the location of the branch target within the usual 32-bit alignment. Over-

all, the range of the offset is reduced by a factor of 8. In our benchmarks, less than 1% of

the branches with offsets had a target outside of this reduced range. Branch targets in i386

align to 8-bit boundaries. We use 1 bit in the offset to specify the 4-bit alignment of the

compressed instruction within the usual 8-bit alignment. This reduces the range of branch

offsets by a factor of two. In our benchmarks, less than 2.2% of the branch offsets were

outside this reduced range. Branches requiring larger ranges are modified to load their tar-

gets through jump tables. Of course, this will result in a slight increase in the code size for

these branch sequences.

34

3.2.3 Compressed program processor

The general design for a compressed program processor is given in Figure 3.2. We

assume that all levels of the memory hierarchy will contain compressed instructions to

conserve memory. Since the compressed program may contain both compressed and

uncompressed instructions, there are two paths from the instruction memory to the proces-

sor core. Uncompressed instructions proceed directly to the normal instruction decoder.

Compressed instructions must first be translated using the dictionary before being

decoded and executed. In the simplest implementations, the codewords can be made to

index directly into the dictionary. More complex implementations may need to provide a

translation from the codeword to an offset and length in the dictionary. Since codewords

are groups of sequential values with corresponding sequential dictionary entries, the com-

putation to form the index is usually simple. Since the dictionary index logic is extremely

small and is implementation dependent, we do not include it in our results.

3.3 Experiments

In this section we integrate our compression technique into the PowerPC, ARM,

i386, and MIPS-16 instruction sets. For PowerPC, i386, and MIPS-16 we compiled the

Figure 3.2: Compressed program processor

Compressed
instruction memory
(usually ROM)

Dictionary index logic
(convert codeword
to dictionary offset
and length)

Dictionary

CPU core

Uncompressed instruction

Index

Codeword

35

SPEC CINT95 benchmarks with GCC 2.7.2 using -O2 optimization. The optimizations

include common sub-expression elimination. They do not include procedure inlining and

loop unrolling since these optimizations tend to increase code size. We compiled SPEC

CINT92 and SPEC CINT95 for ARM6 using the Norcroft ARM C compiler v4.30. For all

instruction sets, the programs were not linked with libraries to minimize the differences

across compiler environments and help improve comparisons across different instruction

sets. All compressed program sizes include the overhead of the dictionary.

Our compression experiments use two compression schemes. The first scheme

uses fixed-length codewords (16 bits long) and the second uses variable-length codewords

(8, 12, or 16 bits long). We implement the fixed-length compression on PowerPC and the

variable-length compression on PowerPC, ARM, i386, and MIPS-16.

Recall that we are interested in the dictionary size (number of codewords) and dic-

tionary entry length (number of instructions at each dictionary entry).

3.3.1 Fixed-length codewords

Our baseline compression method, implemented on PowerPC, uses fixed-length

codewords of two bytes. The first byte is an escape byte that has an illegal PowerPC

opcode value. This allows us to distinguish between normal instructions and compressed

instructions. The second byte selects one of 256 dictionary entries. Dictionary entries are

limited to a length of 16 bytes (4 PowerPC instructions). PowerPC has eight illegal 6-bit

opcodes. By using all eight illegal opcodes and all possible patterns of the remaining 2 bits

in the byte, we can have up to 32 different escape bytes. Combining this with the second

byte of the codeword, we can specify up to 8192 different codewords. Since compressed

instructions use only illegal opcodes, any processor designed to execute programs com-

pressed with the baseline method will be able to execute the original programs as well.

3.3.2 Compressing patterns of a single instruction

As outlined above, Liao finds common sequences of instructions and replaces

them with a branch (call-dictionary) instruction. The problem with this method is that it is

36

not beneficial to compress patterns of one instruction due to the overhead of the branch

instruction. In order to be beneficial, the sequence must have at least two instructions.

Our first experiment measures the benefit of allowing sequences of single instruc-

tions to be compressed. Our baseline method allows single instructions to be compressed

since the codeword (2 bytes) that is replacing the instruction (4 bytes) is smaller. We com-

pare this against an augmented version of the baseline that uses 4-byte codewords. If we

assume that the 4-byte codeword is actually a branch instruction, then we can approximate

the effect of the compression used by Liao. This experiment limits compressed instruction

sequences to 4 instructions. The largest dictionary generated (for gcc) used only 7577

codewords. Figure 3.3 shows that the 2-byte compression is a significant improvement

over the 4-byte compression. This improvement is mostly due to the smaller codeword

size, but a significant portion results from using patterns of one instruction. Figure 3.4

shows the contribution of each of these factors to the total savings. The size reduction due

to using 2-byte codewords was computed using the results of the 4-byte compression and

recomputing the savings as if the codewords were only 2 bytes long. This savings was

subtracted from the total savings to derive the savings due to using patterns of one instruc-

tion. For each benchmark, except vortex, using patterns of one instruction improved the

compression ratio by over 6%.

Figure 3.3: Compression ratio using 2-byte and 4-byte codewords
Comparison of baseline compression method with 2-byte and 4-byte codewords.

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

Benchmarks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
om

pr
es

si
on

 R
at

io

4-byte codewords

2-byte codewords

Baseline compression

37

3.3.3 Dictionary parameters

Our next experiments vary the parameters of the baseline method. Figure 3.5

shows the effect of varying the dictionary entry length and number of codewords (entries

in the dictionary). The results are averaged over the CINT95 benchmarks. In general, dic-

tionary entry sizes above 4 instructions do not improve compression noticeably. Table 3.1

lists the maximum number of codewords for each program under the baseline compres-

sion method, which is representative of the size of the dictionary.

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

Benchmarks

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

C
om

pr
es

si
on

 R
at

io
 D

iff
er

en
ce

Patterns of 1 instruction

Smaller codewords

Figure 3.4: Compression ratio difference between 4-byte and 2-byte codewords
Analysis of difference in code reduction between 4-byte codewords and 2-byte codewords in baseline com-
pression method

Reason for code reduction

Figure 3.5: Effect of dictionary size and dictionary entry length
Summary of effect of number of dictionary entries and length of dictionary entries in baseline compression
method. Compression ratio is averaged over the CINT95 benchmarks.

16 128 1024 8192

Maximum Number of Dictionary Entries

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
om

pr
es

si
on

 R
at

io

1

2

4

8

Maximum number of
instructions in each
dictionary entry

38

The benchmarks contain numerous instructions that occur only a few times. As the

dictionary becomes large, there are more codewords available to replace the numerous

instruction encodings that occur infrequently. The savings from compressing an individual

instruction are tiny, but when multiplied over the length of the program, the benefit is

noticeable. To achieve good compression, it is more important to increase the number of

codewords in the dictionary rather than increase the length of the dictionary entries. A few

thousand codewords is enough for most CINT95 programs.

Usage of the dictionary
Our experiments reveal that dictionary usage is similar across all the benchmarks,

thus we illustrate our results using ijpeg as a representative benchmark. We extend the

baseline compression method to use dictionary entries with up to eight instructions.

Figure 3.6 shows the composition of the dictionary by the number of instructions the dic-

tionary entries contain. The number of dictionary entries with only a single instruction

ranges from 50% to 80%. The greedy algorithm tends to pick smaller, highly used

sequences of instructions. This has the effect of breaking apart larger patterns that contain

these smaller patterns. This results in even less opportunity to use the larger patterns.

Therefore, the larger the dictionary grows, the higher the proportion of short dictionary

entries it contains. Figure 3.7 shows which dictionary entries contribute the most to com-

pression. Dictionary entries with one instruction achieve between 46% and 60% of the

Benchmark
Maximum Number of

Codewords Used

compress 72

gcc 7577

go 2674

ijpeg 1616

li 454

m88ksim 1289

perl 2132

vortex 2878

Table 3.1: Maximum number of codewords used in baseline compression
Maximum dictionary entry size is 4 instructions.

39

compression savings. The short entries contribute to a larger portion of the savings as the

size of the dictionary increases. The compression method in [Liao96] cannot take advan-

tage of this since the codewords are the size of single instructions, so single instructions

are not compressed.

Figure 3.6: Composition of dictionary for ijpeg
Longest dictionary entry is 8 instructions.

1

2

3

4

5

6

7

8

Length of dictionary
entry (number of
instructions)

16 32 64 128 256 512 1024 1563

Size of Dictionary (number of entries)

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

of
 D

ic
tio

na
ry

 E
nt

rie
s

16 32 64 128 256 512 1024 1563

Size of Dictionary (number of entries)

0%

5%

10%

15%

20%

25%

30%

35%

P
ro

gr
am

 B
yt

es
 R

em
ov

ed

1

2

3

4

5

6

7

8

Number of
instructions
in dictionary
entry

D
ue

 to
 C

om
pr

es
si

on

Figure 3.7: Bytes saved according to dictionary entry length
Bytes saved in compression of ijpeg according to instruction length of dictionary entry

40

3.3.4 Variable-length codewords

In the baseline method, we used 2-byte codewords. We can improve our compres-

sion ratio by using smaller encodings for the codewords. Figure 3.8 shows that in the base-

line compression, 40% of the compressed program bytes are codewords. Since the

baseline compression uses 2-byte codewords, this means 20% of the final compressed pro-

gram size is due to escape bytes. We investigated several compression schemes using vari-

able-length codewords aligned to 4 bits (nibbles). Although there is a higher decode

penalty for using variable-length codewords, they make possible better compression. By

restricting the codewords to integer multiples of 4 bits, we still retain some of the decod-

ing process regularity that the 1-bit aligned Huffman encoding in [Kozuch94] lacks.

Our choice of encoding is based on CINT95 benchmarks. We present only the best

encoding choice we have discovered. We use codewords that are 8-bits, 12-bits, and 16-

bits in length. Other programs may benefit from different encodings. For example, if many

codewords are not necessary for good compression, then the large number of 12-bit and

16-bit codewords we use could be replaced with fewer (shorter) 4-bit and 8-bit codewords

to further reduce the codeword overhead.

A diagram of the nibble aligned encoding is shown in Figure 3.9. This scheme is

predicated on the observation that when an unlimited number of codewords are used, the

final compressed program contains more codewords than uncompressed instructions.

Figure 3.8: Composition of compressed PowerPC programs
Maximum of 8192 2-byte codewords. Longest dictionary entry is 4 instructions.

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

Benchmarks

0%

20%

40%

60%

80%

100%

C
om

pr
es

se
d

P
ro

gr
am

 S
iz

e

Dictionary

Codewords: escape bytes

Codewords: index bytes

Uncompressed instructions

41

Therefore, we use the escape code to indicate (less frequent) uncompressed instructions

rather than codewords. The first 4-bits of the codeword determine the length of the code-

word. With this scheme, we can provide 128 8-bit codewords, and a few thousand 12-bit

and 16-bit codewords. This offers the flexibility of having many short codewords (thus

minimizing the impact of the frequently used instructions), while allowing for a large

overall number of codewords. One nibble is reserved as an escape code for uncompressed

instructions. We reduce the codeword overhead by encoding the most frequent sequences

of instructions with the shortest codewords.

Using this encoding technique effectively redefines the entire instruction set

encoding, so this method of compression can be used in existing instruction sets that have

no available escape bytes, such as ARM and i386.

Our results for PowerPC, ARM, i386, and MIPS-16 using the 4-bit aligned com-

pression are presented in Figure 3.10. We allowed the dictionaries to contain a maximum

of 16 bytes per entry. We obtained average code reductions of 39%, 34%, 26%, and 16%

for PowerPC, ARM, i386, and MIPS-16, respectively. Figure 3.11 shows the average orig-

inal size and the average compressed size of the benchmarks for all instruction sets. The

data is normalized to the size of the original uncompressed PowerPC programs. One clear

observation is that compressing PowerPC or ARM programs saves more memory than

Figure 3.9: Nibble aligned encoding

0-7

8-13

14

15

0-15

0-255

0-4095

Original uncompressed instruction

0 3 7

0 3

0 3

0 3

11

15

 n

128 8-bit codewords

1536 12-bit codewords

4096 16-bit codewords

36-bit uncompressed instruction

Bit offset

Value

4

4

4

4

42

recompiling to the i386 instruction set. Compression of PowerPC programs resulted in a

39% size reduction, while using the i386 instruction set only provided a 29% size reduc-

tion over PowerPC. Compression of ARM programs yielded a 34% size reduction, but

using i386 only gave a 18% size reduction over ARM. Overall, we were able to produce

the smallest programs by compressing MIPS-16 programs.

3.3.5 Comparison to MIPS-16

In this section we compare the size improvement that MIPS-16 and nibble com-

pression have over MIPS-2. In Figure 3.12 we show the original and compressed average

sizes of the benchmarks for both MIPS-2 and MIPS-16.

Figure 3.10: Nibble compression for various instruction sets

0%

20%

40%

60%

80%

100%

Compression

PowerPC ARM i386 MIPS-16

Average Compression Ratio for CINT95

Ratio

Figure 3.11: Comparison of compression across instruction sets
All program sizes are normalized to the size of the original PowerPC programs.

0%

20%

40%

60%

80%

100%

Original Compressed

Program Size Relative
to Original PowerPC
Program (Bytes)

PowerPC
ARM

i386
MIPS-16

43

For the smaller programs, MIPS-16 compression is better, while for large pro-

grams, nibble compression is better. For the large programs, nibble compression does sig-

nificantly better than MIPS-16.

The reason for this is that in small programs there are fewer repeated instructions,

and this causes compressible sequences to be less frequent. MIPS-16 is able to compress

single instances of 32-bit instructions down to 16 bits, but our nibble compression requires

at least 2 instances of the same instructions to compress it (due to dictionary overhead).

Therefore on the small benchmarks where there are fewer repeated instructions, MIPS-16

has the advantage. When programs are larger then there are enough repeated instructions

so that the nibble compression can overcome the dictionary overhead to beat the MIPS-16

compression. Since MIPS-16 is just another instruction set, we can apply nibble compres-

sion to it. Therefore, we can always obtain a program smaller than the MIPS-16 version.

3.4 Discussion

We have proposed a method of compressing programs for embedded microproces-

sors where program memory is limited. Our approach combines elements of two previous

proposals. First we use a dictionary compression method [Liao95] that allows codewords

to expand to several instructions. Second, we allow the codewords to be smaller than a

single instruction [Kozuch94]. For this method, the size of the dictionary is the single

most important parameter in attaining a better compression ratio. The second most impor-

tant factor is reducing the codeword size below the size of a single instruction. To obtain

Figure 3.12: Comparison of MIPS-2 with MIPS-16

0%

20%

40%

60%

80%

100%

Size Relative to
MIPS-2 Program

MIPS-2
MIPS-16

Original Compressed

44

good compression it is crucial to have an encoding scheme that is capable of compressing

patterns of single instructions. Our most aggressive compression for SPEC CINT95

achieves an average size reduction of 39%, 34%, 26%, and 16% for PowerPC, ARM,

i386, MIPS-16 respectively.

Our compression ratio is similar to those achieved by Thumb and MIPS-16. While

Thumb and MIPS-16 are effective in reducing code size, they increase the number of

static instructions in a program. We compared the CINT95 benchmarks compiled for

MIPS-16 and MIPS-II using GCC. We found that overall, the number of instructions

increased 6.7% when using MIPS-16. In the worst case, for the compress benchmark, the

number of instructions increased by 15.5%. On the contrary, our method does not cause

the number of instructions in a program to increase. Compressed programs are translated

back into the instructions of the original program and executed, so that the number of

instructions executed in a program is not changed. Moreover, a compressed program can

access all the registers, operations, and modes available on the underlying processor. We

derive our codewords and dictionary from the specific characteristics of the program

under execution. Tuning the compression method to individual programs helps to improve

code size. Compression is available on a per instruction basis without introducing any spe-

cial instructions to switch between compressed and non-compressed code.

3.5 Conclusion

There are several ways that our compression method could be improved. First, the

compiler should avoid producing instructions with encodings that are used only once. In

our PowerPC benchmarks, we found that 8% of the instructions (not including branches)

were not compressible by our method because they had instruction encodings that were

only used once in the program. Second, we need an effective method to compress branch

instructions. In the PowerPC benchmarks, 18% of the instructions were branches with PC-

relative offsets. We did not compress these instructions in order to simplify the compres-

sion mechanism. These instructions offer an opportunity to improve compression signifi-

cantly. Third, the compiler could attempt to produce instructions with identical byte

sequences so they become more compressible. One way to accomplish this is by allocating

45

registers so that common sequences of instructions use the same registers. Finally, we

could improve the selection of codewords in the dictionary by using a covering algorithm

instead of a greedy algorithm.

46

Chapter 4

Hardware-managed decompression

This chapter investigates the performance of a hardware-managed code compres-

sion algorithm. We find that code compression with appropriate hardware optimizations

does not have to incur much performance loss over native code, contrary to previous stud-

ies. Furthermore, our studies show this holds for architectures with a wide range of mem-

ory configurations and issue widths. Surprisingly, we find that a performance increase

over native code is achievable in many situations. The performance increase occurs

because fetching compressed instructions results in lower memory traffic.

4.1 Introduction

In this chapter we perform an in-depth analysis of one particular compression

method supported in hardware: IBM’s CodePack instruction compression used in the

PowerPC 405. The approach taken by IBM is the first to combine many previously pro-

posed code compression techniques. It is also the first commercially available code com-

pression systems that does more than simply support a 16-bit instruction subset. For these

reasons, it makes an ideal study. We do not attempt to precisely model the CodePack as

implemented in the PowerPC 405. Instead, we implement CodePack on the SimpleScalar

simulator in order to inspect how it performs on various architecture models. Our goal is

to determine the performance pitfalls inherent in the compression method and suggest

architectural features to improve execution time. We answer the following questions:

• What is the performance effect of decompression?
• How does this performance change over a range of microarchitectures?
• Which steps of the decompression algorithm hinder performance the most?
• What additional optimizations can be made to improve decompression performance?

47

4.2 Related work

CodePack [IBM98, Kemp98] is used in IBM’s embedded PowerPC systems. This

scheme resembles CCRP in that it is part of the memory system. The CPU is unaware of

compression, and a LAT-like device maps between the native and compressed address

spaces. The decompressor accepts L1-cache miss addresses, retrieves the corresponding

compressed bytes from main memory, decompresses them, and returns native PowerPC

instructions to the L1-cache. CodePack achieves 60% compression ratio on PowerPC.

IBM reports that performance change in compressed code is within 10% of native pro-

grams — sometimes with a speedup. A speedup is possible because CodePack implements

prefetching behavior that the underlying processor does not have.

CodePack uses a different symbol size for compression than previous schemes for

32-bit instructions. CCRP divides each instruction into 4 8-bit symbols which are then

compressed with Huffman codes. The decoding process in CCRP is history-based which

serializes the decoding process. Decoding 4 symbols per instruction is likely to impact

decompression time significantly. Lefurgy et al. proposed a dictionary compression

method for PowerPC that uses complete 32-bit instructions as compression symbols

[Lefurgy97]. This method achieves compression ratios similar to CodePack, but requires a

dictionary with several thousand entries which could increase access time and hinder

high-speed implementations. This variable-length encoding scheme is similar to Code-

Pack in that both pre-pend each codeword with a short tag to indicate its size. This should

allow implementations with multiple decompressors to quickly extract codewords from an

input stream and decompress them in parallel. CodePack divides each PowerPC instruc-

tion into 2 16-bit symbols that are then compressed into variable-length codewords. The

16-bit symbols allow CodePack to achieve its compression ratio with only 2 dictionaries

of less than 512 entries each.

4.3 Compression architecture

This section gives an overview of the CodePack compression algorithm and dis-

cusses its current implementation in PowerPC. The complete CodePack algorithm is

described in the CodePack user manual [IBM98].

48

4.3.1 CodePack algorithm

Figure 4.1 illustrates the decompression algorithm. To understand it, consider how

the compression encoder works (start at the bottom of Figure 4.1). Each 32-bit instruction

is divided into 16-bit high and low half-words which are then translated to a variable bit

codeword from 2 to 11 bits. Because the high and low half-words have very different dis-

tribution frequencies and values, two separate dictionaries are used for the translation. The

most common half-word values receive the shortest codewords. The codewords are

divided into 2 sections. The first section is a 2 or 3 bit tag that tells the size of the code-

low
dict

high
dict

16-bits 16-bitsNative Instruction

C. Decompress

high tag low tag high index low index1 compressed instruction

Compression Block
(16 variable-length

Compressed bytes

1st Block Base 2nd Block offset

adder

1st Block address

2nd Block address

Block address

Index table

31262524650

I-cache miss address

A. Fetch index

Index for
compression
group

Figure 4.1: CodePack decompression
A) Use instruction address to fetch index from index table. B) Use index to map native instruction address to
compressed instruction address and fetch compressed instructions. C) Decompress compressed instructions
into native instructions.

(in main memory)

(in main memory)

compressed instructions)

Select first or second block
of compressed instructions

B. Fetch
compressed
instructions

49

word. The second section is used to index the dictionaries. The value 0 in the lower half-

word is encoded using only a 2 bit tag (no low index bits) because it is the most frequently

occurring value. The dictionaries are fixed at program load-time which allows them to be

adapted for specific programs. Half-words that do not fit in the dictionary are left directly

in the instruction stream and pre-pended with a 3 bit tag to identify them as raw bytes

instead of compressed bytes.

Each group of 16 instructions is combined into a compression block. This is the

granularity at which decompression occurs. If the requested I-cache line (8 instructions) is

in the block, then the whole block is fetched and decompressed.

The compressed instructions are stored at completely different memory locations

from the fixed-length native instructions. Therefore, the instruction address from the

cache miss is mapped to the corresponding compressed instruction address by an index

table which is created during the compression process. The function of the index table is

the same as the LAT in CCRP. Each index is 32-bits. To optimize table size, each entry in

the table maps one compression group consisting of 2 compressed blocks (32 instructions

total). The first block is specified as a byte offset into the compressed memory and the sec-

ond block is specified using a shorter offset from the first block. This is an example of dif-

ference encoding which is described in Section 2.1.2.

4.3.2 Implementation

The IBM implementation of CodePack has several features to enable high-speed

decoding. We attempt to model their effects in our simulations.

Index cache
The index table is large enough that it must be kept in main memory. However, the

last used index table entry is cached so that an access to the index table can be avoided in

the case when the next L1-cache miss is in the same compression group. (There is one

index for each compression group and each compression group maps 4 cache lines.) We

will discuss the benefit of using even larger index caches.

50

Burst read
Burst accesses are used to fetch compressed bytes from main memory. There is an

initial long latency for the first memory access and shorter latencies for successive

accesses to adjacent memory locations.

Dictionaries
Both dictionaries are kept in a 2 KB on-chip buffer. This is important for fast

decompression since the dictionaries are accessed frequently (once per instruction).

Decompression
As compressed bytes are returned from main memory, they are decompressed at

the rate of one instruction per cycle. This allows some overlap of fetching and decompres-

sion operations. We will discuss the benefit of using even greater decompression band-

width.

Instruction prefetching
On an L1-cache miss, instructions are decompressed and put into a 16 instruction

output buffer within the decompressor. Even though the L1-cache line requires eight

instructions, the remaining ones are always decompressed. This buffer is completely filled

on each L1-cache miss. This behaves as a prefetch for the next cache line.

Instruction forwarding
As instructions are decompressed, they are put in the output buffer and also imme-

diately forwarded to the CPU for decoding and execution.

4.4 Simulation environment

We perform our compression experiments on the SimpleScalar 3.0 simulator

[Burger97] after modifying it to support compressed code. We use benchmarks selected

from the SPEC CINT95 [SPEC95] and MediaBench [Lee97] suites. The benchmarks cc1,

go, perl, and vortex were chosen from CINT95 because they perform the worst under

CodePack since they have the highest L1 I-cache miss ratios. The benchmarks mpeg2enc

and pegwit are representative of loop-intensive embedded benchmarks. All benchmarks

are compiled with GCC 2.6.3 using the optimizations “-O3 -funroll-loops” and are stati-

51

cally linked with library code. Table 4.1 lists the benchmarks and the input sets. Each

benchmark executes over one billion instructions and is run to completion.

SimpleScalar has 64-bit instructions which are loosely encoded, and therefore

highly compressible. We wanted an instruction set that more closely resembled those used

in today’s microprocessors and used by code compression researchers. Therefore, we re-

encoded the SimpleScalar instructions to fit within 32 bits. Our encoding is straightfor-

ward and resembles the MIPS IV encoding. Most of the effort involved removing unused

bits (for future expansion) in the 64-bit instructions.

For our baseline simulations we choose three very different architectures. The 1-

issue architecture is a low-end processor for an embedded system. This is modeled as a

single issue, in-order, 5-stage pipeline. We simulate only L1 caches and main memory.

Main memory has a 64-bit bus. The first access takes 10 cycles and successive accesses

take 2 cycles. The 4-issue architecture differs from the 1-issue in that it is out-of-order and

the bandwidth between stages is 4 instructions. We use the 8-issue architecture as an

example of a high performance system. The simulation parameters for the architectures

are given in Table 4.2.

Figure 4.2 illustrates the models for L1-miss activity. Figure 4.2-a shows that a

native code miss just fetches the cache line from main memory in 4 accesses (32-byte

cache lines with a 64-bit bus). We modified SimpleScalar to return the critical word first

for I-cache misses. For example, if the fifth instruction in the cache line caused the miss, it

will be returned in the first access at t=10. This is a significant advantage for native code

programs. Decompression must proceed in a serial manner and cannot take advantage of

the critical word first policy. Figure 4.2-b shows the baseline compression system. This

model fetches the index table entry from main memory (unless it reuses the previous

Bench
Instructions

executed (millions) Input set
I-cache miss rate

for 4-issue

cc1 1441 cp-decl.i 6.7%

go 1265 30 12 null.in 6.2%

mpeg2enc 1119 default with profile=1, level=4, chroma=2, preci-
sion=0, repeat=0

0.0%

pegwit 1014 11MB file 0.1%

perl 1108 ref input without “abortive” and “abruption” 4.4%

vortex 1060 ref input with PART_COUNT 400, INNER_LOOP 4, DELETES
80, STUFF_PARTS 80

5.2%

Table 4.1: Benchmarks

52

index), uses the index to fetch codewords from main memory, and decompresses code-

words as they are received. In the example, the consecutive main memory accesses return

SimpleScalar parameters 1-issue 4-issue 8-issue

fetch queue size 1 4 8

decode width 1 4 8

issue width 1 in-order 4 out-of-order 8 out-of-order

commit width 1 4 8

Register update unit
entries

2 64 128

load/store queue 2 32 64

function units alu:1, mult:1, memport:1,
fpalu:1, fpmult:1

alu:4, mult:1, mem-
port:2, fpalu:4,
fpmult:1

alu:8, mult:1, mem-
port:2, fpalu:8,
fpmult:1

branch pred bimode 2048 entries gshare with 14-bit
history

hybrid predictors with
1024 entry meta table.

L1 i-cache 8 KB, 32B lines, 2-assoc,
lru

16 KB 32 KB

L1 d-cache 8 KB, 16B lines, 2-assoc,
lru

16 KB 32 KB

memory latency 10 cycle latency, 2 cycle
rate

same same

memory width 64 bits same same

Table 4.2: Simulated architectures

Instruction cache miss
Insns. from main mem.

Instruction cache miss
Index from index cache
Codes from main mem.

Instruction cache miss

Codes from main mem.
Decompressor

2 Decompressors

Figure 4.2: Example of L1 miss activity
2-a:The native program can fetch the critical (missed) instruction first and burst read the remainder of the
cache line.
2-b:CodePack first fetches the index from the index table in main memory. It then fetches compressed
instructions and decompresses them in parallel.
2-c:CodePack optimizations are A) accessing index cache to eliminates index fetch to main memory and B)
expanding decompression bandwidth to decompress two instructions per cycle.

a) Native code

b) CodePack

c) CodePack optimized

t=0

L1 cache miss

Fetch index

Fetch instructions (first line)

Fetch instructions (remaining lines)

Decompression cycle

A

B

10 3020
1 cycle

Index from main mem.

Critical instruction

53

compressed instructions in the quantities 2, 3, 3, 3, 3, and 2. The critical instruction is in

the second access. Assuming that the decompressor has a throughput of 1 instruction/

cycle, then the critical instruction is available to the core at t=25.

Figure 4.2-c shows our improvements to the basic compressed code model. We

cache index entries, which often avoids a lengthy access to main memory. We also investi-

gate the effect of increasing the decompression rate on performance. In the example, a

decompression rate of 2 instructions/cycle allows the critical instruction to be ready at

t=14.

4.5 Results

Our first experiments evaluate the original CodePack algorithm on a variety of

architectures to characterize its performance. We then propose optimizations to improve

the performance of compressed code. Finally, we vary the memory system parameters to

determine the performance trends of the optimizations.

4.5.1 Code size

Table 4.3 shows the size of .text section of the original and compressed pro-

grams. These results are similar to the typical compression ratio of 60% reported by IBM

for PowerPC programs.

Table 4.4 shows the composition of the compressed .text section. The Index

table column represents the bits required to translate cache miss addresses to compression

region addresses. The Dictionary column represents the contents of the high and low half-

word dictionaries. The Compressed tags and Dictionary indices columns represent the

Bench
Original size

(bytes)
Compressed
size (bytes)

Compression ratio
(smaller is better)

cc1 1,083,168 654,999 60.5%

go 310,576 182,602 58.8%

mpeg2enc 118,416 74,681 63.2%

pegwit 88,560 54,120 61.3%

perl 267,568 162,045 60.6%

vortex 495,248 274,420 55.4%

Table 4.3: Compression ratio of .text section

54

two components of the compressed instructions in the program. The Raw tags column

represents the use of 3-bit tags to mark non-compressed half-words. The Raw bits column

represents bits that are copied directly from the original program in either the form of indi-

vidual non-compressed half-words (preceded by raw tags) or entire non-compressed

CodePack blocks. The Pad column shows the number of extra bits required to byte-align

CodePack blocks. The columns for raw tags and raw bits show that a surprising portion

(19-25%) of the compressed program is not compressed. The raw bits occur because there

are instructions which contain fields with values that to not repeat frequently or have adja-

cent fields with rare combinations of values. Many instructions that are represented with

raw bits use large branch offsets, unusual register ordering, large stack offsets, or unique

constants. Also, CodePack may choose to not compress entire blocks in the case that using

the compression algorithm would expand them. These non-compressed blocks are

included in the Raw bits count, but occur very rarely in our benchmarks. It is possible that

new compiler optimizations could select instructions so that more of them fit in the dictio-

nary and less raw bits are required.

4.5.2 Overall performance

Table 4.5 shows the overall performance of CodePack compressed code compared

to native code. We also show an optimized decompressor that provides significant

speedup over the baseline decompressor and even outperforms native code in many cases.

We describe our optimized model in the following sections. The performance loss for

compressed code compared to native code is less than 14% for 1-issue, under 18% for 4-

issue, and under 13% for 8-issue. The mpeg2enc and pegwit benchmarks do not produce

enough cache misses to produce a significant performance difference between the com-

Bench Index table Dictionary Compressed tags Dictionary indices Raw tags Raw bits Pad Total (bytes)

cc1 5.1% 0.3% 22.5% 46.1% 3.9% 20.9% 1.1% 654,999

go 5.3% 1.0% 24.7% 50.9% 2.7% 14.2% 1.2% 182,602

mpeg2enc 5.0% 2.7% 21.9% 46.0% 3.7% 19.9% 1.1% 74,681

pegwit 5.1% 3.4% 26.3% 49.4% 2.7% 14.7% 1.1% 54,120

perl 5.2% 1.1% 22.5% 46.0% 3.8% 20.3% 1.1% 162,045

vortex 5.6% 0.7% 25.1% 50.3% 2.7% 14.3% 1.2% 274,420

Table 4.4: Composition of compressed region

55

pressed and native programs. CodePack behaves similarly across each of the baseline

architectures provided that the cache sizes are scaled with the issue width. Therefore in the

remaining experiments, we only present results for the 4-issue architecture.

4.5.3 Components of decompression latency

Intuition suggests that compression reduces the fetch bandwidth which could actu-

ally lead to performance improvement. However, CodePack requires that the compressed

instruction fetch be preceded by an access to the index table and followed by decompres-

sion. This reduces the fetch bandwidth below that of native code resulting in a potential

performance loss.

We explore two optimizations to reduce the effect of index table lookup and

decompression latency. These optimizations allow the compressed instruction fetch to

dominate the L1 miss latency. Since the compressed instructions have a higher instruction

density than native instructions, a speedup should result. In the following subsections, we

measure the effects of these optimizations on the baseline decompressor model.

Index table access
We assume that the index table is large and must reside in main memory. There-

fore, lookup operations on the table are expensive. The remaining steps of decompression

are dependent on the value of the index, so it is important to fetch it efficiently. One way to

improve lookup latency is to cache some entries in faster memory. Since a single index

maps the location of 4 consecutive cache lines and instructions have high spatial locality,

it is likely the same index will be used again. Therefore, caching should be very beneficial.

Another approach to reduce the cost of fetching index table entries from main memory is

Bench

1-issue 4-issue 8-issue

 Native CodePack Optimized Native CodePack Optimized Native CodePack Optimized

cc1 0.40 0.35 0.39 1.00 0.82 0.97 1.62 1.42 1.58

go 0.43 0.39 0.44 1.02 0.91 1.07 1.47 1.37 1.53

mpeg2enc 0.51 0.51 0.51 1.48 1.48 1.48 1.76 1.76 1.76

pegwit 0.56 0.56 0.56 2.83 2.82 2.83 4.35 4.35 4.35

perl 0.44 0.38 0.43 1.45 1.19 1.49 2.36 2.23 2.44

vortex 0.43 0.39 0.43 1.58 1.39 1.62 2.51 2.34 2.54

Table 4.5: Instructions per cycle
Native is the original program. CodePack is the baseline decompressor. Optimized is our optimized CodePack
index cache and additional decompression bandwidth.

56

to burst read several entries at once. We try both approaches by adding a cache for index

table entries. Since the index table is indexed with bits from the miss address, it can be

accessed in parallel with the L1 cache. Therefore in the case of an index cache hit, the

index fetch does not contribute to L1 miss penalty. Table 4.6 shows the miss rate for cc1

with index caches using the 4-issue model. All index caches are fully-associative. A 64-

line cache with 4 indexes per line can reduce the miss ratio to under 15% for the cc1

benchmark which has the most instruction cache misses. This organization has a miss ratio

of under 11% for vortex and under 4% for the other benchmarks. We use this cache organi-

zation for the index cache in our optimized compression model. The index cache contains

1 KB of index entries and 88 bytes of tag storage. This is about one-eighth the size of the

4-issue instruction cache. It is able to map 32 KB of the original program into compressed

bytes. In Table 4.7 the performance of the native code is compared to CodePack, Code-

Pack with index cache, and CodePack with a perfect index cache that always hits. The per-

fect index cache is feasible to build for short programs with small index tables that can be

put in an on-chip ROM. The optimized decompressor performs within 8% of native code

for cc1 and within 5% for the other benchmarks.

Number of
lines

Line size (index entries)

1 2 4 8

1 62.1% 51.9% 42.9% 35.8%

16 53.4% 39.1% 28.0% 19.2%

64 45.5% 29.7% 14.4% 4.6%

256 11.7% 2.7% 0.8% 0.2%

Table 4.6: Index cache miss ratio for cc1
Values represent index cache miss ratio during L1 cache miss using CodePack on the 4-issue model. The
index cache used here is fully-associative.

Bench

4-issue

CodePack Index Cache Perfect

cc1 0.82 0.92 0.96

go 0.89 0.99 1.00

mpeg2enc 1.00 1.00 1.00

pegwit 1.00 1.00 1.00

perl 0.82 0.95 0.95

vortex 0.88 0.96 0.98

Table 4.7: Speedup due to index cache
Values represent speedup over native programs. The Index Cache column represents a fully-associative
cache with 4 indices per entry. The Perfect column represents an index cache that never misses.

57

Instruction decompression
Once the compressed bytes are retrieved, they must be decompressed. Decoding

proceeds serially through each block until the desired instructions are found. The baseline

CodePack implementation assumes that one instruction can be decompressed per cycle.

Since a variable-length compressed instruction is tagged with its size, it is easy to find the

following compressed instruction. Wider and faster decompression logic can use this fea-

ture for higher decompression throughput. The effect of having greater decoder bandwidth

appears in Table 4.8. Using 16 decompressors/cycle represents the fastest decompression

possible since compression blocks contain only 16 instructions. In the 4-issue model, we

find that most of the benefit is achieved by using only two decompressors.

Performance results
We now combine both of the above optimizations to see how they work together.

Table 4.9 shows the performance of each optimization individually and together. In our

Bench

4-issue

CodePack 2 decoders 16 decoders

cc1 0.82 0.87 0.87

go 0.89 0.94 0.94

mpeg2enc 1.00 1.00 1.00

pegwit 1.00 1.00 1.00

perl 0.82 0.86 0.87

vortex 0.88 0.93 0.93

Table 4.8: Speedup due to decompression rate
Values represent speedup over native programs.

Bench

4-issue

CodePack Index Decompress Both

cc1 0.82 0.92 0.87 0.97

go 0.89 0.99 0.94 1.05

mpeg2enc 1.00 1.00 1.00 1.00

pegwit 1.00 1.00 1.00 1.00

perl 0.82 0.95 0.86 1.03

vortex 0.88 0.96 0.93 1.03

Table 4.9: Comparison of optimizations
Values represent speedup over native programs. Index is CodePack with a fully-associative 64-entry index
cache with 4 indices per entry. Decompress is CodePack that can decompress 2 instructions per cycle. Both
shows the benefit of both optimizations together. A slight speedup is attained over native code for go, perl,
and vortex.

58

optimized model, the index cache optimization improved performance more than using a

wider decompressor. This is because the codeword fetch and decompression stages of the

CodePack algorithm cannot begin until the index lookup is complete. However, the

decompression stage already executes concurrently with the fetch stage and often must

wait for codewords to be fetched. Therefore, improving the decompressor helps less than

removing the long latency for the index lookup. When both optimizations are combined,

the decompression penalty is nearly removed. In fact, the go, perl, and vortex benchmarks

perform better than native code. The reason for this is that using fewer memory accesses

to fetch compressed instructions utilizes the memory bus better. This performance benefit

is greater than the small decompression penalty and therefore the programs have improved

execution time.

4.5.4 Performance effects due to architecture features

The following sections modify the baseline architecture in a number of ways in

order to understand in which systems CodePack is useful. For each architecture modifica-

tion, we show the performance of the baseline decompressor and optimized decompressor

relative to the performance of native code.

Sensitivity to cache size
Decompression is only invoked on the L1-cache miss path and is thus sensitive to

cache organization. We simulated many L1 instruction cache sizes and show the perfor-

mance in Table 4.10. The default decompressor has a performance penalty of up to 28%

with 1 KB caches. However, the optimized decompressor has up to a 61% performance

Bench

4-issue instruction cache size

1 KB 4 KB 16 KB 64 KB

CodePack Optimized CodePack Optimized CodePack Optimized CodePack Optimized

cc1 0.76 1.06 0.78 1.01 0.82 0.97 0.96 1.00

go 0.79 1.14 0.84 1.11 0.89 1.05 0.98 1.01

mpeg2enc 0.93 1.01 1.00 1.00 1.00 1.00 1.00 1.00

pegwit 0.99 1.61 0.9 1.38 1.00 1.00 1.00 1.00

perl 0.72 1.13 0.71 1.05 0.82 1.03 0.99 0.99

vortex 0.78 1.25 0.78 1.15 0.88 1.03 0.98 1.00

Table 4.10: Variation in speedup due to instruction cache size
Values represent speedup over native programs using the same instruction cache size. All simulations are
based on 4-issue model with different cache sizes. The 16 KB column is the 4-issue baseline model.

59

gain. The optimized decompressor has better performance than the native code in every

case. The reason for this is that the dominant time to fill a cache miss is reading in the

compressed instructions. Since the optimized decompressor can fetch more instructions

with fewer memory accesses, it can fill a cache line request quicker than the native code.

As cache size grows, the performance of both decompressors approaches the performance

of native code. This is because the performance difference is in the L1-miss penalty and

there are few misses with large caches.

Sensitivity to main memory width
Many embedded systems have narrow buses to main memory. Instruction sets with

short instruction formats can outperform wider instructions because more instructions can

be fetched in less time. Bunda reports similar findings on a 16-bit version of the DLX

instruction set [Bunda93]. This suggests that code compression might offer a benefit in

such architectures. Our results in Table 4.11 show the performance change for buses of 16,

32, 64, and 128 bits. The number of main memory accesses for native and compressed

instructions decreases as the bus widens, but CodePack still has the overhead of the index

fetch. Therefore, it performs relatively worse compared to native code as the bus widens.

In the optimized decompressor, the index fetch to main memory is largely eliminated so

the performance degrades much more gracefully than the baseline decompressor. On the

widest buses, the number of main memory accesses to fill a cache line is about the same

for compressed and native code. Therefore, the decompress latency becomes important.

Native code is faster at this point because it does not incur a time penalty for decompres-

sion.

Bench

4-issue main memory bus size

16 bits 32 bits 64 bits 128 bits

CodePack Optimized CodePack Optimized CodePack Optimized CodePack Optimized

cc1 0.94 1.00 0.91 0.99 0.82 0.97 0.76 0.94

go 1.03 1.12 0.98 1.08 0.89 1.05 0.84 1.00

mpeg2enc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

pegwit 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

perl 0.93 1.05 0.89 1.03 0.82 1.03 0.77 0.97

vortex 1.03 1.09 0.97 1.05 0.88 1.03 0.82 0.97

Table 4.11: Performance change by memory width
Values represent speedup over native programs using the same bus size. All simulations are based on 4-
issue model with different bus widths. The 64-bits column is the 4-issue baseline model.

60

Sensitivity to main memory latency
It is interesting to consider what happens with decompression as main memory

latencies grow. Embedded systems may use a variety of memory technologies. We simu-

lated several memory latencies and show the results in Table 4.12. As memory latency

grows, the optimized decompressor can attain speedups over native code because it uses

fewer costly accesses to main memory.

4.6 Conclusion

The CodePack algorithm is very suitable for the small embedded architectures for

which it was designed. In particular, a performance benefit over native code can be real-

ized on systems with narrow memory buses or long memory latencies. In systems where

CodePack does not perform well, reducing cache misses by increasing the cache size helps

remove performance loss.

We investigated adding some simple optimizations to the basic CodePack imple-

mentation. These optimizations remove the index fetch and decompression overhead in

CodePack. Once this overhead is removed, CodePack can fetch a compressed program

with fewer main memory accesses and less latency than a native program. Combining the

benefit of fewer main memory accesses and the inherent prefetching behavior of the

CodePack algorithm often provides a speedup over native code. Our optimizations show

that CodePack can be useful in a much wider range of systems than the baseline imple-

mentation. In many cases, native code did not perform better than our optimized Code-

Bench

Main memory latency compared to 4-issue model

0.5x 1x 2x 4x 8x

CodePack Optimized CodePack Optimized CodePack Optimized CodePack Optimized CodePack Optimized

cc1 0.79 0.93 0.82 0.97 0.84 0.97 0.82 0.97 0.81 0.96

go 0.87 0.99 0.89 1.05 0.91 1.09 0.89 1.11 0.88 1.12

mpeg2enc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

pegwit 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00

perl 0.80 0.96 0.82 1.03 0.81 1.04 0.78 1.06 0.76 1.04

vortex 0.84 0.97 0.88 1.03 0.91 1.05 0.90 1.05 0.89 1.06

Table 4.12: Performance change due to memory latency
Values represent speedup over native programs using the same memory latency. 1x column is the 4-issue
baseline model.

61

Pack except on the systems with the fastest memory or widest buses. Code compression

systems need not be low-performance and can actually yield a performance benefit. This

suggests a future line of research that examines compression techniques to improve per-

formance rather than simply program size.

The performance benefit provided by the optimized decompressor suggests that

even smaller compressed representations with higher decompression penalties could be

used. This would improve the compressed instruction fetch latency, which is the most time

consuming part of the CodePack decompression. Even completely software-managed

decompression may be an attractive option for resource limited computers.

62

Chapter 5

Software-managed decompression

The previous chapter demonstrated that compressed code systems with hardware

decompression can improve code density and often attain better execution time than

native code. This was accomplished with decompression hardware that ran concurrently

with the application and decompressed missed cache lines directly into the L1 instruction

cache.

This chapter presents a method of decompressing programs using software. It

relies on using a software-managed instruction cache under control of the decompressor.

Decompression is achieved by employing a simple cache management instruction that

allows explicit writing into a cache line. Since the decompressor is an ordinary program, it

interrupts the execution of the application and always results in a slowdown compared to

native code. The challenge is to tune the decompressor software so that performance can

remain close to native code speeds.

5.1 Introduction

Software-managed decompression has a higher degree of flexibility than a hard-

ware solution. Software-managed decompression allows separate programs to use entirely

different compression methods, whereas a hardware implementation can only tune param-

eters of the compression algorithm. Newly developed compression methods are not con-

strained to use old decompression hardware. Software decompression allows the specific

compression algorithm to be selected late in the product design cycle. Finally, decompres-

sors can be cheaply implemented on a wide variety of architectures and instruction sets

with little effort.

63

A software implementation also reduces hardware complexity. It is likely that the

decompressor will have a smaller physical implementation in software rather than hard-

ware. This is because the software is small (a few hundred bytes) and can be stored in a

high-density read-only memory. In addition, the software reuses memory and computation

structures (ALU, register file, and buses) that already exist on the processor. The hardware

implementation, on the other hand, may duplicate these structures so that the decompres-

sor can execute concurrently with the application, as is done in CodePack.

The primary challenge in software decompression is to minimize the increased

execution time due to running the decompression software. Our technique achieves high

performance in part through the addition of a simple cache management instruction that

writes decompressed code directly into an instruction cache line. Similar instructions have

been proposed in the past.

The organization of this chapter is as follows. Section 5.2 reviews previous work

in software code compression. We present the software decompressors in Section 5.3 and

the compressed code system architecture in Section 5.4 and . The simulation environment

is presented in Section 5.5. In Section 5.6, we discuss our experimental results. Finally,

Section 5.7 contains our conclusions.

5.2 Related work

Our work is most comparable to a software-managed compression scheme pro-

posed by Kirovski et al. [Kirovski97]. They use a software-managed procedure-cache to

hold decompressed procedures. This method requires that 1) the procedure cache be large

enough to completely hold the largest procedure, 2) procedure eviction occurs when there

is not enough free-space to hold an incoming procedure, and 3) defragmentation occurs

when not enough contiguous free-space is available for an incoming procedure. Their

compression algorithm is LWRZ1 [Williams91], an adaptive Ziv-Lempel model.

In contrast, our compression scheme works on the granularity of cache lines and

can be used with caches of any size and procedures of any size. It is faster because it tends

to avoid decompressing code that is not executed, does not need to manage cache frag-

mentation, and uses a simpler decompression algorithm. When large units such as proce-

64

dures are decompressed, it becomes increasingly likely that instructions that are never

executed will be decompressed. This is an unnecessary increase in decompression over-

head. Decompressing shorter sequences that have a high probability of being executed

may be more efficient. In addition, there are no fragmentation costs for decompressing a

cache-line. This is due to the fact that the instruction cache already allocates and replaces

instructions in units of cache lines.

Software decompression can also be compared to interpreted code systems. While

we do not achieve the small code sizes attained by interpretation (2-5 times smaller), our

programs are much faster. Typical interpreted code systems execute applications 5-20

times slower than native code. In fact, we have native performance for code once it is in

the cache since decompression reproduces the original native program. This is particularly

effective for loop-oriented programs.

5.3 Software decompressors

This section presents two different software decompressors. The first is a dictio-

nary-based software decompressor designed to be extremely fast. The second is a software

version of IBM’s CodePack which attains better compression ratios, though it increases

execution time.

5.3.1 Dictionary compression

 The dictionary compression scheme takes advantage of the observation that the

instructions in programs are highly repetitive [Lefurgy97, Lefurgy98]. Each unique 32-bit

instruction word in the original program is put in a dictionary. Each instruction in the orig-

inal program is then replaced with a 16-bit index into the dictionary. Because the instruc-

tion words are replaced with a short index and because the dictionary overhead is usually

small compared to the program size, the compressed version is smaller than the original.

Instructions that only appear once in the program are problematic. The index plus the orig-

inal instruction in the dictionary are larger than the single original instruction, causing a

slight expansion from the native representation. Figure 5.1 illustrates the compression

method.

65

The 16-bit indices limit the dictionary to contain only 64K unique instructions. In

practice, this is sufficient for many programs, including our benchmarks. However, pro-

grams that use more instructions can be accommodated. Hybrid programs that contain

both compressed and native code regions are one solution. When the dictionary is filled,

then the remainder of the program is left in the native code region. A cache miss in the

native region would use the usual cache controller, but a cache miss in the compressed

region would invoke the decompressor. Such a scheme is used in CodePack [IBM98].

Many code compression systems compress instructions to a stream of variable-

length codewords. On a cache miss, the compressed code address that corresponds to the

native code address must be determined before decompression can begin. This is typically

done with a mapping table that translates between the native and compressed code

addresses [Wolfe92, IBM98]. The dictionary compression can avoid this table lookup

because the native instructions and compressed codewords have fixed lengths. Since the

codewords are half the size of instructions, the corresponding codeword can be found at

half the distance into the .indices segment as the native instruction is into the .text

segment. Therefore, a simple calculation suffices to map native addresses into compressed

addresses and a mapping table is not required.

5.3.2 CodePack

The CodePack software decompressor we present uses the CodePack [IBM98]

compression algorithm. This algorithm compresses programs much more than the simple

Figure 5.1: Dictionary compression
In this example, the instruction “add r1,r2,r4” maps to the index “5” and the instruction “add r1,r2,r3” maps to
the index “30”.

Original Program Compressed Program

32 bits 16 bits 32 bits

.dictionary segment

.indices segment

add r1,r2,r4

add r1,r2,r3

add r1,r2,r3

add r1,r2,r4

add r1,r2,r3

5

30

30

add r1,r2,r3 30

(contains indices)
.text segment

add r1,r2,r4 5

66

dictionary compression, but the decompressor takes longer to execute. The CodePack

algorithm is described in Section 4.3.1.

The CodePack decompressor is much more complicated than the dictionary

method. CodePack works by compressing 16 instructions (2 cache lines) into a group of

unaligned variable-length codewords. This constrains the decompressor to serially decode

each instruction when the second of the two cache lines is requested. Also, the mapping

between the native code addresses and compressed code addresses is complex. A mapping

table is used to find the address of the compressed group that corresponds to the missed

cache line. This results in one more memory access than our dictionary method.

5.4 Compression architecture

The software decompressors presented here reuse the instruction cache as a

decompression buffer. This is similar to the CodePack and CCRP hardware decompres-

sors. On a cache miss, compressed instructions are read from main memory, decom-

pressed, and placed in the instruction cache. The instruction cache contents appear

identical to a system without compression. This allows the microprocessor core to be

unaware of decompression. The decompression overhead merely appears to be a a long

latency cache miss. Compressed instructions execute as quickly as native instructions

once they are placed in the instruction cache.

To support software-managed decompression, we require a method to invoke the

decompressor on a cache miss and a way to put decompressed instructions into the

instruction cache. We can accomplish these by making two modifications to the instruc-

tion set architecture. First, the instruction cache miss must raise an exception which

invokes the decompression software. Second, there must exist an instruction to modify the

contents of the instruction cache. We believe that it is reasonable to expect new processors

to provide such capability.

The miss exception is invoked non-speculatively whenever the instruction address

misses the cache. This insures that only instructions that are executed will be decom-

pressed and placed in the cache. The miss exception is only raised when the address is in

the range of the compressed program. The hardware has two special registers that are set

67

with the low and high addresses of the program. These addresses are setup before the pro-

gram is executed. On a miss, the hardware does a simple bounds check using these regis-

ters to determine if a miss exception should be taken. This allows systems to have both

native and compressed code. When the miss address is outside of the compressed pro-

gram, then the usual instruction fetch hardware is used to fill the cache. Such systems will

be discussed in the next chapter.

Raising an exception on a cache miss is also done in the informing memory work

by Horowitz et al. [Horowitz98]. On a data cache miss, they raise an exception which runs

an exception handler to tune a software data prefetcher. Since the miss exception is non-

speculative, it can only be taken after all preceding branches are resolved. They also make

the assumption that the branch recovery logic is responsible for redirecting execution to

the exception handler on a data cache miss. The exception could also be recognized in the

commit stage of the pipeline. The trade-off is that implementing the exception hardware at

the commit stage is easier, but the exception handler will be started later. This dissertation

assumes that the exception hardware is implemented as part of the branch mis-prediction

recovery hardware so that the decompressor can be started as early as possible.

Instructions that modify the instruction cache or instruction memory already exist

in microprocessors. For example, the MIPS R10000 cache instruction can read and write

data, tags, and control bits in the instruction cache. A further example is the MAJC archi-

tecture which specifies a special instruction for writing into instruction memory

[Gwennap99]. These mechanisms have uses beyond just code compression. Jacob et al.

propose using such features to replace hardware-managed address translation performed

by the translation-lookaside buffer with software-managed address translation [Jacob97].

Jacob further suggests using software-managed caches to provide fast, deterministic mem-

ories in embedded systems [Jacob99].

The following sections describe new instructions added to the SimpleScalar simu-

lator to support software decompression. First, the swic instruction for modifying the

cache is discussed. This is followed by a discussion of additional instructions that are used

in the software decompressors. They are typically found in modern architectures, but were

not originally in the SimpleScalar simulator.

68

5.4.1 Cache modification instruction

swic: store word in instruction cache
Format: swic rt, offset(rs)

The address is formed by offset + reg[rs]. The effect of this instruction is to store

the value reg[rt] into the instruction cache at the specified address. On a cache miss, the

line is allocated and the upper bits of the address are written to the cache line tag. On a

cache hit, the appropriate word in the cache line is modified. Since this instruction writes

the cache, it would be difficult to squash and restart the instruction on a miss-speculation.

Therefore, the processor must be in a non-speculative state before the instruction executes.

This is accomplished by allowing the preceding instructions to complete before executing

the swic instruction.

5.4.2 Synchronization instruction

Dynamic code generation is similar to instruction decompression because both

generate code on-the-fly and execute it. In both systems, there must be synchronization

between creating the instructions and executing them. This prevents speculatively fetched

instructions from executing before the code generation phase has completed writing the

instructions.

The PowerPC instruction set serves as an example of how synchronization for

dynamic code generation works. A typical instruction sequence used between dynamic

code generation and execution on the PowerPC is [Motorola94]:

1. dcbst (update memory)
2. sync (wait for update)
3. icbi (invalidate copy in instruction cache)
4. isync (perform context synchronization)

 isync is an instruction barrier that waits until all previous instructions have com-

pleted and then removes any prefetched instructions from the instruction queue before

continuing execution.

The above sequence assumes that store instructions have already been used to

write instructions into code address space. The instructions may still be in the data cache.

Therefore, the first step is to flush all data cache lines that may contain instructions to a

69

lower level of the memory hierarchy that is visible to instruction memory. This is done

with the dcbst instruction. The sync instruction is a memory barrier that prevents the

execution of future instructions until all previous instruction have completed and all previ-

ous memory operations are completed. Here, it halts execution until the dcbst has com-

pleted moving the instructions out of the data cache. In general, the invalidation of the

instruction cache with icbi is required because the modified code space may already

exist in the instruction cache. It is important to remove the mapping so that the new map-

ping can be fetched from main memory. However, when decompressing instructions, it is

already assumed that the instruction is not in the cache — that is why the cache miss

exception occurred. Therefore, the software decompressors do not need to invalidate the

instruction cache and omit step 3.

We implement sync and isync in SimpleScalar. The isync instruction is

always used to prevent cache misses from being fetched before the decompressor is fin-

ished. The sync instruction is discussed in the next chapter. It is used when accesses to

main memory are used to optimize software decompression.

isync: instruction synchronization
Format: isync

This instruction halts fetching until all previous instructions have committed. Then

all following instructions that have been prefetched are squashed and the instruction

fetcher begins fetching at the instruction following the isync. This instruction is used to

ensure that all swic instructions have updated the instruction cache before the decom-

pressor exits and the application attempts to execute decompressed instructions. It also

ensures that the application fetches the newly decompressed instructions from the cache

and that fetching begins only after all decompression is finished. All of our decompressors

execute isync at the end of decompression.

5.4.3 Interrupt support instructions

Two instructions, iret and mfc0, are also used in the software decompressors.

On an exception or interrupt, the address of the instruction causing the interrupt is placed

in a special machine register. This address is used as the return value when execution of

70

the exception handler is done. The iret instruction restores the program counter from

this special register. The decompressor routines locate the compressed code region and

associated dictionary by addresses programmed into special registers before the com-

pressed program is executed. At run-time, these special registers are accessed by the

decompressor using the mfc0 instruction.

iret: return from interrupt
Format: iret

This instruction moves the interrupt return address (for example, the address of the

instruction that caused an instruction cache miss exception) into the program counter. It is

the last instruction of every cache miss handler. A similar instruction (rfi) is used on the

PowerPC.

mfc0: move from coprocessor-0
Format: mfc0 rT, rC

This instruction is similar to the MIPS instruction of the same name. It moves a

value from a special register into a general purpose register. The special purpose registers

hold information about the compressed program environment. This includes the address of

the compressed code, the address of the instruction cache miss, the address of decompres-

sion dictionaries and address-translation tables.

5.4.4 Special registers

The software decompressors assume that a few system registers are available to

hold parameters used for decompression. The parameters specify where the algorithm can

find the compressed code and the associated tables for decompressing it. Software decom-

pression can be used in multi-program environments by merely changing the values of the

registers during a context switch. The dictionary decompressor uses 5 special registers.

The registers hold 1) the address of the missed instruction, 2) the base address of the indi-

ces, 3) the base address of the dictionary, 4) the base address of the original .text seg-

ment, and 5) the size of the original .text segment. The software version of the

CodePack decompressor uses an additional register to hold the base address of the map-

ping table.

71

5.5 Simulation environment

All experiments are performed on the SimpleScalar 3.0 simulator [Burger97] with

modifications to support compressed code. The benchmarks come from the SPEC

CINT95 and MediaBench suites [SPEC95, Lee97]. The benchmarks are compiled with

GCC 2.6.3 using the optimizations “-O3 -funroll-loops” and are statically linked with

library code. We shortened the input sets so that the benchmarks would complete in a rea-

sonable amount of time. We run these shortened programs to completion.

SimpleScalar has 64-bit instructions which are loosely encoded, and therefore

highly compressible. So as to not exaggerate our compression results, we wanted an

instruction set more closely resembling those used in current microprocessors and used by

code compression researchers. Therefore, we re-encoded the SimpleScalar instructions to

fit within 32 bits. Our encoding is straightforward and resembles the MIPS IV encoding.

Most of the effort involved removing unused bits in the 64-bit instructions.

For our baseline simulations we choose a simple architecture that is likely to be

found in a low-end embedded processor. This is modeled as a 1-wide issue, in-order, 5-

stage pipeline. We simulate only L1 caches and main memory. Main memory has a 64-bit

bus. The first access takes 10 cycles and successive accesses take 2 cycles. Table 5.1

shows the simulation parameters.

SimpleScalar parameters Values

fetch queue size 1

decode width 1

issue width 1 in-order

commit width 1

Register update unit entries 4

load/store queue 2

function units alu:1, mult:1, memport:1, fpalu:1, fpmult:1

branch pred bimode 2048 entries

L1 I-cache 16 KB, 32B lines, 2-assoc, lru

L1 D-cache 8 KB, 16B lines, 2-assoc, lru

memory latency 10 cycle latency, 2 cycle rate

memory width 64 bits

Table 5.1: Simulation Parameters

72

5.5.1 Decompression

 C language versions of the dictionary and CodePack decompressors are listed in

Appendix A.2 and Appendix A.7, respectively. The baseline dictionary decompressor

assembly code is shown in Figure 5.2. The decompressor is 208 bytes (26 instructions)

and executes 75 instructions to decompress a cache line of eight 4-byte instructions. The

size of the CodePack decompressor is 832 bytes (208 instructions) of code and 48 bytes of

Load I-cache line with 8 instructions

Register Use
r9 : index address
r10: base address of dictionary
r11: base of decompressed; index into dictionary
r12: next cache line addr. (loop halt value)
r26: indices base and decompressed insn
r27: insn address to decompress

Save regs to user stack
r26,r27 are reserved for OS, do not require saving.
sw $9,-4($sp)
sw $10,-8($sp)
sw $11,-12($sp)
sw $12,-16($sp)

Load system register inputs into general registers
mfc0 $27,c0[BADVA] # the faulting PC
mfc0 $26,c0[0] # decompressed base
mfc0 $10,c0[1] # dictionary base
mfc0 $11,c0[2] # indices base

Zero low 5 bits to get cache line addr.
srl $27,$27,5
sll $27,$27,5 # r27 has the cache line address

index_address = (C0[BADVA]-C0[0]) >> 1 + C0[2]
sub $9,$27,$26 # get offset into decompressed code
srl $9,$9,1 # transform to offset into indices
add $9,$11,$9 # load r9 with index address

calculate next line address (stop when we reach it)
add $12,$27,32

loop:
lhu $11,0($9) # Put index in r11
add $9,$9,2 # index_address++
sll $11,$11,2 # scale for 4B dictionary entry
lw $26,($11+$10) # r26 holds the instruction
swic $26,0($27) # store word in cache
add $27,$27,4 # advance insn address
bne $27,$12,loop

Restore registers and return
lw $9,-4($sp)
lw $10,-8($sp)
lw $11,-12($sp)
lw $12,-16($sp)
isync
iret # return from exception handler

Figure 5.2: L1 miss exception handler for dictionary decompression method

73

data. It decompresses two cache lines on each cache line miss (due to the CodePack algo-

rithm) and takes on average 1120 instructions to do so.

Modern embedded microprocessors, such as ARM, use a second register file to

support fast interrupts. During an interrupt or exception, all instructions use the second

register file. This allows the interrupt handler to eliminate instructions for saving registers

before it begins and restoring registers when it finishes. We have versions of the dictionary

and CodePack decompressors that use a second register file in order to measure the benefit

for software decompression. The extra registers provided by the second register file also

allow us to completely unroll the loop in the dictionary decompressor. This eliminates two

add instructions and a branch instruction on each iteration.

It is important that the decompressor not be in danger of replacing itself when it

modifies the contents of the instruction cache. Therefore, we assume that the decompres-

sor is locked down in fast memory so that it never incurs a cache-miss itself. Our simula-

tions put the exception handler in its own small on-chip RAM accessed in parallel with the

instruction cache.

5.6 Results

This section presents results of our software-managed dictionary and CodePack

simulations.

5.6.1 Size results

 The size of the native and compressed programs are given in Table 5.2. All results

include both application and library code. The dictionary compressed program size

includes the indices and dictionary. The CodePack program size includes the indices, dic-

tionary, and mapping table. The decompression code is not included in the compressed

program sizes.

74

5.6.2 Performance results

The performance of the benchmarks is shown in Table 5.3. Programs that use soft-

ware decompression always have higher execution times than native code versions. There-

fore, we present our results in terms of slowdown relative to the speed of native code. A

value of 1 represents the speed of native code. A value of 2 means that the benchmark exe-

cuted twice as slowly as native code. Table 5.2 shows the non-speculative miss ratios for

the 16 KB instruction cache used in the simulations.

Benchmark

Dynamic
insns

(millions)

16 KB
I-cache

miss ratio
Original size

(bytes)

Dictionary
compressed
size (bytes)

CodePack
compressed
size (bytes)

Dictionary
compression

ratio

CodePack
compression

ratio

LZRW1
compression

ratio

cc1 121 2.93% 1,083,168 707,904 655,216 65.4% 60.5% 60.4%

ghostscript 155 0.04% 1,099,136 762,880 688,736 69.4% 62.7% 61.6%

go 133 2.05% 310,576 216,304 182,816 69.6% 58.9% 63.9%

ijpeg 124 0.07% 198,272 153,104 118,352 77.2% 59.7% 61.5%

mpeg2enc 137 0.01% 118,416 97,424 74,896 82.3% 63.2% 60.2%

pegwit 115 0.01% 88,400 70,144 54,272 79.3% 61.4% 56.2%

perl 109 1.62% 267,568 197,280 162,256 73.7% 60.6% 60.2%

vortex 154 2.05% 495,248 325,920 274,640 65.8% 55.5% 55.5%

Table 5.2: Compression ratio of .text section
Dynamic insns: Number of instructions committed in benchmarks. Cache miss ratio: non-speculative cache
miss ratio for a 16 KB instruction cache. Original size: Size of native code. Dictionary compressed size: size
of compressed code using dictionary method. CodePack compressed size: size of CodePack compressed
benchmarks. Dictionary compression ratio: Size of dictionary compressed code relative to native code. Code-
Pack compression ratio: Size of CodePack compressed code relative to native code. LZRW1 compression
ratio: Size of whole .text section compressed with LZRW1 algorithm relative to size of native code. This is a
lower bound for procedure-based compression using LZRW1.

Benchmark D D+RF CP CP+RF

cc1 2.99 2.19 17.88 16.91

ghostscript 1.30 1.18 3.46 3.32

go 2.52 1.91 11.14 10.56

ijpeg 1.06 1.03 1.42 1.40

mpeg2enc 1.01 1.00 1.05 1.04

pegwit 1.01 1.01 1.11 1.10

perl 2.15 1.64 11.64 11.02

vortex 2.39 1.80 12.00 11.36

Table 5.3: Slowdown compared to native code
All results are shown as the slowdown of the benchmark when run with compression. A slowdown of 1 means
that the code is identical in speed to native code. A slowdown of 2 means that the program ran twice as slow
as native code. D: dictionary compression. D+RF: dictionary compression with a second register file. CP:
CodePack compression. CP+RF: CodePack compression with a second register file.

75

For all benchmarks, the execution time of dictionary programs is no more than 3

times native code and the execution time of CodePack programs is no more than 18 times

native code. Using a second register file reduces the overhead due to dictionary decom-

pression by nearly half. The CodePack algorithm has only a small improvement in perfor-

mance with a second register file since CodePack does not spend a significant amount of

time saving and restoring registers. The multimedia programs (ghostscript, ijpeg,

mpeg2enc, and pegwit) have the best performance among all benchmarks. This is because

the benchmarks are loop-oriented and experience fewer cache misses. Therefore, the per-

formance cost of software decompression is amortized over many loop iterations.

Decompression only occurs during a cache miss. Therefore, the way to improve

compressed program performance is to make cache misses less frequent or to fill the miss

request more quickly. The miss request can be made faster by using hybrid programs

which keep some procedures as native code so they will use the hardware cache controller

to quickly fill misses. This is discussed in the next chapter. The miss ratio can be reduced

by enlarging the cache, increasing cache associativity, applying code placement optimiza-

tions to reduce conflict misses, or applying classical optimizations that reduce the native

code size.

The instruction cache miss ratio has a strong effect on the performance of the com-

pressed program. We modified the miss ratios of the benchmarks by simulating them with

4 KB, 16 KB, and 64 KB instruction caches. In Figure 5.3, we plot the miss ratios of all

the benchmarks under each size of cache against the slowdown in execution time. For dic-

tionary compression, once the instruction cache miss ratio is below 1%, the compressed

code is less than 2 times slower than native code. When the miss ratio is below 1% for

CodePack programs, the compressed code is less than 5 times slower than native code.

Increasing cache size effectively controls slowdown. When considering total memory sav-

ings, the cache size should be considered. Having a very large cache only makes sense for

the larger programs. Instead of using die area for a larger cache, it may be possible to use

the additional area to store some small applications completely as native code.

It is difficult to compare our results with those of Kirovski et al. because different

instruction sets and timing models were used. In comparison to our cache-line decompres-

sors, the procedure-based decompression has a much wider variance in performance. They

76

report slowdowns that range from marginal to over 100 times slower (for cc1 and go) than

the original programs for 1 KB to 64 KB caches. Both our dictionary and CodePack pro-

grams show much more stability in performance over this range of cache sizes. However,

the LZRW1 compression sometimes attains better compression ratios. Table 5.2 shows the

compression ratios for LZRW1 when compressing the entire .text section as one unit.

This represents a lower bound for the compression ratio attained when compressing indi-

vidual procedures. Overall, LZRW1 attains compression ratios similar to CodePack and 5-

25% better than dictionary compression.

5.7 Conclusion

Software decompression allows the designer to easily use code compression in a

range of instruction sets and use better compression algorithms as they become available.

We have presented a new technique of using software-managed caches to support

code decompression at the granularity of a cache line. In this study we have focused on

designing a fast decompressor (rather than generating the smallest code size) in the inter-

est of performance. We have shown that a CodePack software decompressor can perform

with significantly less overhead than the software procedure decompression scheme while

attaining a similar compression ratio. This is because a decompressor with cache line

granularity has an advantage over a decompressor with procedure granularity in that it

does not have cache fragmentation management costs and better avoids decompressing

instructions that may not be executed. We have shown that a simple highly optimized dic-

tionary compression method can perform even better than CodePack, but at a cost of 5-

25% in the compression ratio. The performance of the dictionary method is higher than

CodePack because 1) the dictionary and codewords are machine words (or half-words)

using their natural alignment as opposed to variable-sized bit-aligned codes, 2) the dictio-

nary compression eliminates the CodePack mapping table by using fixed-length code-

words, 3) using a second register file allows the dictionary decompression loop to be

unrolled.

Performance loss due to decompression can be mitigated by improving the instruc-

tion cache miss ratio or by reducing the amount of time required to service an instruction

77

Figure 5.3: Effect of instruction cache miss ratio on execution time
Data points represent all benchmarks simulated with instruction cache sizes of 4 KB, 16 KB, and 64 KB.
a) Dictionary compressed programs. b) CodePack compressed programs.

0

1

2

3

4

5

6

0% 1% 2% 3% 4% 5% 6% 7% 8%

Instruction cache miss ratio

E
xe

cu
ti

o
n

 t
im

e
re

la
ti

ve
 t

o
 n

at
iv

e
co

d
e D 4KB D 16KB D 64KB

D+RF 4KB D+RF 16KB D+RF 64KB

0

5

10

15

20

25

30

35

40

0% 1% 2% 3% 4% 5% 6% 7% 8%

Instruction cache miss ratio

E
xe

cu
ti

o
n

 t
im

e
re

la
ti

ve
 t

o
 n

at
iv

e
co

d
e CP 4KB CP 16KB CP 64KB

CP+RF 4KB CP+RF 16KB CP+RF 64KB

(b) CodePack

(a) Dictionary

78

cache miss. This suggests that incorporating compression with other optimizations that

reduce cache misses (such as code placement) could be highly beneficial.

Code decompression can be thought of as interpretation of an instruction set. We

believe that decompression fills a gap between interpreted and native code. It attempts to

attain the speed of native code and the code density of interpreted code. We presented an

instruction, swic, for writing instructions into the instruction cache. We believe that such

an instruction is not only useful for decompression, but may also be useful for dynamic

compilation and high-performance interpreters. It allows instructions be to generated

directly into the instruction memory without disturbing the data memory hierarchy with

data stores and flushes.

79

Chapter 6

Optimizations for software-managed decompression

The previous chapter introduced a mechanism for decompressing programs in

software. This required modifications to the architecture in the form of an instruction

cache miss exception and the swic instruction to load instructions into the cache. The

experimental data showed that the CodePack software decompressor had very large over-

head. CodePack compressed programs were up to 17 times slower than native code. A L1-

cache miss takes 10 cycles to copy a cache line from main memory to the cache, but

decompressing the same line takes hundreds of cycles. There are several ways to reduce

this cost. Chapter 5 demonstrates that using larger instruction caches reduces the need to

decompress and therefore improves decompression overhead. This chapter examines soft-

ware optimizations for improving the overhead of decompression.

6.1 Introduction

From the viewpoint of the microprocessor, decompression overhead looks like a

long latency cache miss. One method to reduce decompression overhead is to avoid cache

misses. This was addressed in the previous chapter by evaluating caches with different

capacities. Another method to reduce overhead is to reduce the latency of the decompres-

sor. This chapter proposes two optimizations to accomplish this. Both optimizations

attempt to reduce the latency of the decompressor by reducing the number of times the

decompressor is used. One optimization occurs at compile-time guided by an execution

profile. The other optimization occurs at run-time using dynamic information about the

program execution behavior. The cost of using either of these optimizations to reduce

decompression latency is that the compressed program size increases.

80

The first optimization is to use hybrid programs which use both native and com-

pressed code. The compiler or a post-compilation tool generates either native code or

compressed code for each procedure. When native code misses the cache, the instruction

fetch hardware fetches the missed instructions from a backing memory. This operation is

much quicker than executing the software decompressor. This is a static optimization

since the selection of compressed and native code is done once before the program is exe-

cuted. This method also requires that a profile be used to select which code is compressed.

This chapter analyzes two profiling methods. Using this optimization increases the size of

the compressed program due to the addition of native instructions.

The second optimization, memoization, is a well-known program transformation.

[Michie68]. The goal of this optimization is to avoid long-latency computations by cach-

ing the result of function calls. If the same function is called again with identical input val-

ues, the result can be provided from the cache rather than calculated. In the proposed

compressed code system, an instruction cache hit can be considered a form of memoiza-

tion because the decompressor is not called. This can be extended by using a dense back-

ing memory as a memoization table to hold decompressed cache lines. A DRAM memory

can hold many more decompressed cache lines per unit area than the SRAM instruction

cache can. This avoids decompression when the DRAM holds the requested line. In this

case, the requested line is copied from the DRAM into the instruction cache. This is a

dynamic optimization because the decision of what code should remain decompressed in

the DRAM continually changes as the application is executed. This technique is valuable

when a profile for generating a hybrid program is not available. This chapter analyzes dif-

ferent approaches to managing the memoization table. The use of the memoization table

requires a system to have additional memory to execute the compressed program. In the

experimental results, the size of the memoization table in included in the overall size of

the compressed program.

The two optimizations can be combined. A hybrid program can select procedures

that should remain highly available and leave them as native code. Memoization will

dynamically select the remaining compressed code to fill the memoization table. This

chapter shows results for the combined optimizations the performance/area trade-off that

can be made.

81

This chapter will first show the technique of using hybrid programs in Section 6.2.

Next, the memoization optimization will be covered in Section 6.3. Finally, performance

and area results for the combination of both optimizations will be shown in Section 6.4. A

summary of the chapter is given in Section 6.5

6.2 Hybrid programs

Hybrid programs use a combination of native and compressed code to attain a bal-

ance between code size and performance. The technique of selecting which procedures in

an application should be native code and which should be compressed is called selective

compression. Typically, a profile of the program execution is used to guide selective com-

pression. Infrequently used procedures will be compressed to improve code density while

frequently used procedures are left as native code to reduce the time that the decompressor

is executed. While selective compression is not a new technique, little has been written

about how it performs over a wide variety of programs. In the following sections, we

investigate two methods of selecting the native code functions: execution-based selection

and miss-based selection. We show that selection based on cache miss profiles can sub-

stantially outperform the usual execution time based profiles for some benchmarks.

6.2.1 Execution-based selection

Execution-based selection is used in existing code compression systems such as

MIPS16 [Kissell97] and Thumb [ARM95]. These systems select procedures to compress

with a procedure execution frequency profile [Pittman87, Greenhills98]. Performance loss

occurs each time compressed instructions are executed because it typically takes 15%-

20% more 16-bit instructions to emulate 32-bit instructions. This is because 16-bit instruc-

tion sets are less expressive than 32-bit instruction sets, which causes the number of

instructions executed in the 16-bit instruction programs to increase. Therefore, to obtain

high performance, the most highly executed procedures should not be compressed.

We implement and measure the effect of execution-based selection. First, we pro-

file a benchmark and count the number of dynamic instructions executed per procedure.

Then we make a list of procedures and sort them by the number of dynamic instructions.

82

The procedures with the most instructions are selected from this list until a constraint is

met. In our experiments we stop selection once the selected procedures account for 5%,

10%, 15%, 20%, or 50% of all instructions executed in the program. The selected proce-

dures are left as native code and the remaining procedures are compressed. Our constraints

produce programs with different ratios of native and compressed code to evaluate the

selective compression technique.

6.2.2 Miss-based selection

Our dictionary and CodePack decompressors are only invoked during an instruc-

tion cache miss. Thus, all performance loss due to decompression occurs on the cache

miss path. In this case, it makes sense to select procedures based on the number of cache

misses, rather than the number of executed instructions. Compressed code cache misses

take longer to fulfill than native code cache misses. Therefore, we can speed up programs

by taking the procedures that have the most cache misses and selecting them to be native

code.

Miss-based selection is implemented similarly to execution-based selection. Pro-

cedures are sorted by the number of instruction cache misses they cause. Only non-specu-

lative misses are counted since the decompressor is only invoked for non-speculative

misses. The selection process continues until the selected procedures account for 5%,

10%, 15%, 20%, or 50% of all cache misses in the program.

6.2.3 Simulation of selective compression

Our compression software has the ability to produce binaries containing both com-

pressed and non-compressed code regions. We profile the benchmarks to measure cache

miss frequency and execution frequency for each procedure. The profile is used to deter-

mine which procedures are native code and which are compressed. In execution-based

selective compression, the top several functions that are responsible for most of the

dynamically executed instructions are not compressed. In miss-based selective compres-

sion, the top several functions that are responsible for most of the instruction cache misses

83

are not compressed. Our experiments vary the aggressiveness of the selection algorithm to

measure the effect of the trade-off between code size and speed.

Our memory layout for native and compressed programs is shown in Figure 6.1.

On a cache miss, we determine if the instruction is in the compressed region or the native

region. Our machine model assumes that the regions for compressed and native code can

be programmed into special system registers that the microprocessor can use to determine

when a cache miss exception should be used. If the cache miss occurs in the compressed

region, an exception is raised to invoke the software decompressor. If the instruction is in

the native region, then the usual cache controller is used to fill the miss from main mem-

ory.

6.2.4 Results

Figure 6.2 shows the results of using both miss-based and execution-based selec-

tive compression on dictionary and CodePack programs. The left side of these area/perfor-

mance curves represent code that is totally compressed. The right side of the curves

Figure 6.1: Memory layout for dictionary compression
The .text segment is compressed into .dictionary and .indices segments. The .decompressor
segment holds the decompressor code. Some code in .text may be left in .native so that decompression
does not need to occur for critical code. On a cache miss, the .dictionary and .indices segments are
decompressed and put in the segment marked “Decompressed code”. This segment only exists in the
instruction cache and does not consume main memory. CodePack programs have an additional segment (not
shown) that contains a mapping table to convert cache miss addresses to the addresses of the corresponding
variable-length codewords.

Virtual

.indices

.native

.decompressor

.dictionary

.data

.indices

Heap & Stack

.native

.decompressor

.dictionary

.data

Decompressed

Original

Heap & Stack

.data

physical memory

Heap & Stack

Compressed
physical

.text

code

memory memory

(only exists
in cache)

84

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

50% 60% 70% 80% 90% 100%

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

50% 60% 70% 80% 90% 100%

0

2

4

6

8

10

12

50% 60% 70% 80% 90% 100%

0

2

4

6

8

10

12

14

50% 60% 70% 80% 90% 100%

Figure 6.2: Selective compression
These graphs show size/speed curves for CodePack (CP) and dictionary (D) programs for both miss-based
(miss) and execution-based (exec) selective compression. The data points from left to right range from fully
compressed code to fully native code. Intermediate data points represent hybrid programs with both native
and compressed procedures.

(e) mpeg2enc

(f) pegwit

(f) perl

(g) vortex

0

0.5

1

1.5

2

2.5

3

3.5

4

50% 60% 70% 80% 90% 100%

0

2

4

6

8

10

12

14

16

18

20

50% 60% 70% 80% 90% 100%

Compression ratio

S
lo

w
d

o
w

n

CP exec

CP miss

D exec

D miss

0

2

4

6

8

10

12

50% 60% 70% 80% 90% 100%

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

50% 60% 70% 80% 90% 100%

(a) cc1

(c) go

(d) ijpeg

(b) ghostscript

85

represent the original native application. The data points in-between the endpoints repre-

sent hybrid programs that have both compressed and native code. The amount of native

code in each hybrid program is explained in Section 6.2.1.

Comparison of profiling methods
An interesting result we found is that miss-based profiling can reduce the decom-

pression overhead by up to 50% over execution-based profiling. This occurs in loop-ori-

ented programs such as mpeg2enc and pegwit. The reason for this is that the profiles cause

the selective compression to make opposite decisions in loop regions. Execution-based

profiling selects loops to be native code while miss-based profiling compresses loops. The

execution-based profiling is helpful for instruction sets such as Thumb and MIPS16

because loops containing 16-bit instructions will be rewritten using fewer 32-bit instruc-

tions which execute faster. However, in the software decompressors, the decompression

overhead only occurs on an instruction cache miss. The decompressed code will execute

as quickly as the native version once it has paid the decompression penalty since decom-

pression recovers the original native instructions. Therefore, it does not make sense to

count the number of executed instructions. Loops experience a decompression penalty

only on a cache miss and this penalty is amortized over many loop iterations. The miss-

based profile more accurately accounts for the cost of the cache miss path and tends to

compress loops since they cause few cache misses. Mpeg2enc and pegwit are the only two

benchmarks for which miss-based selection always performs better than execution-based

selection. For non-loop programs, the execution-based profiling approximates miss-based

profiling since procedures that are called frequently are likely to also miss the cache fre-

quently. Based on these results, we conclude that all compressed code systems that invoke

decompression on a cache miss should use miss-based profiling for loop-oriented pro-

grams.

Comparison of dictionary and CodePack decompressors
We have already shown that CodePack always attains a better code size than dic-

tionary programs at a cost in performance. However, selective compression shows that

CodePack can sometimes provide better size and performance than dictionary compres-

sion (ijpeg and ghostscript). CodePack compresses instructions to a much higher degree

86

than dictionary compression. When selective compression is used, this allows CodePack

to have more native code than dictionary programs, but still have a smaller code size. If

the selected native procedures in CodePack provide enough performance benefit to over-

come the overhead of CodePack decompression relative to dictionary decompression, then

the CodePack program can run faster than the dictionary program. This suggests that it is

worthwhile to investigate software decompressors that can attain even higher levels of

compression with a higher decompression overhead.

Effect of procedure placement
It seems counterintuitive that some benchmarks (ijpeg, mpeg2enc, perl, and peg-

wit) occasionally perform worse when they use more native code. This is a side-effect of

our compression implementation. The assumption that compressed procedures are adja-

cent to each other in memory simplifies the cache miss exception logic. It can perform a

simple bounds check to determine if the miss address is in the compressed region and raise

an exception if appropriate. However, distributing the procedures across the native code

and compressed code memory regions modifies the order of procedures in the program.

Within each region, the procedures have the same ordering as in the original program.

However, procedures that were adjacent in the original program may now be in different

regions of memory and have new neighbors. This causes the hybrid programs and the

original native program to experience different instruction cache conflict misses. It is clear

from Figure 5.3 that even small changes in the instruction cache miss ratio can dramati-

cally affect performance of compressed programs. This is because the decompression soft-

ware greatly extends the latency of each instruction cache miss. Therefore, it is possible

that a poor procedure placement could overwhelm the benefit of using hybrid programs.

The effect of procedure placement in hybrid programs is illustrated in Figure 6.3.

The effects of procedure placement on performance can be significant. Pettis and

Hansen noted that a good procedure placement could improve execution time by up to

10% [Pettis90]. To our knowledge, we are the first to report on the effect of procedure

placement on selective compression. Procedure placement is likely to affect selective

compression in other compression systems too. For example, IBM’s hardware implemen-

tation of CodePack also uses compressed and native code regions which will alter proce-

87

dure placement as procedures are selected to remain as native code. If it were not for the

effect of procedure placement, all benchmarks would run faster under miss-based selec-

tion than execution-based selection since miss-based selection models the decompression

overhead better in our cache-line decompression system. This assumes that the profiles

used by the selective compression are representative of the execution behavior of the

applications.

One serious problem with miss-based selection is that the selection algorithm uses

the cache miss profile from the original code. Once the code is rearranged into native and

compressed regions, the new procedure placement will have a different cache miss profile

when the program is executed. This new placement may cause more or less cache misses

than the original program (and possibly the execution-based selection procedure place-

ment). Nevertheless, we still find miss-based selection useful for loop-oriented bench-

marks. These problems suggest that an interesting area for future work would be to

develop a unified selective compression and code placement framework.

Figure 6.3: Procedure placement in hybrid programs
This example shows that hybrid programs have a different procedure layout than totally compressed and
totally native programs. A, B, C, and D are native code procedures. The compressed procedures are a, b, c,
and d. The dictionary is labeled dict.

Original program

Totally compressed

Hybrid program

Aa b c ddict B C D

Memory

compressed code decompress region (in L1 cache only)

Same order as original program

a b c ddict

Ba cdict D

B D A Ca cdict

Decompress

Decompress

Different order than original program!

compressed code native region decompress region

program

A B C D

88

6.2.5 Conclusion

Hybrid programs are effective for improving the performance of compressed code.

Dramatic results can be achieved by leaving a few procedures as native code and com-

pressing the others. Most of the time, a simple execution profile could be used instead of a

cache miss profile (which must be done for each cache organization on which the program

will execute). However, we have seen that there can be a benefit for using miss-based pro-

filing on loop-oriented programs such as pegwit and mpeg2enc.

6.3 Memoization

In this section, we examine using memoization to reduce decompressor overhead.

Figure 6.4 illustrates the process of memoization. Whenever decompression is done, the

results will be cached in the memoization table. The decompression algorithm is modified

to first check the table for the decompressed cache line. If the line appears in the table, it

can be quickly copied into the instruction cache, thus eliminating most of the decompres-

Figure 6.4: Memoization overview
In general, memoization is a function-level optimization. Recent input and output pairs are stored. When
future inputs match the stored inputs, the corresponding output value is returned rather than re-computed.
This avoids the computational overhead of invoking the original algorithm. When memoization is used in the
decompression software, the input value is the address that missed the cache and the output is one or two
decompressed cache lines.

function

input

output

Original function

input output

Memoized function

input

table hit?

Memoization Table

function

output

update table

N Y

query table

89

sion penalty. We assume that the memoization table is implemented in a smaller, denser,

and slower memory than the instruction cache.

The effect of the memoization table is to add another level to the memory hierar-

chy. This is illustrated in Figure 6.5. When an instruction cache miss occurs, the decom-

pressor first looks in the memoization table. If the instructions are present, they are copied

into the instruction cache. If the instructions are not present, then the normal decompres-

sion algorithm is invoked. A performance gain over fully compressed code results when

the hit ratio of the memoization table is high and the copy operation has less latency than

decompressing.

This section shows experimental results for the effect of memoization on com-

pressed program size and performance. In addition, instruction set support for memoiza-

tion is proposed and analyzed.

6.3.1 Background

Using memoization to improve decompression speed is reminiscent of Douglis’s

compression cache [Douglis93] discussed in Chapter 2. Both systems view compression

as an additional level of the memory hierarchy. The compression cache held compressed

memory pages of the virtual memory system before they were swapped to disk. This sys-

tem allowed more pages to remain in memory (in a compressed form). Performance

improved because the virtual memory system could decompress compressed pages in

Figure 6.5: Memory hierarchy

I-cache Memoization table Compressed main memory

cache miss not decompressed

SW decompress
(100-1000s of cycles)

SW copy
(10 cycles)

cache hit

processor request

Slower access Faster access
Less density More density
Less capacity More capacity

(1 cycle)

Processor

Higher level Lower level

90

memory more quickly than it could transfer the original pages from disk. While Douglis

compressed both instruction and data pages, we compress only instructions. Instead of

using a compression cache to hold compressed code, our work uses a memoization table to

hold decompressed code. Copying the decompressed instructions into the instruction

cache is faster than running the decompressor and results in performance improvement.

6.3.2 Memoization table management policies

This section describes two policies for managing the instruction cache and

memoization table. The inclusive policy is designed to shorten the overhead of memoiza-

tion. The exclusive policy is designed to improve utilization of the memoization table over

the inclusive policy. The memoization table is organized as a direct-mapped cache (with

tag and data sections). This allows hits to the decompressed cache to be fast because only

a single tag must be checked.

Inclusive policy
On a memoization table miss, one (dictionary) or two (CodePack) cache lines are

decompressed and put into the instruction cache. Simultaneously, the instructions are writ-

ten to the memoization table along with the instruction cache miss address tag. The

memoization table hits when the miss address is found in the tag store. On a hit, one (dic-

tionary) or two (CodePack) lines are copied from the memoization table into the instruc-

tion cache.

Exclusive policy
This policy uses the memoization table to hold lines replaced in the instruction

cache. On a memoization table miss, replaced lines are moved to the memoization table.

The purpose of this is to avoid decompressing them again when the application needs

more associativity than the cache can provide. The replaced instruction cache line does not

merely hold a copy of the instructions from the memoization table, so the utilization of the

memoization table and the cache is higher than in the inclusive cache policy. Since the

replaced cache line is stored in the memoization table, the memoization table resembles a

victim cache [Jouppi90].

91

This policy requires that both decompressed lines of the CodePack-compressed

algorithm exist in the cache together so they can be both copied into the memoization

table. In a typical instruction cache, one line of the CodePack pair might have already

been replaced. To prevent this, we explicitly manage the replacement of lines in the

instruction cache so that both CodePack lines are replaced together. This insures that on a

table hit, both lines will be available in the memoization table to copy into the instruction

cache.

On a memoization table hit, one or two cache lines are copied into the instruction

cache. This is identical to the behavior of the inclusive policy. This is different than the

victim cache policy which would swap the lines in the instruction cache and memoization

table. Lines are not swapped so that the common case (hit) executes quickly in software.

6.3.3 Instruction set support for memoization

Chapter 5 introduced the instructions swic, iret, mcf0, and isync to support

software decompression. This section introduces additional instructions for the

SimpleScalar simulator to support memoization of decompression efficiently.

Many modern instruction sets, such as MIPS [MIPS96] and PowerPC

[Motorola94], support cache control instructions. Typical instructions allow modification

of the tag bits, control bits, and particular words in the cache. In addition entire cache lines

may be prefetched, zeroed, or flushed from the cache. We have added igettag,

igetctrl, swicw, lwicw, imap, imapw, iunmap, and iunmapw. A typical decom-

pressor only needs a few of these instructions. Additionally, the sync instruction is

required for some software decompressors. More discussion on synchronization instruc-

tions is in Chapter 5.

Discussion of cache management
There are two reasons for adding new instructions to support memoization. First,

the copy operation between the memoization table and the instruction cache must be very

fast so that memoization has low latency. This is done by allowing the decompressor to

access complete cache lines instead of individual words in the cache. Second, allowing the

decompression software to manage the instruction cache replacement policy is necessary

92

for the CodePack decompressor. The implementation cost of these new instructions should

be very small because the existing data paths can be used. For example, the data paths to

move complete instruction cache lines into the instruction cache are already supported by

the cache fill hardware.

On a hit to the memoization table, the copy operation must be extremely fast to

reduce decompression overhead. The following instruction sequence copies one instruc-

tion from the memoization table into the instruction cache:

load r1, tableEntryAddr
swic r1, missAddr

By incrementing the addresses and repeating the sequence several times,

an entire cache line can be copied. However, this is inefficient because it only loads one

instruction at a time over the bus from the memory. We assume that the bus is wider than a

single instruction and could potentially transfer many instructions at once. Therefore, we

introduce the map instruction that can read an entire cache line from memory into the

instruction cache. It uses the full bandwidth of the memory system to move the cache line.

The map instruction may use multiple bus accesses if the cache line is longer than the bus

width. This is identical to how a cache miss would be handled in hardware. An additional

benefit is that the transfer can occur directly between the main memory and the instruction

cache. This eliminates a series of load instructions that would move the instructions into

the data cache and displace application data.

map is not merely a simple load instruction. The address of the cache line in the

memoization table is different from the address that the microprocessor uses to access the

cache. Therefore, the map instruction “maps” the cache line to a new address in the cache.

In effect, it chooses a line in the cache to replace and updates the tag value with the new

address. If the memoization table address and the cache address are the same, then the

map instruction behaves as a conventional instruction prefetch.

Some variations on the map instruction are also used in the software decompres-

sors. The iunmap instruction copies an instruction cache line from the cache into the

memoization table. This is used in the exclusive policy to store replaced cache lines in the

memoization table.

93

Some instructions have been added to allow the decompression software to control

the replacement of cache lines. The igetctrl instruction reads the control bits from a

cache line. This provides the decompressor with the replacement (LRU) bits so it can

determine which line in the instruction to replace when using the exclusive policy. The

igettag instruction allows the decompressor to read the tag from a particular cache line

so it can be placed in the memoization table. The swicw and lwicw instructions are sim-

ilar to swic, but store and load instruction words in specific cache lines of the cache. The

imapw and iunmapw instructions are similar to imap and iunmap, but allow the cache

way to be specified so particular lines in the cache set can be read or written.

There are two operating modes for the cache instructions. They are similar to those

used by the MIPS cache instruction. The first operating mode, called hit, searches for an

address in the cache and acts upon the line in the cache that the address is found. If the tag

of the cache does not match the address, then no action is taken. The second operating

mode, called index, uses the address to determine a particular line in the cache to act upon,

regardless of what the contents of the line are. The upper bits of the address select the

cache set to use. The low order bits in the address select the way of the set to use. In the

simulations, all caches are 2-way set associative. Therefore, the least significant bit of the

address selects way-0 or way-1. Table 6.1 shows the operating mode used by each cache

instruction. In addition, it shows whether the instruction acts upon one word or a complete

cache line.

The new instructions are listed below:

igetctrl: read instruction cache line control bits
Format: igetctrl rt, offset(rs)

Granularity

Operating mode

 Hit Index

1 instruction swic swicw, lwicw

1 cache line imap, iunmap imapw, iunmapw, igettag,
igetctrl

Table 6.1: Taxonomy of cache access instructions
The hit operating mode checks the tag of the cache line. The index operating mode does not check the cache
tags. Instead, the specific cache line to access is completely specified by the address. The lower bits of the
address specify the way of the cache set to use.

94

Operating mode: index

The address is formed by offset + reg[rs]. The control bits corresponding to the

selected cache line are written to reg[rt]. The control bits are the replacement bit and the

valid bit. When the replacement bit is 0, way-0 is replaced next. When the replacement bit

is 1, way-1 is replaced next.

igettag: read instruction cache tag
Format: igettag rt, offset(rs)

Operating mode: index

The address is formed by offset + reg[rs]. The tag corresponding to the selected

cache line is written to reg[rt].

swicw: store word in instruction cache way
Format: swicw rt, offset(rs)

Operating mode: index

This instruction is similar to swic, but uses the index operating mode. The address

(offset + reg[rs]) selects the cache set and way. The value reg[rt] is written into the

selected cache line at the offset specified in the address. The tag of the cache line is written

with the most significant bits of the address.

lwicw: load instruction word way
Format: lwicw rt, offset(rs)

Operating mode: index

The address is formed by offset + reg[rs]. The value of the selected instruction

cache word in the line is written to reg[rt]. There is no corresponding lwic instruction

defined in this dissertation because the software decompressors do not require it.

imap: load and map instruction cache line
Format: imap rt, offset(rs)

Operating mode: hit

The source address is reg[rt] and the destination address is offset + reg[rs]. The

source address is used to read a cache line from the instruction memory hierarchy (bypass-

ing the instruction cache). The cache line is stored in the instruction cache at the destina-

95

tion address. The cache tag is updated to correspond with the destination address. When

the source and destination addresses are identical, the effect is like a conventional instruc-

tion prefetch. When the values are different, the data at the source address is effectively

mapped to the destination address. The microprocessor can then access the cache at the

destination address and find the data from the source address. This instruction is the high-

performance counterpart of swic. While swic transfers one instruction into the cache,

imap transfers an entire cache line of instructions.

iunmap: store and map instruction cache line
Format: iunmap rt, offset(rs)

Operating mode: hit

The source address is offset + reg[rs] and the destination address is reg[rt]. On a

cache hit, the entire cache line at the source address in the cache is copied into the next

level of the instruction memory hierarchy at the destination address. On a cache miss, the

instruction has no effect.

imapw: load and map instruction cache line way
Format: imapw rt, offset(rs)

Operating mode: index

This instruction is similar to imap, except that it uses the index operating mode to

access the cache.

iunmapw: store and map cache line way
Format: iunmapw rt, offset(rs)

Operating mode: index

This instruction is similar to iunmap, except that it uses the index operating mode

to access the cache.

sync: synchronization
Format: sync

This instruction halts fetching until all previous instructions have committed and

all previously initiated memory references (stores and loads) have completed. In conven-

tional machines, this instruction is used after a data cache flush to ensure that modifica-

96

tions to the instruction space will be found by the instruction cache fill unit. The effect of

they sync is to wait until the instruction modifications have moved from the data mem-

ory hierarchy into a level of memory that is visible to instruction memory accesses. In

software decompression, the sync instruction is used after the imap instruction to ensure

that the instruction cache is loaded with decompressed instructions before the application

begins to fetch and execute them. In this case it is not merely enough to execute isync

after decompression because the imap instruction may have been committed in the exe-

cution pipeline, but still be in the process of accessing main memory. If the imap instruc-

tion is being used as a conventional instruction prefetch (not done in this dissertation),

then the sync instruction is not required for correct execution. Hardware could be used to

identify the execution of imap and restrict fetching from instruction cache addresses that

conflict with it. However, we assume that code generation is a rare event that should not

require special hardware support. Therefore, we take the same approach as PowerPC and

MIPS-IV to instruction memory modification and issue synchronization instructions when

appropriate.

6.3.4 Memoization implementation

This section explains how the proposed cache instructions are used in the decom-

pressors. Since the memoization policies (inclusive and exclusive) and the access types

(word or cache line) are orthogonal, they can be combined to form four different decom-

pressor routines. Each decompressor is described by a two letter name. These four decom-

pressors are called IW, IL, EW, and EL. The inclusive and exclusive memoization policies

are labeled “I” and “E”, respectively. The decompressors that use word and line accesses

to the instruction cache are labeled “W” and “L”, respectively.

This section shows decompressor code listings to illustrate the use of the proposed

cache instructions. Since the dictionary and CodePack decompressors use the cache

instructions similarly, only examples of the dictionary decompressor are shown. Complete

code listings for all decompressors can be found in Appendix A. The dictionary decom-

pressor is discussed in Chapter 5. The cache management instructions to support software

decompression appear in bold typeface. In the listings, the cache instructions (as well as

normal load and store instructions) appear as macro instructions. A complete list of mac-

97

ros is given in Appendix A.1. The source code shown assumes the use of a 4 KB 2-way

set-associative 32B-line instruction cache and a 18 KB memoization table. Every

memoization table used in the experiments has one 4-byte tag for each cache line of eight

instructions. Therefore a 18 KB memoization table has 16 KB of instructions and 2 KB of

tags. Table 6.2 shows the number of instruction and tag bytes in memoization tables of

various sizes.

Figure 6.6 shows the general form of the decompressor and how it is modified to

support memoization. The memoized program first checks the memoization table for

decompressed code. If a match is found, then the decompressed instructions are copied

into the instruction cache. Otherwise, the decompressor generates instructions from com-

pressed code and then updates the memoization table.

All decompressors end with the isync instruction. While the decompressor is

modifying the instruction cache, it is possibly that the instruction fetch stage is has already

fetched instructions beyond the end of the decompressor. This means that the processor is

fetching instructions from the cache at the same address in the cache that the decompres-

sor is modifying. The prefetched instructions will signal a cache miss (if the tag was not

yet written), or receive invalid instruction words (if the entire cache line was not yet writ-

ten). The isync instruction prevents these instructions from executing by stalling the

pipeline until all previous instructions (from the decompressor) have completed and then

discarding the contents of the instruction fetch buffer. Instruction fetch is then redirected

to the instruction following the isync.

Figure 6.7 shows the Memo-IW decompressor. First the data and tag entries in the

memoization table are located. The tag value is loaded and compared the miss address. On

Memoization Table Size Instructions Tags

4.5 KB 4 KB 0.5 KB

9 KB 8 KB 1 KB

18 KB 16 KB 2 KB

36 KB 32 KB 4 KB

72 KB 64 KB 8 KB

144 KB 128 KB 16 KB

288 KB 256 KB 32 KB

Table 6.2: Memoization table contents

98

a match, the table data is copied into the instruction cache using swic instructions. For

convenience the update of the memoization table is done immediately as each instruction

is decompressed. Finally, the tag value in the memoization table is updated with the miss

address. A significant problem with this program is that many load and swic instructions

must be issued to copy an entire cache line from the memoization table. The bus from

main memory into the instruction cache is not used efficiently because it is only transfer-

ring one word at a time.

Figure 6.8 shows the Memo-IL code. The primary change from the Memo-IW

code is that the imap and iunmap instructions are used to move an entire cache line at

once. This reduces the impact of issuing multiple swic instructions in the Memo-IW

code. This code has higher performance because it allows the complete bandwidth of the

instruction cache bus to be utilized.

{
 DECOMPRESS:
 // Decompression code {...}

 DONE:
 isync;
 iret;
}

{
 MEMO:
 if (memoized)
 {
 // copy memoized decompression into cache
 goto DONE:
 }

 DECOMPRESS:
 // Decompression code {...}

 UPDATE:
 // Update memoization table

 DONE:
 isync;
 iret;
}

a) General form of decompressor

b) General form of decompressor with memoization

Figure 6.6: Memoized decompressor

99

Figure 6.9 shows the Memo-EW code. It is similar to Memo-IW, but uses the

exclusive memoization policy. Note that the update phase precedes the decompression.

// Assume baddr holds the cache block address of missed instruction

MEMO:
 cacheDataBase = (0x20) << 16; // Memo Data at address 0x00200000
 cacheTagBase = (0x21) << 16; // Memo Tags at address 0x00210000
 cacheTagOffset = ((baddr) << 18) >> 21;
 mem_load_4B_RR(cacheTagBase,cacheTagOffset,cacheTag);
 cacheDataOffset = (baddr << 18) >> 18;
 cacheDataAddr = cacheDataBase + cacheDataOffset;
 if (cacheTag == baddr) // match in memoization table?
 {
 // Copy instruction 1 of 8
 mem_load_4B(cacheDataAddr,0,iword);
 swic(baddr,0,iword);
 ...
 // Copy instruction 8 of 8
 mem_load_4B(cacheDataAddr,28,iword);
 swic(baddr,28,iword);

 goto DONE;
 }

DECOMPRESS:
 // Decompression code
 {
 // Initializtion code (for indexAddr and dict_base) {...}

 // decompress instruction 1 of 8
 mem_loadu_2B(indexAddr,0,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,0,iword);
 mem_store_4B(cacheData,0,iword); // update memo table

 // decompress 7 more instructions (similar to first instruction)
 }

UPDATE: // miss memoization table
 mem_store_4B_RR(cacheTagBase,cacheTagOffset,baddr); // update tag

DONE:
 isync;
 iret;

Figure 6.7: Memo-IW
A) Load the tag from the memoization table. B) Compute the address the entry in the memoization table that
holds the cache line. C) On a memoization table hit, copy the cache line into the cache. A series of eight load
and store instructions copy the decompressed cache line from the table to the cache. D) On a miss, decom-
press the cache line and put a copy into the memoization table. E) Update the tag store for the cache line that
was just written into the memoization table.

A

B

C

D

E

100

This happens because the memoization table is updated with the contents being replaced

in the instruction cache.

The CodePack decompressor must decompress two lines at a time. For ease of

implementation, the memoization assumes that either both decompressed lines are in the

memoization table, or none of them are. This avoids overhead for supporting the case

where one line is in the memoization table, but the other line must be decompressed. This

requires that when the memoization table is updated, both cache lines are in the cache to

copy into the table. Therefore, when the two cache lines are placed into the cache, they are

put in the same way of the cache. This is a simple method to guarantee that one line of the

pair is not overwritten by other decompression events. When one line is overwritten, then

its pair line will also be overwritten. In the decompressor, the replacement bits of the first

cache line are used to choose the way for both cache lines.

Figure 6.10 shows the Memo-EL code. It replaces use of swic and lwicw in

Memo-EW with imapw and iunmap. This improves instruction cache bus efficiency by

transferring entire lines instead of individual instruction words.

// Assume baddr holds the cache block address of missed instruction

MEMO:
 // initialize cacheTag as in Memo-IW handler {...}
 if (cacheTag == baddr) // match in memoization table?
 {
 // Copy memo data into cache line
 imap(baddr,0,cacheDataAddr);
 sync;

 goto DONE;
 }

DECOMPRESS:
 // Normal decompression code using swic
 {...}

UPDATE: // update memoization table
 mem_store_4B_RR(cacheTagBase,cacheTagOffset,baddr); // update tag
 iunmap(baddr,0,cacheDataAddr); // copy new cache line to memo table

DONE:
 isync;
 iret;

Figure 6.8: Memo-IL
The difference between Memo-IW and Memo-IL is that some swic instructions (as well as some loads and
stores) are replaced with imap and iunmap instructions.

101

6.3.5 Results

This section evaluates the effect of memoization on software decompression. We

simulate the four decompressors described in the previous section on the baseline model

(4 KB instruction cache) with an additional 16 KB memoization table. The experiments in

this section only show how memoization can improve performance. The combined effect

on area and performance is studied in Section 6.4. For small programs, it is possible that

using a large memoization table would increase the size of the compressed program

beyond the size of native code. This does not happen in the benchmarks here, but the

mpeg2enc and pegwit benchmarks under dictionary compression are nearly the same size

as native code when the memoization table size is considered. This would be unacceptable

in an embedded system running a single small compressed program because there would

be no size or performance benefit over native code. However, if the system executes mul-

// Assume baddr holds the cache block address of missed instruction

MEMO:
 // initialize cacheTag as in Memo-IW handler {...}

 // Get the cache tag for the missed address
 compressedBlockAddrTag = baddr>>ICACHE_TAG_SHIFT;

 // Find replacement cache line
 igetctrl(baddr,0,ctrlbits);
 // if lru 0, use this line, else next way
 replAddr = baddr;
 replAddr |= (ctrlbits >> 2); // LRU bit is (ctrlbits >> 2)

 if (cacheTag == compressedBlockAddrTag)
 {
 // copy insn 1/8 into i-cache
 mem_load_4B(cacheDataAddr,0,iword);
 swicw(replAddr,0,iword);
 // copy 7 more insns into i-cache
 ...
 goto done;
 }

Figure 6.9: Memo-EW
The igetctrl instruction is used to select a cache line to replace. The swicw instruction stores native
instruction into that selected line.

102

tiple small compressed programs, the addition of a memoization table could improve per-

formance of the compressed code and still yield a size benefit over native code when the

size and performance of all programs combined is considered.

Table 6.3 shows the performance results of the memoization optimization. These

results are graphed in Figure 6.11. Using the memoization table has a large effect on the

Figure 6.9 continued: Memo-EW
The igettag instruction reads the value of the tag from the replaced line so it can be stored in the memoiza-
tion table. The lwicw instruction loads words from the replacement line to be stored into the memoization
table.

UPDATE:

 // Write replaced I-cache line to SW cache

 //Find address of line to be replaced in I-cache
 // Get tag of replaced line to find out where in SW cache to put it.
 igettag(replAddr,0,currentTag);
 // currentAddr is the address of this line
 currentAddr = baddr;
 // Strip top bits to get byte index into cache
 currentAddr &= ((1<<ICACHE_TAG_SHIFT) - 1);
 // Add tag bits on top
 currentAddr |= (currentTag << ICACHE_TAG_SHIFT);

 // Store tag in SW cache for replaced line.
 // find address to store TAG. Just like for faulting address.
 replCacheTagOffset = (currentAddr << 18) >> 21; //strip top bits. SW Cache
parameter.
 // write tag into SW cache
 mem_store_4B_RR(cacheTagBase,replCacheTagOffset,currentTag);

 // Find address in SW cache to store instructions.
 replCacheDataAddr = (currentAddr << 18) >> 18;
 replCacheDataAddr += cacheDataBase;

 // Write instructions in replaced line to SW cache.
 // Move first instruction
 lwicw(replAddr,0,iword);
 mem_store_4B(replCacheDataAddr,0,iword);

 // move 7 more instructions {...}

DECOMPRESS:
 // Normal decompression code using swic
 {...}

DONE:
 isync;
 iret;

103

running time of compressed programs. This is especially noticeable under CodePack were

the minimum improvement is 8% (mpeg2enc with Memo-IL) and the maximum improve-

ment is 90% (pegwit with Memo-IW). The IL and EL decompressors that can access

entire cache lines with imap, iunmap, iunmapw, and imapw usually have a distinct

performance improvement over the IW and EW decompressors that only use swic,

swicw, and lwicw. Using cache line accesses for the dictionary decompressor reduced

the decompression overhead by 38% for the inclusive policy and by 31% for the exclusive

policy. For the CodePack decompressor, using cache line accesses reduced the decompres-

sion overhead by 13% for the inclusive policy and 18% for the exclusive policy. The sim-

ple inclusive policy often performs better than the exclusive policy. This is because the

exclusive policy has extra overhead to manage the memoization table and often this over-

head is greater than the benefit of utilizing the cache better. It is interesting that under

MEMO:
 // Initialize as in Memo-EL {...}

 if (cacheTag == compressedBlockAddrTag)
 {
 // copy entire cache line into I-cache
 imapw(replAddr,0,cacheDataAddr);
 sync;
 goto done;
 }

UPDATE:

 // As in Memo-EL {...}

 // Write instructions in replaced line to SW cache.
 // Move first instruction
 iunmapw(replAddr,0,replCacheDataAddr);

DECOMPRESS:
 // Normal decompression code using swic
 {...}

DONE:
 isync;
 iret;

Figure 6.10: Memo-EL
The difference between Memo-EW and Memo-EL is that swicw and lwicw are replaced with imapw and
iunmapw to copy entire cache lines at once. The sync instruction allows the imapw instruction to complete
and load the cache line into the instruction cache before the decompressor ends. This is important so that the
instruction fetch hardware accesses a valid instruction word.

104

CodePack there is not a single decompressor that is better for every benchmark. This

strongly motivates the use of per-application decompressors.

Using the memoization table often results in worse performance for the dictionary

decompression. This occurs because the dictionary decompressor already has very low

overhead. The additional overhead to manage the memoization table and check it for hits

often outweighs the performance advantage of using memoization.

6.3.6 Conclusion

Memoization is useful at improving performance of compressed programs. Code-

Pack benefits more than dictionary compression from memoization because CodePack has

much more overhead. The memoization routines that access complete cache lines at a time

performed better than the ones that move a single instruction at a time. This effect is more

pronounced in the dictionary decompression because the movement of instructions

between memory and cache represent a larger portion of the decompression overhead than

Benchmark Dictionary Memo-IW Memo-IL Memo-EW Memo-EL

cc1 4.14 4.36 3.40 4.64 3.54

ghostscript 2.66 2.40 2.01 2.85 2.32

go 3.12 3.50 2.81 3.84 3.05

ijpeg 1.20 1.18 1.11 1.23 1.16

mpeg2enc 1.03 1.02 1.02 1.03 1.02

pegwit 4.43 3.57 1.60 4.42 3.22

perl 3.35 3.31 2.51 3.50 2.70

vortex 3.78 3.85 2.91 4.34 3.27

Benchmark CodePack Memo-IW Memo-IL Memo-EW Memo-EL

cc1 27.00 16.58 15.20 16.26 13.90

ghostscript 19.19 5.84 5.38 9.90 8.25

go 17.63 11.86 10.94 12.49 10.68

ijpeg 2.42 1.62 1.56 1.88 1.66

mpeg2enc 1.26 1.10 1.09 1.16 1.11

pegwit 13.67 2.21 1.74 6.81 5.62

perl 21.82 12.15 11.19 11.20 9.47

vortex 25.20 13.15 11.96 14.46 12.37

Table 6.3: Performance of memoization
Performance is given as slowdown relative to a native system. For each benchmark, the decompressor with
the highest performance is shaded. a) Dictionary. b) CodePack.

(a) Dictionary

(b) CodePack

105

in the CodePack decompressor. The exclusive policy uses the memoization table more

efficiently, but takes more cycles to execute. For the dictionary decompression, the exclu-

sive policy overhead overwhelms the benefit of memoization. Often better performance is

achieved by using the simple inclusive policy.

6.4 Memoization and selective compression

Both memoization and hybrid programs reduce decompression overhead. This sec-

tion compares these two approaches and explores how to combine them. The goal of

memoization and hybrid programs is similar. Both predict which instructions will be most

frequently decompressed so that they may be stored in native form and the decompression

0.00

5.00

10.00

15.00

20.00

25.00

30.00

cc
1

gh
os

tsc
rip

t go
ijp

eg

m
pe

g2
en

c

pe
gw

it
pe

rl

vo
rte

x

Benchmarks

S
lo

w
d

o
w

n
 r

el
at

iv
e

to
 n

at
iv

e
co

d
e

CodePack

Memo-IW

Memo-IL

Memo-EW

Memo-EL

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

cc
1

gh
os

tsc
rip

t go
ijp

eg

m
pe

g2
en

c

pe
gw

it
pe

rl

vo
rte

x

Benchmarks

S
lo

w
d

o
w

n
 r

el
at

iv
e

to
 n

at
iv

e
co

d
e

Dictionary

Memo-IW

Memo-IL

Memo-EW

Memo-EL

Figure 6.11: Memoization performance results
(a) Dictionary. (b) CodePack.

(b) CodePack

(a) Dictionary

106

algorithm does not need to be invoked often. Hybrid programs are a static optimization

because the section of code that is decompressed (the native code section of the program)

is chosen at compile-time and fixed as the program executes. If the execution behavior of

the program does not match the profile used to build the hybrid program, then the native

code section may be useless. On the other hand, memoization is a dynamic optimization

that can choose which translations to hold in the decompression buffer. As the program

executes, memoization can adapt to the execution behavior caused by a particular input

data set. However, memoization has a start-up cost because the table must be initialized

with recent values. Hybrid programs do not have this cost and can immediately supply

native instructions the first time an instruction in the native code section is referenced.

Although the optimizations are similar, they can both be applied to the same pro-

gram. It is interesting to consider for a fixed die area what mixture of dynamic and static

decompression provides the best performance. It is straightforward to construct programs

of the same size which use hybrid optimization, memoization, or both. Figure 6.12-A and

Figure 6.12-B represent native and compressed applications, respectively. Figure 6.12-C

shows the compressed program with memoization. To obtain a hybrid program of the

same size, start with the totally compressed program and move procedures into the native

code section until the program expands to the size of the program with memoization. This

hybrid program is in Figure 6.12-D. A program that uses both optimizations and is of the

same size can be made by using a smaller memoization table and then moving compressed

code into the native code section until the program is the size of the program only using

the larger memoization table. A hybrid program that uses memoization is shown in

Figure 6.12-E.

6.4.1 Setup

The experiments in this section simulate a system-on-a-chip (SOC) that uses

embedded DRAM (eDRAM) to hold the compressed program and data. We assume that

the complete compressed program is loaded from a network or a very slow long-term stor-

age device into the eDRAM prior to execution. The SOC also includes a SRAM instruc-

107

tion cache to hold decompressed instructions. The eDRAM also holds decompressed

instructions when hybrid programs or memoization is used.

By altering the allocation of die area between the SRAM and eDRAM, different

area/performance trade-offs can be made. Performance can be increased by holding more

decompressed code in either SRAM or eDRAM. While eDRAM is considerably more

dense, it has a slower access time than SRAM. The experiments in this section assume

specific densities for the SRAM and eDRAM. The densities are used to calculate a total

overall area for the compressed program. The area calculation includes the entire SRAM

instruction cache, the portion of the eDRAM that holds the compressed program including

any area reserved for memoization or native code. Similar studies by other researchers

have failed to take the area of the instruction cache into account when measuring compres-

sion ratio. Since the instruction cache has a strong effect on the die area and program per-

formance, it is necessary to include it when making area/performance trade-offs.

The simulations assume that eDRAM has ten times the density of SRAM but that

it takes 10 cycles to access. The bus between the eDRAM and SRAM cache is 256 bits.

This allows an instruction cache miss to be filled in one access. These parameters are in

Figure 6.12: Memory usage
An original program and its compressed version are showen in A and B, respectively. C, D, and E show vari-
ous methods of improving performance at the expense of compressed program size. C) The compressed
program with memoization. D) The compressed program is a hybrid program with some native code proce-
dures. Note that the compressed region is smaller because some functions are in the native code region. E)
Hybrid programs can also use memoization. In the simulations, programs simulated using techniques C, D,
and E all have the same size so that a performance comparison can be made.

Compressed

Native

Memoized

Compressed

Native

NativeCompressed

C) Memoization only

D) Hybrid program

E) Combined

B) Fully compressed

A) Original program

Program memory

Memoized

Compressed

108

the range of current eDRAM technology [IBM00]. The exact simulation parameters are in

Table 6.4.

The hybrid programs used in the following experiments are created using a selec-

tive compression algorithm that uses cache-miss frequency as a metric. This algorithm

was introduced in Section 6.2.2. The programs that most frequently miss the cache are

selected to be in the native code section of the final program. This causes the decompres-

sor to be invoked during fewer cache misses and therefore improves performance.

All memoized programs for the experiments use the Memo-IL policy because it

was the only policy that consistently performed well across both dictionary and CodePack

compressed programs.

6.4.2 Results

This section contains two experiments. The first experiment shows the area/perfor-

mance trade-off for allocating more area to the instruction cache. The second experiment

shows the area/performance trade-off for allocating more area to the eDRAM for hybrid

programs and memoization. A comparison of these two techniques follows.

Chapter 5 used larger caches to show that decompression overhead can be made

manageable. In this section, the simulation baseline uses a 4 KB instruction cache that is

typical of embedded systems. All experiments in this section try to optimize this baseline

system for area and performance. All results for area and slowdown are given as a ratio

compared to this system. Area results are given as a compression ratio compared to the

area used in the baseline system. Remember that the compression ratio includes the area of

SRAM and eDRAM used by the instruction cache, compressed program, and decompres-

sion buffer.

The baseline configuration with a 4 KB instruction cache is an arbitrary point

selected to illustrate the possible area/performance trade-offs in compressed code systems.

Memory Density Access time

SRAM I-cache 10,000 bytes/mm2 1 cycle

eDRAM memory 100,000 bytes/mm2 10 cycles

Table 6.4: Memory on System-on-Chip

109

The experiments presented here could use different cache sizes in the baseline configura-

tion. The ratio of the results compared to the baseline results would change, but the same

performance and area trends would be evident.

First experiment: increasing budget for instruction cache
Chapter 5 showed that increasing the cache size improved performance of com-

pressed programs. Here the experiment is repeated, but results are given for both perfor-

mance and area. The results in Table 6.5 through Table 6.12 show how area and

performance change as larger instruction caches are used. The area and slowdown given

are listed as ratios based on the performance and area of a native program running on a 4

KB cache.

Increasing the cache size slightly can dramatically affect performance. For exam-

ple, in Table 6.6 CodePack compressed ghostscript has a slowdown of 19.19 with a 4 KB

cache, but only a slowdown of 6.42 with a 8 KB cache. The cost of the larger cache is an

increase in area from a 64% compression ratio to a 68% compression ratio.

However, using a larger cache can also have a detrimental effect on the compres-

sion ratio. In Table 6.8, for example, the ijpeg benchmark compressed with CodePack has

a compression ratio is 67% when using a 4 KB instruction cache. When the instruction

cache is increased to 16 KB, the compression ratio is 121%. This means that the cache size

was increased so much that the area savings from compression was lost. The area is 21%

larger than a native code application with a 4 KB instruction cache. In addition, the pro-

gram executes 38% slower than native code. Therefore adding more cache to the com-

pressed program did not optimize it relative to the baseline native code system with the 4

KB cache. It is important to understand that the reason the compressed code is larger than

the native code is because the area comparison is against a baseline system with a smaller

cache. If the baseline system had a 16 KB cache, then the compression ratio for ijpeg

would be less than 100% for the 16 KB cache configuration (less dies area would be used).

Note that some small programs (mpeg2enc and pegwit) cannot increase the cache size

beyond the original 4 KB without using more die area than the baseline system.

110

Second experiment: increasing budget for eDRAM
The second experiment increases the die area budget for eDRAM. The additional

area can be used to hold 1) native code for a hybrid program, 2) native code for memoiza-

tion, or 3) native code for both optimizations. In all cases, this extra memory is called the

decompression buffer because it holds decompressed instructions. Table 6.13 through

Table 6.20 show the results of using combinations of hybrid programs and memoization.

The tables show the effect on area and performance for adding different size decompres-

sion buffers to the baseline system with a 4 KB instruction cache. The various decompres-

sion buffer budgets are sized to hold memoization tables of 9 KB through 288 KB. The

tables are divided into two parts. The first part (top) shows the slowdown of the program

using a decompression buffer with different allocations for the hybrid program and

memoization optimizations. The second part (bottom) shows the die area (as a compres-

sion ratio) of the program using each size of decompression buffer. All performance

results in the same column represent a program utilizing the same amount of die area. The

performance result at the top of the column is for a hybrid program with no memoization.

The performance result at the bottom of the column is a totally compressed program with

some memoization. Results in-between the top and bottom are for hybrid programs that

also use memoization. The column is sorted by the size of the memoization table used.

Any area in the decompression buffer not used by the memoization table is used to hold

the native code section of the hybrid programs.

The previous experiment showed that increasing the instruction cache capacity

slightly could often negate the effect of compression. On the contrary, decompression

buffer capacities can become quite large before they have the same effect. This is due to

the density differences between the memories. For example, the CodePack ijpeg can use

up to a 72 KB decompression buffer and still have a 97% compression ratio. As we previ-

ously observed, instruction cache capacity could only be increased to 8 KB without

expanding the die area beyond the baseline system. The 72 KB decompression buffer with

a 4 KB cache potentially holds over eight times as many decompressed instructions as the

8 KB cache alone.

Since the eDRAM holds more native code per unit area than the SRAM, perfor-

mance often increases dramatically when addition area budget is spent on eDRAM. This

111

occurs even though the eDRAM has a higher access latency. The reason for the perfor-

mance increase is that eliminating the large decompression penalty (1000s of cycles) is

better than eliminating the relatively small increase in access latency (10 cycles).

All results in Table 6.13 through Table 6.20 are graphed in Figure 6.13 through

Figure 6.20. Each point on the graphs represents a different allocation of die area for a

program. The circled points are programs with the same area budget, but different

amounts of memoization in the decompression buffer. For comparison, the results from

using larger instruction caches are also plotted. It is immediately obvious that spending

area on the decompression buffer provides a better area and performance benefit than

increasing the cache capacity. Only for ghostscript and vortex do larger caches come close

to competing with an increased decompression buffer size.

There are only a few benchmarks for which using only memoization consistently

performs better than using only a hybrid program. These benchmarks are cc1 under Code-

Pack (18 KB, 36 KB, and 72 KB buffers) and ijpeg under CodePack (9 KB buffer). This is

likely due to the large initial latency to generate the native code when using memoization.

Although hybrid programs give better performance than memoized programs (for the

same area budget), more effort must be taken to create them. In this case, a cache simula-

tion profile of each application was collected.

It is interesting that for a particular area budget, the best performing solutions often

use both optimizations. This is especially true for the larger applications. Intuitively what

happens is that for a particular budget, the working set of a program does not fit into the

available native code region of the hybrid program. By allowing some native code to be

dynamically selected by memoization, the decompression buffer can adjust itself as the

program executes new code regions.

Some compressed programs (for example, ghostscript in Table 6.14) have slow-

downs that are less than 1. This means that the programs are running faster than native

code on the baseline system. The reason that this happens is because the compressed pro-

gram has a different procedure placement due to being a hybrid program. A beneficial

placement can make a program fit better in the cache and experience fewer cache misses

than the original program. This is discussed more thoroughly in Section 6.2.4.

112

6.5 Conclusion

Both hybrid programs and memoization are useful at improving compressed pro-

gram performance with a modest loss in compression.

Section 6.2 showed that hybrid programs are very effective at improving the area-

performance trade-off in compressed programs. Using profiles of instruction cache misses

to guide the selection of native and compressed code in the program was beneficial for

loop-oriented programs. Such programs that used these profiles reduced their decompres-

sion overhead by 50% over programs that used profiles of dynamic instruction counts.

Section 6.3 demonstrated that modifying the instruction set to move complete

cache lines between the memory and instruction cache improved the performance benefit

of memoization significantly. This is more noticeable in dictionary compression than

CodePack compression because the dictionary decompressor spends a relatively larger

amount of time transferring instructions between memory and cache due to the lower

latency of the dictionary decompression algorithm. The experiments also showed that the

fast inclusive policy often performed better than the slower exclusive policy which

attempted to utilize the memoization table better.

 Section 6.4 showed that using more eDRAM for memoization or hybrid programs

provides better performance and with less area increase than doubling or quadrupling the

instruction cache capacity. This is because the greater density of eDRAM stores more

native code or decompressed code per unit area. This reduces the number of times the

complete decompression algorithm is executed and improves performance. When choos-

ing between hybrid programs and memoization, a hybrid program is usually a better use of

area than a fully compressed program with memoization. This is because programs spend

most of their time in a few procedures that can be put in a native code section and because

hybrid programs do not incur the initial decompression latency of memoization to produce

the native code. However the best use of the decompression buffer often combines both

optimizations. The multimedia benchmarks (ghostscript, ijpeg, mpeg2enc, and pegwit)

have the highest performance of all benchmarks under software decompression because

they experience fewer cache misses. When they are hybrid programs or use memoization,

they execute with nearly the same performance as native programs.

113

Table 6.5: Area and performance as a function of I-cache size (cc1)
Slowdown is the number of times slower a compressed program executes when compared to program run-
ning on a 4 KB instruction cache. Area is a compression ratio compared to the area used by a native program
running on a 4 KB cache.

I-cache size

Dictionary CodePack

Slowdown Area Slowdown Area

4 KB 4.14 67% 27.00 62%

8 KB 3.19 71% 20.00 66%

16 KB 2.19 78% 12.57 74%

32 KB 1.33 94% 5.57 89%

64 KB 0.96 125% 2.53 120%

Table 6.6: Area and performance as a function of I-cache size (ghostscript)

I-cache size

Dictionary CodePack

Slowdown Area Slowdown Area

4 KB 2.66 71% 19.19 64%

8 KB 1.60 74% 6.42 68%

16 KB 1.20 82% 2.65 76%

32 KB 1.04 97% 1.69 91%

64 KB 0.85 128% 1.03 121%

Table 6.7: Area and performance as a function of I-cache size (go)

I-cache size

Dictionary CodePack

Slowdown Area Slowdown Area

4 KB 3.12 73% 17.63 64%

8 KB 2.50 86% 12.27 76%

16 KB 2.04 110% 8.91 101%

32 KB 1.68 160% 6.35 150%

64 KB 1.30 258% 3.97 248%

Table 6.8: Area and performance as a function of I-cache size (ijpeg)

I-cache size

Dictionary CodePack

Slowdown Area Slowdown Area

4 KB 1.20 81% 2.42 67%

8 KB 1.10 99% 1.75 85%

16 KB 1.04 135% 1.38 121%

32 KB 1.02 207% 1.26 193%

64 KB 1.00 351% 1.11 336%

114

Table 6.9: Area and performance as a function of I-cache size (mpeg2enc)

I-cache size

Dictionary CodePack

Slowdown Area Slowdown Area

4 KB 1.03 87% 1.26 73%

8 KB 1.01 114% 1.13 100%

16 KB 1.00 168% 1.04 154%

32 KB 1.00 275% 1.02 261%

64 KB 1.00 488% 1.01 474%

Table 6.10: Area and performance as a function of I-cache size (pegwit)

I-cache size

Dictionary CodePack

Slowdown Area Slowdown Area

4 KB 4.43 86% 13.77 74%

8 KB 2.23 119% 1.08 107%

16 KB 0.81 185% 0.88 173%

32 KB 0.81 316% 0.81 304%

64 KB 0.80 577% 0.81 566%

Table 6.11: Area and performance as a function of I-cache size (perl)

I-cache size

Dictionary CodePack

Slowdown Area Slowdown Area

4 KB 3.35 77% 21.82 66%

8 KB 2.22 91% 13.81 80%

16 KB 1.50 120% 8.15 108%

32 KB 1.12 175% 4.52 164%

64 KB 0.82 287% 1.06 276%

Table 6.12: Area and performance as a function of I-cache size (vortex)

I-cache size

Dictionary CodePack

Slowdown Area Slowdown Area

4 KB 3.78 69% 25.20 59%

8 KB 2.61 77% 15.43 67%

16 KB 1.73 93% 8.28 83%

32 KB 1.21 125% 4.18 116%

64 KB 0.91 190% 1.88 180%

115

Table 6.13: Decompression buffer performance and area (cc1)
The tables are divided into two parts. The top part of the table holds the performance results. The perfor-
mance is the slowdown experienced compared to a native code system with a 4KB instruction cache. Each
column represents a different die area budget. The top of the column tells how large a decompression buffer
is reserved in the eDRAM. The Memoization Table Size column tells how much of the decompression buffer
is reserved to memoization. The remainder of the buffer is used to hold native code for hybrid programs. The
top of each column is a hybrid program without memoization. The bottom of each column is a totally com-
pressed program that uses only memoization. All performance results in a single column use the same
amount of die area. The shaded values in each column show the configurations with the best performance for
a particular area budget

The bottom part of the table holds area results. The area is reported as a compression ratio compared to a
native code system using a 4 KB instruction cache. The area result includes the size of the instruction cache
and amount of eDRAM to hold the compressed program and decompression buffer.

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 3.25 2.96 2.43 1.67 1.25 1.00

4.5 KB 3.90 2.94 2.53 1.72 1.22 1.00

9 KB 4.01 2.97 2.37 1.67 1.19 1.00

18 KB 3.40 2.36 1.67 1.19 1.00

36 KB 2.82 1.73 1.23 1.00

72 KB 2.33 1.29 1.01

144 KB 1.22 1.11

288 KB 2.04

Area (compression ratio) 68% 68% 70% 73% 80% 93%

A) Dictionary

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 18.66 16.45 12.65 6.76 3.01 1.06

4.5 KB 20.66 14.97 11.64 5.95 2.46 1.02

9 KB 21.29 13.16 10.47 5.09 2.20 1.02

18 KB 15.20 8.42 4.59 2.03 1.02

36 KB 10.08 4.13 2.12 1.07

72 KB 5.69 2.12 1.07

144 KB 4.82 1.27

288 KB 3.28

Area (compression ratio) 63% 64% 65% 69% 75% 88%

B) CodePack

116

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo

9 KB Memo 18 KB Memo

36 KB Memo 72 KB Memo

144 KB Memo 288 KB Memo

4 KB I-cache 8 KB I-cache

16 KB I-cache 32 KB I-cache

64 KB I-cache Native

9 KB total

288 KB total

18 KB total

36 KB total
72 KB total

144 KB total

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo

9 KB Memo 18 KB Memo

36 KB Memo 72 KB Memo

144 KB Memo 288 KB Memo

4 KB I-cache 8 KB I-cache

16 KB I-cache 32 KB I-cache

64 KB I-cache Native

9 KB total

288 KB total

18 KB total
36 KB total

72 KB total
144 KB total

Figure 6.13: Performance and area of decompression buffer (cc1)
The data for these graphs is in Table 6.13. Native is the baseline for this graph, a native program executing on
a 4 KB I-cache. The Memo data points represent hybrid compressed programs (possibly using memoization)
executing on 4 KB I-caches. The circled data points use the same die area budget. The number label tells
how large the decompression buffer for each budget is. On this graph, the decompression buffers range from
9 KB to 288 KB in size. The I-cache data points represent compressed programs running on I-caches with dif-
ferent capacities (the number of cache lines is varied).

A) Dictionary

B) CodePack

117

Table 6.14: Decompression buffer performance and area (ghostscript)

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 1.43 1.18 1.00 0.98 0.97 1.03

4.5 KB 1.61 1.29 1.05 0.97 1.00 1.06

9 KB 2.31 1.30 1.06 0.96 1.00 1.00

18 KB 2.01 1.11 0.97 0.96 0.99

36 KB 1.71 0.99 1.03 1.02

72 KB 1.64 0.97 1.01

144 KB 1.61 0.97

288 KB 1.60

Area (compression ratio) 71% 72% 74% 77% 83% 96%

A) Dictionary

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 5.09 2.85 1.26 1.02 0.98 1.02

4.5 KB 5.91 3.15 1.21 1.00 0.99 1.01

9 KB 10.45 3.10 1.25 0.98 0.99 1.02

18 KB 5.38 1.67 1.02 1.00 1.02

36 KB 3.53 1.10 1.03 1.03

72 KB 2.96 0.99 1.00

144 KB 2.68 0.97

288 KB 2.57

Area (compression ratio) 65% 66% 67% 71% 77% 90%

B) CodePack

118

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo

9 KB Memo 18 KB Memo

36 KB Memo 72 KB Memo

144 KB Memo 288 KB Memo

4 KB I-cache 8 KB I-cache

16 KB I-cache 32 KB I-cache

64 KB I-cache Native

9 KB total

288 KB total

18 KB total
36 KB total

72 KB total

144 KB total

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo

9 KB Memo 18 KB Memo

36 KB Memo 72 KB Memo
144 KB Memo 288 KB Memo

4 KB I-cache 8 KB I-cache
16 KB I-cache 32 KB I-cache

64 KB I-cache Native

9 KB total

288 KB total

18 KB total
36 KB total

72 KB total
144 KB total

Figure 6.14: Performance and area of decompression buffer (ghostscript)

A) Dictionary

B) CodePack

119

Table 6.15: Decompression buffer performance and area (go)

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 1.97 1.53 1.19 0.99 1.00 1.00

4.5 KB 2.40 1.71 1.23 1.00 1.00 1.00

9 KB 3.11 1.87 1.31 1.00 1.00 1.00

18 KB 2.81 1.49 1.01 1.00 1.00

36 KB 2.45 1.10 1.00 1.00

72 KB 2.13 0.99 1.00

144 KB 1.82 1.00

288 KB 1.68

Area (compression ratio) 76% 79% 84% 94% 115% 156%

A) Dictionary

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 8.83 5.69 2.78 1.08 1.00 1.00

4.5 KB 10.51 6.02 2.74 1.09 1.00 1.00

9 KB 13.83 6.22 3.11 1.09 1.00 1.00

18 KB 10.94 3.87 1.20 1.00 1.00

36 KB 7.77 1.78 0.99 1.00

72 KB 5.07 1.01 1.00

144 KB 2.84 1.00

288 KB 1.93

Area (compression ratio) 67% 69% 74% 85% 105% 147%

B) CodePack

120

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo
9 KB Memo 18 KB Memo
36 KB Memo 72 KB Memo
144 KB Memo 288 KB Memo

4 KB I-cache 8 KB I-cache
16 KB I-cache 32 KB I-cache
64 KB I-cache Native

9 KB total

144 KB total

18 KB total

36 KB total

72 KB total

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo
9 KB Memo 18 KB Memo
36 KB Memo 72 KB Memo
144 KB Memo 288 KB Memo
4 KB I-cache 8 KB I-cache
16 KB I-cache 32 KB I-cache
64 KB I-cache Native

9 KB total

144 KB total

18 KB total

36 KB total
72 KB total

Figure 6.15: Performance and area of decompression buffer (go)

A) Dictionary

B) CodePack

121

Table 6.16: Decompression buffer performance and area (ijpeg)

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 1.03 1.01 1.00 1.00 1.00 1.00

4.5 KB 1.06 1.02 1.00 1.00 1.00 1.00

9 KB 1.15 1.03 1.00 1.00 1.00 1.00

18 KB 1.11 1.01 1.00 1.00 1.00

36 KB 1.09 1.00 1.00 1.00

72 KB 1.08 1.00 1.00

144 KB 1.06 1.00

288 KB 1.06

Area (compression ratio) 85% 89% 96% 112% 142% 203%

A) Dictionary

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 1.52 1.18 1.00 1.00 1.00 1.00

4.5 KB 1.54 1.20 1.02 1.00 1.00 1.00

9 KB 1.85 1.34 1.05 1.00 1.00 1.00

18 KB 1.56 1.12 1.00 1.00 1.00

36 KB 1.35 1.00 1.00 1.00

72 KB 1.24 1.00 1.00

144 KB 1.10 1.00

288 KB 1.09

Area (compression ratio) 71% 75% 82% 97% 128% 188%

B) CodePack

122

0.95

1.00

1.05

1.10

1.15

1.20

1.25

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo
9 KB Memo 18 KB Memo
36 KB Memo 72 KB Memo
144 KB Memo 288 KB Memo
4 KB I-cache 8 KB I-cache
16 KB I-cache 32 KB I-cache
64 KB I-cache Native

9 KB total

72 KB total

18 KB total
36 KB total

Figure 6.16: Performance and area of decompression buffer (ijpeg)

A) Dictionary

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo
9 KB Memo 18 KB Memo
36 KB Memo 72 KB Memo
144 KB Memo 288 KB Memo
4 KB I-cache 8 KB I-cache
16 KB I-cache 32 KB I-cache
64 KB I-cache Native

9 KB total

144 KB total

18 KB total

36 KB total 72 KB total

B) CodePack

123

Table 6.17: Decompression buffer performance and area (mpeg2enc)

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 1.01 1.00 1.00 1.00 1.00 1.00

4.5 KB 1.01 1.00 1.00 1.00 1.00 1.00

9 KB 1.02 1.01 1.00 1.00 1.00 1.00

18 KB 1.02 1.00 1.00 1.00 1.00

36 KB 1.01 1.00 1.00 1.00

72 KB 1.01 1.00 1.00

144 KB 1.01 1.00

288 KB 1.01

Area (compression ratio) 93% 98% 109% 132% 177% 268%

A) Dictionary

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 1.18 1.03 1.00 1.00 1.00 1.00

4.5 KB 1.17 1.04 1.00 1.00 1.00 1.00

9 KB 1.14 1.05 1.04 1.00 1.00 1.00

18 KB 1.09 1.01 1.00 1.00 1.00

36 KB 1.05 1.00 1.00 1.00

72 KB 1.03 1.00 1.00

144 KB 1.02 1.00

288 KB 1.02

Area (compression ratio) 79% 84% 96% 118% 163% 254%

B) CodePack

124

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo
9 KB Memo 18 KB Memo
36 KB Memo 72 KB Memo
144 KB Memo 288 KB Memo
4 KB I-cache 8 KB I-cache
16 KB I-cache 32 KB I-cache
64 KB I-cache Native

9 KB total

72 KB total

18 KB total

36 KB total

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo

9 KB Memo 18 KB Memo

36 KB Memo 72 KB Memo

144 KB Memo 288 KB Memo

4 KB I-cache 8 KB I-cache

16 KB I-cache 32 KB I-cache

64 KB I-cache Native

9 KB total
36 KB total

18 KB total

Figure 6.17: Performance and area of decompression buffer (mpeg2enc)

A) Dictionary

B) CodePack

125

Table 6.18: Decompression buffer performance and area (pegwit)

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 1.03 1.00 1.00 1.00 1.00 1.00

4.5 KB 1.11 1.01 1.00 1.00 1.00 1.00

9 KB 1.63 1.03 1.00 1.00 1.00 1.00

18 KB 1.60 1.00 1.00 1.00 1.00

36 KB 1.59 1.00 1.00 1.00

72 KB 1.59 1.00 1.00

144 KB 1.59 1.00

288 KB 1.59

Area (compression ratio) 93% 100% 114% 141% 197% 307%

A) Dictionary

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 1.16 1.02 1.00 1.00 1.00 1.00

4.5 KB 1.30 1.03 1.00 1.00 1.00 1.00

9 KB 1.95 1.04 1.00 1.00 1.00 1.00

18 KB 1.74 1.01 1.00 1.00 1.00

36 KB 1.69 1.00 1.00 1.00

72 KB 1.66 1.00 1.00

144 KB 1.66 1.00

288 KB 1.66

Area (compression ratio) 81% 88% 102% 129% 185% 295%

B) CodePack

126

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo
9 KB Memo 18 KB Memo

36 KB Memo 72 KB Memo
144 KB Memo 288 KB Memo
4 KB I-cache 8 KB I-cache

16 KB I-cache 32 KB I-cache
64 KB I-cache Native

9 KB total
72 KB total18 KB 36 KB total

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo
9 KB Memo 18 KB Memo
36 KB Memo 72 KB Memo
144 KB Memo 288 KB Memo
4 KB I-cache 8 KB I-cache
16 KB I-cache 32 KB I-cache

64 KB I-cache Native

9 KB total

36 KB total
18 KB total

Figure 6.18: Performance and area of decompression buffer (pegwit)

A) Dictionary

B) CodePack

127

Table 6.19: Decompression buffer performance and area (perl)

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 2.39 1.57 1.70 1.00 1.00 1.00

4.5 KB 2.43 1.66 1.45 1.00 1.00 1.00

9 KB 2.86 1.96 1.59 0.98 1.00 1.00

18 KB 2.51 1.20 1.06 1.00 1.00

36 KB 2.13 1.27 1.00 1.00

72 KB 2.02 1.00 1.00

144 KB 1.77 1.00

288 KB 1.73

Area (compression ratio) 80% 83% 89% 101% 125% 172%

A) Dictionary

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 14.51 8.18 5.97 2.85 1.00 1.00

4.5 KB 13.68 6.67 4.60 1.22 1.00 1.00

9 KB 15.33 8.35 2.12 1.28 1.00 1.00

18 KB 11.19 2.06 1.70 1.00 1.00

36 KB 6.79 1.61 1.00 1.00

72 KB 5.67 1.09 1.00

144 KB 2.53 1.00

288 KB 2.22

Area (compression ratio) 69% 72% 78% 90% 113% 161%

B) CodePack

128

0.00

5.00

10.00

15.00

20.00

25.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo
9 KB Memo 18 KB Memo

36 KB Memo 72 KB Memo
144 KB Memo 288 KB Memo

4 KB I-cache 8 KB I-cache
16 KB I-cache 32 KB I-cache

64 KB I-cache Native

9 KB total

144 KB total

18 KB total

36 KB total
72 KB total

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo

9 KB Memo 18 KB Memo

36 KB Memo 72 KB Memo

144 KB Memo 288 KB Memo

4 KB I-cache 8 KB I-cache

16 KB I-cache 32 KB I-cache

64 KB I-cache Native

9 KB total

144 KB total

18 KB total

36 KB total
72 KB total

Figure 6.19: Performance and area of decompression buffer (perl)

A) Dictionary

B) CodePack

129

Table 6.20: Decompression buffer performance and area (vortex)

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 2.10 1.64 1.25 1.03 1.00 1.00

4.5 KB 2.42 1.79 1.30 1.03 0.99 1.00

9 KB 3.41 1.92 1.25 1.07 0.98 1.00

18 KB 2.91 1.46 1.07 1.00 1.00

36 KB 2.53 1.13 0.99 1.00

72 KB 2.29 1.01 1.00

144 KB 2.04 1.00

288 KB 1.97

Area (compression ratio) 70% 72% 75% 82% 96% 123%

A) Dictionary

Size of decompression buffer

9 KB 18 KB 36 KB 72 KB 144 KB 288 KB

Memoization Table Size Performance (slowdown)

0 KB 10.16 7.08 3.83 1.61 1.01 1.00

4.5 KB 13.23 6.55 2.83 1.55 1.02 1.00

9 KB 17.11 6.78 2.93 1.50 1.01 1.00

18 KB 11.96 3.28 1.45 1.00 1.00

36 KB 8.34 1.55 1.01 1.00

72 KB 5.83 1.08 1.00

144 KB 3.64 1.01

288 KB 3.03

Area (compression ratio) 61% 62% 66% 73% 86% 114%

B) CodePack

130

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo

9 KB Memo 18 KB Memo

36 KB Memo 72 KB Memo

144 KB Memo 288 KB Memo

4 KB I-cache 8 KB I-cache

16 KB I-cache 32 KB I-cache

64 KB I-cache Native

9 KB total

288 KB total

18 KB total

36 KB total

72 KB total
144 KB total

Figure 6.20: Performance and area of decompression buffer (vortex)

A) Dictionary

B) CodePack

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Compression Ratio

S
lo

w
do

w
n

0 KB Memo 4.5 KB Memo
9 KB Memo 18 KB Memo
36 KB Memo 72 KB Memo
144 KB Memo 288 KB Memo
4 KB I-cache 8 KB I-cache
16 KB I-cache 32 KB I-cache
64 KB I-cache Native

9 KB total

288 KB total

18 KB total

36 KB total

72 KB total
144 KB total

131

Chapter 7

Conclusion

Integrated circuit technology has reached a point were it is feasible to integrate all

components of an embedded system into a single chip. The applications for embedded

systems are becoming more complicated as convergence between information appliances

occurs. One example is the recent merging of fax, copier, and printer functions into one

product. A significant amount of memory in the system-on-a-chip is devoted to storing

programs. Therefore it is sensible to devote a small piece of hardware or software to inter-

pret compressed programs. The ability to use a smaller program memory allows a given

system-on-a-chip to either use a smaller die area or add more program functionality using

the space savings created by compression.

Even with the advent of high-density embedded DRAM, we can expect the use of

compressed programs to increase in the future as embedded developers optimize systems

for increased functionality at reduced cost. Thumb, MIPS-16, Xtensa, MCore, and SH-4

are new instruction sets designed within the last five years that have given special atten-

tion to code size. Another pressure is the increasing complexity of instruction sets that

encode conditional execution fields and use larger register files for increased performance.

Examples of such instruction sets are TriMedia and IA-64. Compression may help control

the code size expansion of these wide instruction formats.

7.1 Research contributions

Code compression is the technique of compressing programs to improve instruc-

tion density. This dissertation has explored code compression implementations in both

hardware and software and suggested optimizations for each.

132

Instruction-level compression
We examined code compression systems that use individual instructions as a basic

unit of compression. When using dictionary compression, most of the compression benefit

comes from compressing instructions individually. Although many groups of instructions

that repeated were found in applications, they repeated too infrequently to be conveniently

used. A dictionary containing every group of repeating instructions would be enormous.

This motivated the examination of a simple, fast dictionary decompressor used in the soft-

ware-managed decompression studies. It uses compressed programs in which individual

instructions are encoded in a compressed format. One interesting result of this work

showed that even programs using 16-bit instruction subsets of 32-bit instruction sets have

a significant amount of repetition remaining that can be removed with code compression.

Clearly, re-encoding the instruction set in such a general manner is not enough to achieve

the smallest programs. Compression algorithms have the flexibility to tune the final

encoding to individual applications and generate even smaller programs.

Hardware decompression
We studied how decompression could be supported in hardware. We analyzed

IBM’s CodePack algorithm by executing the decompressor on a cycle-level simulator. The

results showed that a significant amount of time was spent accessing an index table and

decompressing encoded bytes received from the memory system. The addition of a mod-

est cache and additional hardware to decompress more bytes per cycle removed most of

the decompression overhead. The improved code density allowed the program to be

fetched across the memory-processor bus in fewer cycles. For most applications, perfor-

mance improved beyond the original program because the benefit of using fewer bus

cycles outweighed the small remaining decompression overhead. The sensitivity of com-

pressed program performance on different architectures was measured. The applications

on systems with narrow memory buses and long memory latencies experienced large exe-

cution time improvements. When compressed programs did execute slower, using larger

caches diminished the slowdown to acceptable levels. Therefore, compressed code sys-

tems do not necessarily impose a performance penalty and can often improve perfor-

mance.

133

Software decompression
The success with hardware decompression led us to investigate the feasibility of

using software to perform decompression. Software decompression is interesting because

it reduces hardware complexity, can be implemented at a lower cost, and provides much

more flexibility in the system design. Software systems for code decompression have been

less studied than hardware solutions. This dissertation is one of the first comprehensive

studies on this subject that attempts to optimize both code size and performance simulta-

neously.

The challenge in software decompression is to maintain application performance.

Compressed programs always execute slower in this environment because the application

is interrupted while the decompression program generates native code. We proposed add-

ing minor architectural support to the system to efficiently support the decompression pro-

gram. The hardware support includes the raising of an exception on a cache miss and an

instruction to store decompressed instructions directly into the instruction cache. This

allows the decompressor to control the contents of the instruction cache and transparently

support compressed applications from the viewpoint of the microprocessor core.

The software decompressor is invoked on a cache miss. Executing the decompres-

sor causes a cache miss to appear 10 to 100 times slower than the usual hardware-sup-

ported miss. Using larger caches to avoid cache misses reduced the slowdown

tremendously. This is encouraging since cache sizes in embedded processors have been

increasing over the last few years. Inspite of the large decompression latency, we found

that loop-oriented applications (in particular multimedia applications) perform close to

native code levels. This occurs because the cost of decompressing loops is amortized

when the loop is decompressed into the cache once and executed many times.

We investigated removing the decompression overhead by adding a small amount

of native code to the system. One method to do this is to use hybrid programs that contain

both compressed and native code. Previous techniques for partitioning a program into

compressed and native code used a simple instruction execution profile. We found that

using a profile sensitive to cache misses could improve performance by 50%. The reason

for this was that our compressed code system only loses performance on cache misses. By

leaving code that was likely to cause a cache miss as native code, the decompression pen-

134

alty was avoided. The other method to improve performance is memoization. This

involves the allocation a scratch buffer that can be filled with decompressed code as the

program runs. The scratch buffer is kept in dense main memory and can store many more

decompressions per unit area than the instruction cache. This avoids the high decompres-

sion penalty, but incurs a small cost for copying the decompressed instructions into the

instruction cache. Using both hybrid programs and memoization together often resulted in

the highest performance for a given die area budget.

This dissertation shows that in many situations, software decompression can per-

form very close to native code systems. The use of some native code in the compressed

program allows a whole continuum of compressed programs to be generated with different

trade-offs made for area and performance. This allows any compressed program to per-

form arbitrarily close to native code although the compression ratio may suffer.

7.2 Future work

The work in this dissertation has uncovered many opportunities for future studies.

This section overviews some the major areas for future innovation in compressed code

systems.

7.2.1 High-performance computing

While code compression was originally developed for embedded computing appli-

cations, it can be used to improve high-performance systems. We have seen that hardware

decompression can cause compressed programs to execute faster than native programs.

The memory systems in the experiments of this dissertation contained only one level of

cache. It is interesting to consider how to implement compression on multilevel cache

hierarchies. For example, if code is compressed in a unified L2 cache, then the L2 cache

will experience fewer cache miss conflicts between instructions and data. If multiple pro-

cessors share a L2 cache, then decompressing a shared library into the L2 would make the

native code visible for all processors and lower decompression overhead.

The CodePack decompressor prefetched and decompressed instruction cache lines

before the miss in the instruction cache occurred. Only a simple next-line prefetch algo-

135

rithm was used. Examining branches in the decompressed instruction stream and combin-

ing the information with advanced instruction prefetch and branch prediction algorithms

could also improve the overhead of decompression.

7.2.2 Code generation optimizations for compression

The instruction level compression study showed that there are many unique

instructions in a compiled application that do not match other instructions. This is often

due to the use of different register names or immediate values. A smart code generator

with knowledge about the compression algorithm could optimize sequences of instruc-

tions for greater compressibility. For example, using register allocation to create groups of

identical instructions so that procedure abstraction can be applied has been previously

studied. However, register allocation that targets actual compression algorithms has not

yet been examined. This would improve the size of the compressed application by reduc-

ing the number of unique instructions that must remain in native form in the compressed

program. In the case of hardware decompression which can provide speedup over native

code due to improved code density, the application might also become faster than a com-

pressed program that is not optimized for compression.

The hybrid program studies showed that a poor procedure placement could some-

times cause a hybrid program to perform worse as more native code was used. Therefore,

it would be interesting to adapt a procedure placement optimization to be aware of hybrid

programs so that performance aberrations due to poor placements do not occur.

7.2.3 Low energy consumption

Many embedded systems, especially battery-operated ones, have strict power dis-

sipation requirements. Therefore, it is important to know how code compression affects

energy consumption. Some studies have suggested that since code compression uses fewer

bus cycles, significant energy savings can be realized due to fewer bus transitions. How-

ever, these studies have typically ignored the energy required to execute the decompres-

sion algorithm. At this time, the results are inconclusive and more studies are needed to

determine if code compression can lower energy consumption.

136

7.3 Epilogue

This dissertation demonstrates that code compression is a feasible method for

improving code density. Hardware decompression of the instruction stream in parallel

with the execution of the application by the microprocessor can even speedup compressed

programs over native programs. Even software decompression can often execute com-

pressed programs with little performance loss. This dissertation provides microprocessor-

based systems designers with an overview of the trade-offs involved in compressed code

systems. In addition, it has shown that optimizations for hardware and software decom-

pression are effective in reducing the performance penalties associated with compressed

code systems.

137

Appendix A

Program listings

This appendix provides source code for the decompression programs used in the

experiments.

138

A.1 Macros

The source code listings use many macros to represent inline assembly code. They

are used to access regular SimpleScalar PISA instructions and special instructions that are

used to support software decompression.

Macro PISA Assembly code

igetctrl(addr,offset,data) igetctrl data,offset(addr)

igettag(addr,offset,data) igettag data,offset(addr)

imap(addr,offset,memaddr) imap memaddr,offset(addr)

imapw(addr,offset,memaddr) imapw memaddr,offset(addr)

iret iret

isync isync

iunmap(addr,offset,memaddr) iunmap memaddr,offset(addr)

iunmapw(addr,offset,memaddr) iunmapw memaddr,offset(addr)

lwicw(addr,offset,data) lwicw data,offset(addr)

mem_load_1B(addr,offset,data) lb data,offset(addr)

mem_load_1B_RR(addr1,addr2,data) lb data,(addr1 + addr2)

mem_loadu_1B(addr,offset,data) lbu data,offset(addr)

mem_loadu_1B_RR(addr1,addr2,data) lbu data,(addr1 + addr2)

mem_load_2B(addr,offset,data) lh data,offset(addr)

mem_load_2B_RR(addr1,addr2,data) lh data,(addr1 + addr2)

mem_loadu_2B(addr,offset,data) lhu data,offset(addr)

mem_loadu_2B_RR(addr1,addr2,data) lhu data,(addr1 + addr2)

mem_load_4B(addr,offset,data) lw data,offset(addr)

mem_load_4B_RR(addr1,addr2,data) lw data,(addr1 + addr2)

mem_store_4B(addr,offset,data) sw data,offset(addr)

mem_store_4B_RR(addr1,addr2,data) sw data,(addr1 + addr2)

mfc0(dest,src) mfc0 dest,src

swic(addr,offset,data) swic data,offset(addr)

swicw(addr,offset,data) swicw data,offset(addr)

sync sync

Table A.1: Macros
The labels addr, addr1, addr2, addrmem, data, and dest are general purpose machine registers. The
label src is a special system register. The label offset is a 16-bit constant immediate value.

139

A.2 Dictionary

This is the baseline dictionary decompressor.

// Dictionary Compression Exception Handler
//
// Inputs
// C0[MD_REG_CO_INDICES]: address base of indices
// C0[MD_REG_C0_DICTIONARY]: address base of dictionary
// C0[MD_REG_C0_TEXT]: address of .text segment
// C0[MD_REG_C0_BADVA]: This is the location to load the I-cache.
//
// Assumptions:
// I-cache line is 8 32-bit instructions long

// Output
// Load I-cache at address C0[MD_REG_C0_BADVA] with a line of 8 instructions.

// Special SimpleScalar instructions
// mfc0: move from coprocessor-0 register to general purpose register
// swic: store word in instruction cache
// isync: instruction synchronization

#include “eh.h”

void eh();

void eh()
{
 unsigned long baddr;
 unsigned long text_base;
 unsigned long dict_base;
 unsigned long indices_base;
 unsigned short indexAddr;
 unsigned long stopAddr;
 unsigned short index;
 unsigned long iword;

 // Get parameters from system coprocessor
 mfc0(baddr,MD_REG_C0_BADVA); // Get missed PC and put in baddr;
 mfc0(text_base,MD_REG_C0_TEXT); // where .text starts
 mfc0(dict_base,MD_REG_C0_DICTIONARY); // where dictionary starts
 mfc0(indices_base,MD_REG_C0_INDICES); // where indices start (the codewords)

 // Align miss address to cache-line boundary by zeroing low 5 bits.
 // Assume 32B lines.
 baddr = (baddr >> 5) << 5;

 // Calculate the address of the first index.
 indexAddr = (((baddr - text_base) >> 1) + indices_base);

 // Load 8 instructions.
 // 1. Load the index
 // 2. Scale to 4B access
 // 3. Load instruction from dictionary
 // 4. Store instruction in cache.

140

 // instruction 1
 mem_loadu_2B(indexAddr,0,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,0,iword);

 mem_loadu_2B(indexAddr,2,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,4,iword);

 mem_loadu_2B(indexAddr,4,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,8,iword);

 mem_loadu_2B(indexAddr,6,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,12,iword);

 mem_loadu_2B(indexAddr,8,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,16,iword);

 mem_loadu_2B(indexAddr,10,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,20,iword);

 mem_loadu_2B(indexAddr,12,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,24,iword);

 mem_loadu_2B(indexAddr,14,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,28,iword);

 // Context synchronization. Let swic instructions finish before
 // returning from the exception handler and executing the cache
 // line.
 isync;
 iret;
}

141

A.3 Dictionary Memo-IW

// Dictionary Compression Exception Handler (IW)
//
// Inputs
// C0[MD_REG_CO_INDICES]: address base of indices
// C0[MD_REG_C0_DICTIONARY]: address base of dictionary
// C0[MD_REG_C0_TEXT]: address of .text segment
// C0[MD_REG_C0_BADVA]: This is the location to load the I-cache.
//
// Assumptions:
// I-cache line is 8 32-bit instructions long
//
// Output
// Load I-cache at address C0[MD_REG_C0_BADVA] with a line of 8 instructions.
//
// Special SimpleScalar instructions
// mfc0: move from coprocessor-0 register to general purpose register
// swic: store word in instruction cache
// isync: instruction synchronization

#include “eh.h”

void eh();

void eh()
{
 unsigned long baddr;
 unsigned long text_base;
 unsigned long dict_base;
 unsigned long indices_base;
 unsigned short indexAddr;

 unsigned long cacheTagOffset;
 unsigned long cacheTag;
 unsigned long cacheDataOffset;
 unsigned long cacheDataAddr;

 unsigned long cacheDataBase;
 unsigned long cacheTagBase;

 unsigned short index;
 unsigned long iword;

 // Get parameters from system coprocessor
 mfc0(baddr,MD_REG_C0_BADVA); // Get missed PC about put in baddr;
 // Align miss address to cache-line boundary by zeroing low 5 bits. Assume 32B
lines.
 baddr = (baddr >> 5) << 5;

 // Check SW cache. 16 KB cache.
 //
 // Cache Data is located at address 0x00200000
 // Cache Tags are located at address 0x00210000
 cacheDataBase = (0x20) << 16;
 cacheTagBase = (0x21) << 16;

142

 cacheTagOffset = ((baddr) << 18) >> 21;
 mem_load_4B_RR(cacheTagBase,cacheTagOffset,cacheTag);
 cacheDataOffset = (baddr << 18) >> 18;
 cacheDataAddr = cacheDataBase + cacheDataOffset;

 if (cacheTag == baddr)
 {
 // hit
 // copy 8 instruction from memoization table into i-cache

 mem_load_4B(cacheDataAddr,0,iword);
 swic(baddr,0,iword);
 mem_load_4B(cacheDataAddr,4,iword);
 swic(baddr,4,iword);
 mem_load_4B(cacheDataAddr,8,iword);
 swic(baddr,8,iword);
 mem_load_4B(cacheDataAddr,12,iword);
 swic(baddr,12,iword);
 mem_load_4B(cacheDataAddr,16,iword);
 swic(baddr,16,iword);
 mem_load_4B(cacheDataAddr,20,iword);
 swic(baddr,20,iword);
 mem_load_4B(cacheDataAddr,24,iword);
 swic(baddr,24,iword);
 mem_load_4B(cacheDataAddr,28,iword);
 swic(baddr,28,iword);

 goto done;
 }

 // Miss memoization table

 // update tag
 mem_store_4B_RR(cacheTagBase,cacheTagOffset,baddr);

 mfc0(text_base,MD_REG_C0_TEXT); // where .text starts
 mfc0(dict_base,MD_REG_C0_DICTIONARY); // where dictionary starts
 mfc0(indices_base,MD_REG_C0_INDICES); // where indices start (the codewords)

 // Calculate the address of the first index.
 indexAddr = (((baddr - text_base) >> 1) + indices_base);

 // Load new cache line with 8 instructions.
 // 1. Load the index
 // 2. Scale to 4B access
 // 3. Load instruction from dictionary
 // 4. Store instruction in cache.

 // instruction 1
 mem_loadu_2B(indexAddr,0,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,0,iword);
 mem_store_4B(cacheDataAddr,0,iword);

 mem_loadu_2B(indexAddr,2,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,4,iword);

143

 mem_store_4B(cacheDataAddr,4,iword);

 mem_loadu_2B(indexAddr,4,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,8,iword);
 mem_store_4B(cacheDataAddr,8,iword);

 mem_loadu_2B(indexAddr,6,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,12,iword);
 mem_store_4B(cacheDataAddr,12,iword);

 mem_loadu_2B(indexAddr,8,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,16,iword);
 mem_store_4B(cacheDataAddr,16,iword);

 mem_loadu_2B(indexAddr,10,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,20,iword);
 mem_store_4B(cacheDataAddr,20,iword);

 mem_loadu_2B(indexAddr,12,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,24,iword);
 mem_store_4B(cacheDataAddr,24,iword);

 mem_loadu_2B(indexAddr,14,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,28,iword);
 mem_store_4B(cacheDataAddr,28,iword);

 done:
 isync;
 iret;
}

144

A.4 Dictionary Memo-IL

// Dictionary Compression Exception Handler (IL)
//
// Inputs
// C0[MD_REG_CO_INDICES]: address base of indices
// C0[MD_REG_C0_DICTIONARY]: address base of dictionary
// C0[MD_REG_C0_TEXT]: address of .text segment
// C0[MD_REG_C0_BADVA]: This is the location to load the I-cache.
//
// Assumptions:
// cache line is 8 32-bit instructions long

// Output
// Load I-cache at address C0[MD_REG_C0_BADVA] with a line of 8 instructions.

// Special SimpleScalar instructions
// mfc0: move from coprocessor-0 register to general purpose register
// swic: store word in instruction cache
// isync: instruction synchronization
// sync: memory synchronization

#include “eh.h”

void eh();

void eh()
{
 unsigned long baddr;
 unsigned long text_base;
 unsigned long dict_base;
 unsigned long indices_base;
 unsigned short indexAddr;

 unsigned long cacheTagOffset;
 unsigned long cacheTag;
 unsigned long cacheDataOffset;
 unsigned long cacheDataAddr;

 unsigned long cacheDataBase;
 unsigned long cacheTagBase;

 unsigned short index;
 unsigned long iword;

 // Get parameters from system coprocessor
 mfc0(baddr,MD_REG_C0_BADVA); // Get missed PC about put in baddr;
 // Align miss address to cache-line boundary by zeroing low 5 bits. Assume 32B
lines.
 baddr = (baddr >> 5) << 5;

 // Check SW cache. 16 KB cache.
 //
 // Cache Data is located at address 0x00200000
 // Cache Tags are located at address 0x00210000
 cacheDataBase = (0x20) << 16;

145

 cacheTagBase = (0x21) << 16;
 cacheTagOffset = ((baddr) << 18) >> 21;
 mem_load_4B_RR(cacheTagBase,cacheTagOffset,cacheTag);
 cacheDataOffset = (baddr << 18) >> 18;
 cacheDataAddr = cacheDataBase + cacheDataOffset;

 if (cacheTag == baddr)
 {
 // hit

 imap(baddr,0,cacheDataAddr);
 sync;
 goto done;

 }

 // update tag
 mem_store_4B_RR(cacheTagBase,cacheTagOffset,baddr);

 mfc0(text_base,MD_REG_C0_TEXT); // where .text starts
 mfc0(dict_base,MD_REG_C0_DICTIONARY); // where dictionary starts
 mfc0(indices_base,MD_REG_C0_INDICES); // where indices start (the codewords)

 // Calculate the address of the first index.
 indexAddr = (((baddr - text_base) >> 1) + indices_base);

 // Load new cache line. 8 instructions.

 mem_loadu_2B(indexAddr,0,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,0,iword);

 mem_loadu_2B(indexAddr,2,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,4,iword);

 mem_loadu_2B(indexAddr,4,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,8,iword);

 mem_loadu_2B(indexAddr,6,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,12,iword);

 mem_loadu_2B(indexAddr,8,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,16,iword);

 mem_loadu_2B(indexAddr,10,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,20,iword);

 mem_loadu_2B(indexAddr,12,index);

146

 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,24,iword);

 mem_loadu_2B(indexAddr,14,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,28,iword);

 // copy to SW cache the line just filled in I-cache.
 iunmap(baddr,0,cacheDataAddr);

 done:
 isync;
 iret;
}

147

A.5 Dictionary Memo-EW

// Dictionary Compression Exception Handler (EW)
//
// Inputs
// C0[MD_REG_CO_INDICES]: address base of indices
// C0[MD_REG_C0_DICTIONARY]: address base of dictionary
// C0[MD_REG_C0_TEXT]: address of .text segment
// C0[MD_REG_C0_BADVA]: This is the location to load the I-cache.
//
// Assumptions:
// I-cache is 2-way associative with 8 32-bit instructions in each line
// SW cache is 16 KB direct-mapped.
//
// Output
// Load I-cache at address C0[MD_REG_C0_BADVA] with a line of 8 instructions.
// The line that is replaced in I-cache is moved into SW cache.
//
// Special SimpleScalar instructions
// swic: store word in instruction cache
// swicw: index store word in instruction cache
// lwicw: index read instruction word from cache
// igetctrl: get control bits from I-cache line
// igettag: get tag bits from I-cache line
// mfc0: move from coprocessor-0 register to general purpose register
// isync: instruction synchronization

#include “eh.h”

// IMPORTANT: THIS VALUE MUST CHANGE WHEN CACHE ORGANIZATION CHANGES
// amount to shift address to get the tag. For 32B lines, this is Log(#sets)+5.
// For example, 4 KB cache with assoc=2,line=32B has 64 sets -->
ICACHE_TAG_SHIFT=11
#ifndef ICACHE_TAG_SHIFT
#error Must define ICACHE_TAG_SHIFT
#endif

void eh();

void eh()
{
 unsigned long baddr;
 unsigned long text_base;
 unsigned long dict_base;
 unsigned long indices_base;
 unsigned short indexAddr;

 unsigned long cacheTagOffset;
 unsigned long cacheTag;
 unsigned long cacheDataOffset;
 unsigned long cacheDataAddr;

 unsigned long cacheDataBase;
 unsigned long cacheTagBase;

 unsigned long currentTag;
 unsigned long ctrlbits;

148

 unsigned long replAddr;
 unsigned long compressedBlockAddrTag;

 unsigned long currentAddr;
 unsigned long replCacheDataAddr;
 unsigned long replCacheTagOffset;

 unsigned long iword;
 unsigned short index;

 // Get parameters from system coprocessor
 mfc0(baddr,MD_REG_C0_BADVA); // Get missed PC about put in baddr;
 baddr = (baddr >> 5) << 5;

 // Get the cache tag for the missed address
 // For example, tag has bottom 11 bits removed in 4 KB 2-way 32B-line cache
 compressedBlockAddrTag = baddr>>ICACHE_TAG_SHIFT;

 // Check SW cache. 16 KB cache.
 //
 // Cache Data is located at address 0x00200000
 // Cache Tags are located at address 0x00210000
 cacheDataBase = (0x20) << 16;
 cacheTagBase = (0x21) << 16;
 cacheTagOffset = ((baddr) << 18) >> 21;
 mem_load_4B_RR(cacheTagBase,cacheTagOffset,cacheTag);
 cacheDataOffset = (baddr << 18) >> 18;
 cacheDataAddr = cacheDataBase + cacheDataOffset;

 // Find replacement cache line
 igetctrl(baddr,0,ctrlbits);
 // if lru 0, use this line, else next way
 replAddr = baddr;
 replAddr |= (ctrlbits >> 2); // LRU bit is (ctrlbits >> 2)

 if (cacheTag == compressedBlockAddrTag)
 {
 // hit
 // copy 8 instruction from memoization table into I-cache

 mem_load_4B(cacheDataAddr,0,iword);
 swicw(replAddr,0,iword);
 mem_load_4B(cacheDataAddr,4,iword);
 swicw(replAddr,4,iword);
 mem_load_4B(cacheDataAddr,8,iword);
 swicw(replAddr,8,iword);
 mem_load_4B(cacheDataAddr,12,iword);
 swicw(replAddr,12,iword);
 mem_load_4B(cacheDataAddr,16,iword);
 swicw(replAddr,16,iword);
 mem_load_4B(cacheDataAddr,20,iword);
 swicw(replAddr,20,iword);
 mem_load_4B(cacheDataAddr,24,iword);
 swicw(replAddr,24,iword);
 mem_load_4B(cacheDataAddr,28,iword);
 swicw(replAddr,28,iword);

 goto done;
 }

149

 // Miss SW cache

 // Write replaced I-cache line to SW cache

 //Find address of line to be replaced in I-cache
 // Get tag of replaced line to find out where in SW cache to put it.
 igettag(replAddr,0,currentTag);
 // currentAddr is the address of this line
 currentAddr = baddr;
 // Strip top bits to get byte index into cache
 currentAddr &= ((1<<ICACHE_TAG_SHIFT) - 1);
 // Add tag bits on top
 currentAddr |= (currentTag << ICACHE_TAG_SHIFT);

 // Store tag in SW cache for replaced line.
 // find address to store TAG. Just like for faulting address.
 replCacheTagOffset = (currentAddr << 18) >> 21; //strip top bits. SW Cache
parameter.
 // write tag into SW cache
 mem_store_4B_RR(cacheTagBase,replCacheTagOffset,currentTag);

 // Find address in SW cache to store instructions.
 replCacheDataAddr = (currentAddr << 18) >> 18;
 replCacheDataAddr += cacheDataBase;

 // Write instructions in replaced line to SW cache.
 lwicw(replAddr,0,iword);
 mem_store_4B(replCacheDataAddr,0,iword);
 lwicw(replAddr,4,iword);
 mem_store_4B(replCacheDataAddr,4,iword);
 lwicw(replAddr,8,iword);
 mem_store_4B(replCacheDataAddr,8,iword);
 lwicw(replAddr,12,iword);
 mem_store_4B(replCacheDataAddr,12,iword);
 lwicw(replAddr,16,iword);
 mem_store_4B(replCacheDataAddr,16,iword);
 lwicw(replAddr,20,iword);
 mem_store_4B(replCacheDataAddr,20,iword);
 lwicw(replAddr,24,iword);
 mem_store_4B(replCacheDataAddr,24,iword);
 lwicw(replAddr,28,iword);
 mem_store_4B(replCacheDataAddr,28,iword);

 // Decompress a new line

 mfc0(text_base,MD_REG_C0_TEXT); // where .text starts
 mfc0(dict_base,MD_REG_C0_DICTIONARY); // where dictionary starts
 mfc0(indices_base,MD_REG_C0_INDICES); // where indices start (the codewords)

 // Calculate the address of the first index.
 indexAddr = (((baddr - text_base) >> 1) + indices_base);

 // Load new cache line. 8 instructions.

 mem_loadu_2B(indexAddr,0,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,0,iword);

150

 mem_loadu_2B(indexAddr,2,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,4,iword);

 mem_loadu_2B(indexAddr,4,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,8,iword);

 mem_loadu_2B(indexAddr,6,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,12,iword);

 mem_loadu_2B(indexAddr,8,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,16,iword);

 mem_loadu_2B(indexAddr,10,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,20,iword);

 mem_loadu_2B(indexAddr,12,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,24,iword);

 mem_loadu_2B(indexAddr,14,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,28,iword);

 done:
 isync;
 iret;
}

151

A.6 Dictionary Memo-EL

// Dictionary Compression Exception Handler (EL)
//
// Inputs
// C0[MD_REG_CO_INDICES]: address base of indices
// C0[MD_REG_C0_DICTIONARY]: address base of dictionary
// C0[MD_REG_C0_TEXT]: address of .text segment
// C0[MD_REG_C0_BADVA]: This is the location to load the I-cache.
//
// Assumptions:
// I-cache is 2-way associative with 8 32-bit instructions in each line
// SW cache is 16 KB direct-mapped.
//
// Output
// Load I-cache at address C0[MD_REG_C0_BADVA] with a line of 8 instructions.
// The line that is replaced in I-cache is moved into SW cache.
//
// Special SimpleScalar instructions
// swic: store word in instruction cache
// imapw: read I-cache line from main memory
// iunmapw: write I-cache line to main memory
// igetctrl: get control bits from I-cache line
// igettag: get tag bits from I-cache line
// mfc0: move from coprocessor-0 register to general purpose register
// isync: instruction synchronization
// sync: memory synchronization

#include “eh.h”

// IMPORTANT: THIS VALUE MUST CHANGE WHEN CACHE ORGANIZATION CHANGES
// amount to shift address to get the tag. For 32B lines, this is Log(#sets)+5.
// For example, 4 KB cache with assoc=2,line=32B has 64 sets -->
ICACHE_TAG_SHIFT=11
#ifndef ICACHE_TAG_SHIFT
#error Must define ICACHE_TAG_SHIFT
#endif

void eh();

void eh()
{
 unsigned long baddr;
 unsigned long text_base;
 unsigned long dict_base;
 unsigned long indices_base;
 unsigned short indexAddr;

 unsigned long cacheTagOffset;
 unsigned long cacheTag;
 unsigned long cacheDataOffset;
 unsigned long cacheDataAddr;

 unsigned long cacheDataBase;
 unsigned long cacheTagBase;

 unsigned long currentTag;

152

 unsigned long ctrlbits;
 unsigned long replAddr;
 unsigned long compressedBlockAddrTag;

 unsigned long currentAddr;
 unsigned long replCacheDataAddr;
 unsigned long replCacheTagOffset;

 unsigned long iword;
 unsigned short index;

 // Get parameters from system coprocessor
 mfc0(baddr,MD_REG_C0_BADVA); // Get missed PC about put in baddr;
 baddr = (baddr >> 5) << 5;

 // Get the cache tag for the missed address
 // For example, tag has bottom 11 bits removed in 4 KB 2-way 32B-line cache
 compressedBlockAddrTag = baddr>>ICACHE_TAG_SHIFT;

 // Check SW cache. 16 KB cache.
 //
 // Cache Data is located at address 0x00200000
 // Cache Tags are located at address 0x00210000
 cacheDataBase = (0x20) << 16;
 cacheTagBase = (0x21) << 16;
 cacheTagOffset = ((baddr) << 18) >> 21;
 mem_load_4B_RR(cacheTagBase,cacheTagOffset,cacheTag);
 cacheDataOffset = (baddr << 18) >> 18;
 cacheDataAddr = cacheDataBase + cacheDataOffset;

 // Find replacement cache line
 igetctrl(baddr,0,ctrlbits);
 // if lru 0, use this line, else next way
 replAddr = baddr;
 replAddr |= (ctrlbits >> 2); // ctrlbits >> 2 == lru

 if (cacheTag == compressedBlockAddrTag)
 {
 // hit
 // copy 8 instruction from memoization table into i-cache

 imapw(replAddr,0,cacheDataAddr);
 sync;

 goto done;

 }

 // Miss SW cache

 // Write replaced I-cache line to SW cache

 //Find address of line to be replaced in I-cache
 // Get tag of replaced line to find out where in SW cache to put it.
 igettag(replAddr,0,currentTag);

 //Find address of line to be replaced in I-cache
 // Get tag of replaced line to find out where in SW cache to put it.
 igettag(replAddr,0,currentTag);

153

 // currentAddr is the address of this line
 currentAddr = baddr;
 // Strip top bits to get byte index into cache
 currentAddr &= ((1<<ICACHE_TAG_SHIFT) - 1);
 // Add tag bits on top
 currentAddr |= (currentTag << ICACHE_TAG_SHIFT);

 // Store tag in SW cache for replaced line.
 // find address to store TAG. Just like for faulting address.
 replCacheTagOffset = (currentAddr << 18) >> 21; //strip top bits. SW Cache
parameter.
 // write tag into SW cache
 mem_store_4B_RR(cacheTagBase,replCacheTagOffset,currentTag);

 // Find address in SW cache to store instructions.
 replCacheDataAddr = (currentAddr << 18) >> 18;
 replCacheDataAddr += cacheDataBase;

 // Write instructions in replaced line to SW cache.
 iunmapw(replAddr,0,replCacheDataAddr);

 // Decompress a new line

 mfc0(text_base,MD_REG_C0_TEXT); // where .text starts
 mfc0(dict_base,MD_REG_C0_DICTIONARY); // where dictionary starts
 mfc0(indices_base,MD_REG_C0_INDICES); // where indices start (the codewords)

 // Calculate the address of the first index.
 indexAddr = (((baddr - text_base) >> 1) + indices_base);

 // Load new cache line. 8 instructions.

 mem_loadu_2B(indexAddr,0,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,0,iword);

 mem_loadu_2B(indexAddr,2,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,4,iword);

 mem_loadu_2B(indexAddr,4,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,8,iword);

 mem_loadu_2B(indexAddr,6,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,12,iword);

 mem_loadu_2B(indexAddr,8,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,16,iword);

 mem_loadu_2B(indexAddr,10,index);
 index <<= 2;

154

 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,20,iword);

 mem_loadu_2B(indexAddr,12,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,24,iword);

 mem_loadu_2B(indexAddr,14,index);
 index <<= 2;
 mem_load_4B_RR(dict_base,index,iword);
 swic(baddr,28,iword);

 done:
 isync;
 iret;
}

155

A.7 CodePack

This is the baseline CodePack decompressor.

// CodePack Exception Handler
//
// Inputs
// C0[MD_REG_CO_INDICES]: address base of indices
// C0[MD_REG_C0_DICTIONARY]: address base of dictionary
// C0[MD_REG_C0_TEXT]: address of .text segment
// C0[MD_REG_C0_BADVA]: This is the location to load the I-cache.
// C0[MD_REG_C0_LAT]: Location of index table.
//
// Assumptions:
// I-cache is 2-way associative with 8 32-bit instructions in each line
//
// Output
// Load I-cache at address C0[MD_REG_C0_BADVA] with 2 lines of 8 instructions.
//
// Special SimpleScalar instructions
// swic: store word in instruction cache
// mfc0: move from coprocessor-0 register to general purpose register
// isync: instruction synchronization

#include <stdio.h>
#include "eh.h"

unsigned char const indexHiLookup[] = {3, 5, 0, 0, 6, 7, 8, 16};
unsigned char const indexLoLookup[] = {0, 4, 0, 0, 5, 7, 8, 16};
unsigned short const ihalfHiLookup[] = {0x008, 0x020, 0, 0, 0x040, 0x080, 0x100,
0};
unsigned short const ihalfLoLookup[] = {0, 512+0x010, 0, 0, 512+0x020, 512+0x080,
512+0x100, 0};

void eh();

void eh()
{

 unsigned long ihalfHiLookupAddr;
 unsigned long ihalfLoLookupAddr;
 unsigned long indexHiLookupAddr;
 unsigned long indexLoLookupAddr;

 unsigned long loop;
 unsigned long loopByte;

 unsigned long insnNumber;

 unsigned long groupNumber;
 unsigned long blockNumber;
 unsigned long whichBlock;

 unsigned long indexTableEntry;

 unsigned long groupOffset;

156

 unsigned long secondBlockOffset;
 unsigned long groupAddr;
 unsigned long blockAddr;
 unsigned long iword32;

 unsigned long baddr;
 unsigned long compressedBlockAddr;

 unsigned long text_base;
 unsigned long dict_base;
 unsigned long lat_base;
 unsigned long indices_base;

 // Get parameters from system coprocessor
 mfc0(baddr,MD_REG_C0_BADVA); // Get missed PC about put in baddr;
 mfc0(text_base,MD_REG_C0_TEXT); // where compressed region starts
 mfc0(dict_base,MD_REG_C0_DICTIONARY); // where dictionary starts
 mfc0(lat_base,MD_REG_C0_LAT); // where line address table starts
 mfc0(indices_base,MD_REG_C0_INDICES); // where indices start (the codewords)

 // remove bottom portion, get line address from word address;
 baddr = (baddr >> 5) << 5;
 compressedBlockAddr = (baddr >> 6) << 6;

 insnNumber = (baddr - text_base) >> 2; /* (b-ltb/4) 4=sizeof SS32 insn */

 /* Determine what compression group and block the requested
 instruction is in. 32 instructions per compression group, 16
 instructions per compression block, 2 compression blocks per
 group. */
 groupNumber = insnNumber >> 5; /* / 32; */
 blockNumber = insnNumber >> 4; /* / 16; */

 /* Determine whether the requested address is in the first or second
 compression block in the group. */
 whichBlock = blockNumber % 2;

 /* Fetch index table entry from memory */
 mem_load_4B_RR(lat_base,groupNumber*4,indexTableEntry);

 /* offset of compression group is upper 26 bits of index table entry
 shifted right */
 groupOffset = indexTableEntry & ~0x3f;
 groupOffset = groupOffset >> 6;

 /* offset of second block in compression group is lower six bits of
 index table entry */
 secondBlockOffset = indexTableEntry & 0x3f;

 /* address of compression group is base address of text plus group
 offset */
 groupAddr = indices_base + groupOffset;

 /* check whether first or second block in group is being accessed */
 if (whichBlock == 0) /* first block */
 {
 /* block address is same as group address */
 blockAddr = groupAddr;
 if (secondBlockOffset <= 1)

157

{
 /* if block offset of index table entry is 0 or 1, first
 block is not compressed */
 goto copy;
}

 }
 else /* second block */
 {
 if (secondBlockOffset <= 1)

{
 /* if block offset of index table entry is 0 or 1, second
 block address is address of first block + 64 */
 blockAddr = groupAddr + 64;
 if (secondBlockOffset == 0)
 {
 /* if block offset of index table entry is 0, second
 block is not compressed */
 goto copy;
 }
}

 else
{
 /* if block offset of index table entry is greater than 1,
 second block address is address of first block plus block
 offset (lower 6 bits of index table entry) */
 blockAddr = groupAddr + secondBlockOffset;
}

 } /* second block */

 ihalfHiLookupAddr = (long) &ihalfHiLookup;
 ihalfLoLookupAddr = (long) &ihalfLoLookup;
 indexHiLookupAddr = (long) &indexHiLookup;
 indexLoLookupAddr = (long) &indexLoLookup;

 /* decompress 2 cache lines */
 {
 unsigned long tagHi, tagLo;
 unsigned long tagHiLength, tagLoLength;
 unsigned long indexHi, indexLo;
 unsigned long indexHiLength, indexLoLength;
 unsigned short ihalfHi16, ihalfLo16;

 unsigned long inputWord;
 unsigned long tempWord;
 unsigned long bitPosition = 32 - (8 * (blockAddr & 0x03));
 unsigned long addr = blockAddr & ~0x03;
 unsigned k;

 /* fetch first word from memory into inputWord */
 mem_load_4B(addr,inputWord);

 for (loop = 0; loop < 16; loop++)
 /* fetch and decompress 16 instructions (one block) */
 {

/* determine length of high tag by looking at next bit of
 input word */
tempWord = inputWord << (32-bitPosition);

158

/* tempWord is 0 or 1. If 0, length = 3, else length=2. */
tagHiLength = 2 + (tempWord>>31);
k = 32 - tagHiLength;
if (bitPosition > tagHiLength)
 {
 /* if all the bits for the high tag are available in this
 input word, grab them and readjust bitPosition */
 tempWord = tempWord >> k;

 tagHi = tempWord;
 bitPosition -= tagHiLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 tagHi = tempWord;

 /* get the rest of the bits for the high tag from the next
 word */

 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
tagHi |= tempWord;
 }
 }

/* repeat above for low tag */
tempWord = inputWord << (32-bitPosition);

/* tempWord is 0 or 1. If 0, length = 3, else length=2. */
tagLoLength = 2 + (tempWord>>31);
k = 32-tagLoLength;
if (bitPosition > tagLoLength)
 {
 tempWord = tempWord >> k;
 tagLo = tempWord;
 bitPosition -= tagLoLength;
 }
else
 {
 tempWord = tempWord >> k;
 tagLo = tempWord;

 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
tagLo |= tempWord;
 }
 }

/* determine length of indexes according to the tag values */

159

mem_load_1B_RR(indexHiLookupAddr,tagHi,indexHiLength);
mem_load_1B_RR(indexLoLookupAddr,tagLo,indexLoLength);

/* get high index value from memory */
tempWord = inputWord << (32-bitPosition);
k = 32 - indexHiLength;
if (bitPosition > indexHiLength)
 {
 /* if the rest of the bits for the high index are
 available in this input word, grab them */
 tempWord = tempWord >> k;

 indexHi = tempWord;
 bitPosition -= indexHiLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 indexHi = tempWord;

 /* get the rest of the bits for the high index from the next word */
 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {
tempWord = inputWord >> bitPosition;
indexHi |= tempWord;
 }
 }

/* repeat above for low index value */
tempWord = inputWord << (32-bitPosition);
k = 32-indexLoLength;
if (bitPosition > indexLoLength)
 {
 /* if the rest of the bits for the low index are available
 in this input word, grab them */
 tempWord = tempWord >> k;

 indexLo = tempWord;
 bitPosition -= indexLoLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 indexLo = tempWord;

 /* get the rest of the bits for the low index from the

 next word */
 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

160

tempWord = inputWord >> bitPosition;
indexLo |= tempWord;
 }
 }

/* Now we have the indexes into the decode lookup table for
 this instruction. Look up the high and low half-words and
 store into temps. Each entry in the dictionary is 2 bytes
 long. The dictionary for the high index starts at
 dict_base. The dictionary for the low index starts at
 dict_base + 512. */

if (tagHi != 7)
 {
 unsigned temp;
 mem_load_2B_RR(ihalfHiLookupAddr,tagHi<<1,temp);
 temp += indexHi;
 mem_load_2B_RR(dict_base,2*temp,ihalfHi16);
 }
else
 {
 ihalfHi16 = indexHi;
 }

if ((tagLo != 7) && (tagLo != 0))
 {
 unsigned temp;
 mem_load_2B_RR(ihalfLoLookupAddr,tagLo<<1,temp);
 temp += indexLo;
 mem_load_2B_RR(dict_base,2*temp,ihalfLo16);
 }
else if (tagLo == 0)
 {
 ihalfLo16 = 0;
 }
else
 {
 ihalfLo16 = indexLo;
 }

/* put together the whole 32-bit instruction and put it into
 temporary storage */
iword32 = (ihalfHi16 << 16) | ihalfLo16;
swic(compressedBlockAddr,0,iword32);
compressedBlockAddr+=4;

 }

 }
 goto done;

 copy:
 /* block is not compressed, we can just copy it directly from memory
 with no decoding */
 {
 unsigned char temp;
 unsigned long addr = blockAddr;

 for (loop = 0; loop < 16 ; loop++)

161

 {
unsigned long iword=0;
/* fetch 16 instructions (one block, 64 bytes) and put them
 into temporary storage */
for (loopByte = 0; loopByte < 4; loopByte++)
 {
 mem_load_1B(addr,0,temp);
 addr++;
 ((unsigned char *)&iword)[loopByte] = temp;
 }
swic(compressedBlockAddr,0,iword);
compressedBlockAddr+=4;

 }

 }

 done:
 isync;
 iret;

}

162

A.8 CodePack Memo-IW

// CodePack Exception Handler (IW)
//
// Inputs
// C0[MD_REG_CO_INDICES]: address base of indices
// C0[MD_REG_C0_DICTIONARY]: address base of dictionary
// C0[MD_REG_C0_TEXT]: address of .text segment
// C0[MD_REG_C0_BADVA]: This is the location to load the I-cache.
// C0[MD_REG_C0_LAT]: Location of index table.
//
// Assumptions:
// I-cache is 2-way associative with 8 32-bit instructions in each line
//
// Output
// Load I-cache at address C0[MD_REG_C0_BADVA] with 2 lines.
//
// Memoization
// Store all decompressed instructions in a software cache. Look in
// this cache first for decompressed instructions and copy them into
// I-cache with swic. If the instructions are not found in the
// software cache, then do decompression as normal and put a copy
// into the software cache.
//
// Special SimpleScalar instructions
// swic: store word in instruction cache
// mfc0: move from coprocessor-0 register to general purpose register
// isync: instruction synchronization

#include “eh.h”

unsigned char const indexHiLookup[] = {3, 5, 0, 0, 6, 7, 8, 16};
unsigned char const indexLoLookup[] = {0, 4, 0, 0, 5, 7, 8, 16};
unsigned short const ihalfHiLookup[] = {0x008, 0x020, 0, 0, 0x040, 0x080, 0x100,
0};
unsigned short const ihalfLoLookup[] = {0, 512+0x010, 0, 0, 512+0x020, 512+0x080,
512+0x100, 0};

void eh();

void eh()
{
 unsigned long loop;
 unsigned long loopByte;

 unsigned long insnNumber;

 unsigned long groupNumber;
 unsigned long blockNumber;
 unsigned long whichBlock;

 unsigned long indexTableEntry;

 unsigned long groupOffset;
 unsigned long secondBlockOffset;
 unsigned long groupAddr;
 unsigned long blockAddr;

163

 unsigned long iword32;

 unsigned long baddr;
 unsigned long compressedBlockAddr;

 unsigned long text_base;
 unsigned long dict_base;
 unsigned long lat_base;
 unsigned long indices_base;

 unsigned long cacheTagOffset;
 unsigned long cacheTag;
 unsigned long cacheDataOffset;
 unsigned long cacheDataAddr;

 unsigned long cacheDataBase;
 unsigned long cacheTagBase;

 unsigned long ihalfHiLookupAddr;
 unsigned long ihalfLoLookupAddr;
 unsigned long indexHiLookupAddr;
 unsigned long indexLoLookupAddr;

 // Get parameters from system coprocessor
 mfc0(baddr,MD_REG_C0_BADVA); // Get missed PC about put in baddr;

 // remove bottom portion, get line address from word address;
 baddr = (baddr >> 5) << 5;
 compressedBlockAddr = (baddr >> 6) << 6;

 // Check SW cache. 16 KB cache.
 //
 // Cache Data is located at address 0x00200000
 // Cache Tags are located at address 0x00210000
 cacheDataBase = (0x20) << 16;
 cacheTagBase = (0x21) << 16;
 /* Note: Use 21 for 1-line granularity. Use 22 for 2-line granularity*/
 cacheTagOffset = ((compressedBlockAddr) << 18) >> 22;
 mem_load_4B_RR(cacheTagBase,cacheTagOffset,cacheTag);
 cacheDataOffset = (compressedBlockAddr << 18) >> 18;
 cacheDataAddr = cacheDataBase + cacheDataOffset;

 if (cacheTag == compressedBlockAddr)
 {
 // hit
 // copy 16 instruction from software cache into I-cache

 /* ASSUME: if the first line is here, then the second line is
 too since we always decompress 2 lines at a time. So we
 really only need half the tag store! Therefore, we don’t need
 to check for a hit in the second line */

 unsigned long iword;

 mem_load_4B(cacheDataAddr,0,iword);
 swic(compressedBlockAddr,0,iword);
 mem_load_4B(cacheDataAddr,4,iword);

164

 swic(compressedBlockAddr,4,iword);
 mem_load_4B(cacheDataAddr,8,iword);
 swic(compressedBlockAddr,8,iword);
 mem_load_4B(cacheDataAddr,12,iword);
 swic(compressedBlockAddr,12,iword);
 mem_load_4B(cacheDataAddr,16,iword);
 swic(compressedBlockAddr,16,iword);
 mem_load_4B(cacheDataAddr,20,iword);
 swic(compressedBlockAddr,20,iword);
 mem_load_4B(cacheDataAddr,24,iword);
 swic(compressedBlockAddr,24,iword);
 mem_load_4B(cacheDataAddr,28,iword);
 swic(compressedBlockAddr,28,iword);
 mem_load_4B(cacheDataAddr,32,iword);
 swic(compressedBlockAddr,32,iword);
 mem_load_4B(cacheDataAddr,36,iword);
 swic(compressedBlockAddr,36,iword);
 mem_load_4B(cacheDataAddr,40,iword);
 swic(compressedBlockAddr,40,iword);
 mem_load_4B(cacheDataAddr,44,iword);
 swic(compressedBlockAddr,44,iword);
 mem_load_4B(cacheDataAddr,48,iword);
 swic(compressedBlockAddr,48,iword);
 mem_load_4B(cacheDataAddr,52,iword);
 swic(compressedBlockAddr,52,iword);
 mem_load_4B(cacheDataAddr,56,iword);
 swic(compressedBlockAddr,56,iword);
 mem_load_4B(cacheDataAddr,60,iword);
 swic(compressedBlockAddr,60,iword);

 goto done;
 }

 // Miss SW cache

 /* update tag */
 mem_store_4B_RR(cacheTagBase,cacheTagOffset,compressedBlockAddr);

 mfc0(text_base,MD_REG_C0_TEXT); // where compressed region starts
 mfc0(dict_base,MD_REG_C0_DICTIONARY); // where dictionary starts
 mfc0(lat_base,MD_REG_C0_LAT); // where line address table starts
 mfc0(indices_base,MD_REG_C0_INDICES); // where indices start (the codewords)

 insnNumber = (baddr - text_base) >> 2; /* (b-ltb/4) 4=sizeof SS32 insn */

 /* Determine what compression group and block the requested
 instruction is in. 32 instructions per compression group, 16
 instructions per compression block, 2 compression blocks per
 group. */
 groupNumber = insnNumber >> 5; /* / 32; */
 blockNumber = insnNumber >> 4; /* / 16; */

 /* Determine whether the requested address is in the first or second
 compression block in the group. */
 whichBlock = blockNumber % 2;

 /* Calculate address of index table entry. Each index table entry
 is 4 bytes long and contains info for one compression group */
 /* Fetch index table entry from memory */

165

 mem_load_4B_RR(lat_base,groupNumber*4,indexTableEntry);

 /* offset of compression group is upper 26 bits of index table
 entry shifted right */
 groupOffset = indexTableEntry & ~0x3f;
 groupOffset = groupOffset >> 6;

 /* offset of second block in compression group is lower six
 bits of index table entry */
 secondBlockOffset = indexTableEntry & 0x3f;

 /* address of compression group is base address of text plus group
 offset */
 groupAddr = indices_base + groupOffset;

 /* check whether first or second block in group is being accessed */
 if (whichBlock == 0) /* first block */
 {
 /* block address is same as group address */
 blockAddr = groupAddr;
 if (secondBlockOffset <= 1)

{
 /* if block offset of index table entry is 0 or 1, first block
 is not compressed */
 goto copy;
}

 }
 else /* second block */
 {
 if (secondBlockOffset <= 1)

{
 /* if block offset of index table entry is 0 or 1, second block
 address is address of first block + 64 */
 blockAddr = groupAddr + 64;
 if (secondBlockOffset == 0)
 {
 /* if block offset of index table entry is 0, second
 block is not compressed */
 goto copy;
 }
}

 else
{
 /* if block offset of index table entry is greater than 1,
 second block address is address of first block plus block
 offset (lower 6 bits of index table entry) */
 blockAddr = groupAddr + secondBlockOffset;
}

 } /* second block */

 ihalfHiLookupAddr = (long) &ihalfHiLookup;
 ihalfLoLookupAddr = (long) &ihalfLoLookup;
 indexHiLookupAddr = (long) &indexHiLookup;
 indexLoLookupAddr = (long) &indexLoLookup;

 /* decompress 2 cache lines */
 {
 unsigned long tagHi, tagLo;

166

 unsigned long tagHiLength, tagLoLength;
 unsigned long indexHi, indexLo;
 unsigned long indexHiLength, indexLoLength;
 unsigned short ihalfHi16, ihalfLo16;

 unsigned long inputWord;
 unsigned long tempWord;
 unsigned long bitPosition = 32 - (8 * (blockAddr & 0x03));
 unsigned long addr = blockAddr & ~0x03;
 unsigned k;

 /* fetch first word from memory into inputWord */
 mem_load_4B(addr,inputWord);

 for (loop = 0; loop < 16; loop++)
 /* fetch and decompress 16 instructions (one block) */
 {

/* determine length of high tag by looking at next bit of
 input word */
tempWord = inputWord << (32-bitPosition);

/* tempWord is 0 or 1. If 0, length = 3, else length=2. */
tagHiLength = 2 + (tempWord>>31);
k = 32 - tagHiLength;
if (bitPosition > tagHiLength)
 {
 /* if all the bits for the high tag are available in this
 input word, grab them and readjust bitPosition */
 tempWord = tempWord >> k;

 tagHi = tempWord;
 bitPosition -= tagHiLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 tagHi = tempWord;

 /* get the rest of the bits for the high tag from the next
 word */

 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
tagHi |= tempWord;
 }
 }

/* repeat above for low tag */
tempWord = inputWord << (32-bitPosition);

/* tempWord is 0 or 1. If 0, length = 3, else length=2. */
tagLoLength = 2 + (tempWord>>31);
k = 32-tagLoLength;
if (bitPosition > tagLoLength)

167

 {
 tempWord = tempWord >> k;
 tagLo = tempWord;
 bitPosition -= tagLoLength;
 }
else
 {
 tempWord = tempWord >> k;
 tagLo = tempWord;

 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
tagLo |= tempWord;
 }
 }

/* determine length of indexes according to the tag values */
mem_load_1B_RR(indexHiLookupAddr,tagHi,indexHiLength);
mem_load_1B_RR(indexLoLookupAddr,tagLo,indexLoLength);

/* get high index value from memory */
tempWord = inputWord << (32-bitPosition);
k = 32 - indexHiLength;
if (bitPosition > indexHiLength)
 {
 /* if the rest of the bits for the high index are
 available in this input word, grab them */
 tempWord = tempWord >> k;

 indexHi = tempWord;
 bitPosition -= indexHiLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 indexHi = tempWord;

 /* get the rest of the bits for the high index from the next word */
 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {
tempWord = inputWord >> bitPosition;
indexHi |= tempWord;
 }
 }

/* repeat above for low index value */
tempWord = inputWord << (32-bitPosition);
k = 32-indexLoLength;
if (bitPosition > indexLoLength)
 {

168

 /* if the rest of the bits for the low index are available
 in this input word, grab them */
 tempWord = tempWord >> k;

 indexLo = tempWord;
 bitPosition -= indexLoLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 indexLo = tempWord;

 /* get the rest of the bits for the low index from the next word */
 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
indexLo |= tempWord;
 }
 }

/* now we have the indexes into the decode lookup table for
 this instruction. look up the high and low half-words and
 store into temps. each entry in the dictionary is 2 bytes
 long. the dictionary for the high index starts at
 dict_base. the dictionary for the low index starts at
 dict_base + 512. */

if (tagHi != 7)
 {
 unsigned temp;
 mem_load_2B_RR(ihalfHiLookupAddr,tagHi<<1,temp);
 temp += indexHi;
 mem_load_2B_RR(dict_base,2*temp,ihalfHi16);
 }
else
 {
 ihalfHi16 = indexHi;
 }

if ((tagLo != 7) && (tagLo != 0))
 {
 unsigned temp;
 mem_load_2B_RR(ihalfLoLookupAddr,tagLo<<1,temp);
 temp += indexLo;
 mem_load_2B_RR(dict_base,2*temp,ihalfLo16);
 }
else if (tagLo == 0)
 {
 ihalfLo16 = 0;
 }
else
 {
 ihalfLo16 = indexLo;
 }

169

/* put together the whole 32-bit instruction and put it into
 temporary storage */
iword32 = (ihalfHi16 << 16) | ihalfLo16;
swic(compressedBlockAddr,0,iword32);
compressedBlockAddr+=4;
/* update the cache */
mem_store_4B(cacheDataAddr,0,iword32);
cacheDataAddr+=4;

 }

 }

 goto done;

 copy:
 /* block is not compressed, we can just copy it directly from
 memory with no decoding */
 {
 unsigned char temp;
 unsigned long addr = blockAddr;

 for (loop = 0; loop < 16 ; loop++)
 {

unsigned long iword=0;
/* fetch 16 instructions (one block, 64 bytes) and put them
 into temporary storage */
for (loopByte = 0; loopByte < 4; loopByte++)
 {
 mem_load_1B(addr,0,temp);
 addr++;
 ((unsigned char *)&iword)[loopByte] = temp;
 }
swic(compressedBlockAddr,0,iword);
compressedBlockAddr+=4;
/* update the cache */
mem_store_4B(cacheDataAddr,0,iword);
cacheDataAddr+=4;

 }

 }

 done:
 isync;
 iret;

}

170

A.9 CodePack Memo-IL

// CodePack Exception Handler (IL)
//
// Inputs
// C0[MD_REG_CO_INDICES]: address base of indices
// C0[MD_REG_C0_DICTIONARY]: address base of dictionary
// C0[MD_REG_C0_TEXT]: address of .text segment
// C0[MD_REG_C0_BADVA]: This is the location to load the I-cache.
// C0[MD_REG_C0_LAT]: Location of index table.
//
// Assumptions:
// I-cache is 2-way associative with 8 32-bit instructions in each line
//
// Output
// Load I-cache at address C0[MD_REG_C0_BADVA] with 2 lines.
//
// Memoization
// Store all decompressed instructions in a software cache. Look in
// this cache first for decompressed instructions and copy them into
// I-cache with swic. If the instructions are not found in the
// software cache, then do decompression as normal and put a copy
// into the software cache.
//
// Special SimpleScalar instructions
// swic: store word in instruction cache
// imap: load I-cache line from main memory
// iunmap: store I-cache line to main memory
// mfc0: move from coprocessor-0 register to general purpose register
// sync: memory synchronization
// isync: instruction synchronization

#include “eh.h”

unsigned char const indexHiLookup[] = {3, 5, 0, 0, 6, 7, 8, 16};
unsigned char const indexLoLookup[] = {0, 4, 0, 0, 5, 7, 8, 16};
unsigned short const ihalfHiLookup[] = {0x008, 0x020, 0, 0, 0x040, 0x080, 0x100,
0};
unsigned short const ihalfLoLookup[] = {0, 512+0x010, 0, 0, 512+0x020, 512+0x080,
512+0x100, 0};

void eh();

void eh()/* block address to access */
{

 unsigned long ihalfHiLookupAddr;
 unsigned long ihalfLoLookupAddr;
 unsigned long indexHiLookupAddr;
 unsigned long indexLoLookupAddr;

 unsigned long loop;
 unsigned long loopByte;

 unsigned long insnNumber;

171

 unsigned long groupNumber;
 unsigned long blockNumber;
 unsigned long whichBlock;

 unsigned long indexTableEntry;

 unsigned long groupOffset;
 unsigned long secondBlockOffset;
 unsigned long groupAddr;
 unsigned long blockAddr;
 unsigned long iword32;

 unsigned long baddr;
 unsigned long compressedBlockAddr;

 unsigned long text_base;
 unsigned long dict_base;
 unsigned long lat_base;
 unsigned long indices_base;

 unsigned long cacheTagOffset;
 unsigned long cacheTag;
 unsigned long cacheDataOffset;
 unsigned long cacheDataAddr;

 unsigned long cacheDataBase;
 unsigned long cacheTagBase;

 unsigned long swicAddr;

 // Get parameters from system coprocessor
 mfc0(baddr,MD_REG_C0_BADVA); // Get missed PC about put in baddr;

 // remove bottom portion, get line address from word address;
 baddr = (baddr >> 5) << 5;
 compressedBlockAddr = (baddr >> 6) << 6;

 // Check SW cache. 16 KB cache.
 //
 // Cache Data is located at address 0x00200000
 // Cache Tags are located at address 0x00210000
 cacheDataBase = (0x20) << 16;
 cacheTagBase = (0x21) << 16;
 /* Note: Use 21 for 1-line granularity. Use 22 for 2-line granularity*/
 cacheTagOffset = ((compressedBlockAddr) << 18) >> 22;
 mem_load_4B_RR(cacheTagBase,cacheTagOffset,cacheTag);
 cacheDataOffset = (compressedBlockAddr << 18) >> 18;
 cacheDataAddr = cacheDataBase + cacheDataOffset;

 if (cacheTag == compressedBlockAddr)
 {
 // hit
 // copy 16 instruction from software cache into I-cache

 /* ASSUME: if the first line is here, then the second line is
 too since we always decompress 2 lines at a time. So we
 really only need half the tag store! Therefore, we don’t need
 to check for a hit in the second line */

172

 imap(compressedBlockAddr,0,cacheDataAddr);
 imap(compressedBlockAddr,32,cacheDataAddr+32);
 sync;

 goto done;
 }

 // Miss SW cache

 mfc0(text_base,MD_REG_C0_TEXT); // where compressed region starts
 mfc0(dict_base,MD_REG_C0_DICTIONARY); // where dictionary starts
 mfc0(lat_base,MD_REG_C0_LAT); // where line address table starts
 mfc0(indices_base,MD_REG_C0_INDICES); // where indices start (the codewords)

 swicAddr = compressedBlockAddr; // SWIC insn uses this as current iword pointer
to write.

 /* update tag */
 mem_store_4B_RR(cacheTagBase,cacheTagOffset,compressedBlockAddr);

 insnNumber = (baddr - text_base) >> 2; /* (b-ltb/4) 4=sizeof SS32 insn */

 /* Determine what compression group and block the requested
 instruction is in. 32 instructions per compression group, 16
 instructions per compression block, 2 compression blocks per
 group. */
 groupNumber = insnNumber >> 5; /* / 32; */
 blockNumber = insnNumber >> 4; /* / 16; */

 /* Determine whether the requested address is in the first or second
 compression block in the group. */
 whichBlock = blockNumber % 2;

 /* Calculate address of index table entry. Each index table entry
 is 4 bytes long and contains info for one compression group */
 /* fetch index table entry from memory */
 mem_load_4B_RR(lat_base,groupNumber*4,indexTableEntry);

 /* offset of compression group is upper 26 bits of index table entry
 shifted right */
 groupOffset = indexTableEntry & ~0x3f;
 groupOffset = groupOffset >> 6;

 /* offset of second block in compression group is lower six bits of
 index table entry */
 secondBlockOffset = indexTableEntry & 0x3f;

 /* address of compression group is base address of text plus group
 offset */
 groupAddr = indices_base + groupOffset;

 /* check whether first or second block in group is being accessed */
 if (whichBlock == 0) /* first block */
 {
 /* block address is same as group address */
 blockAddr = groupAddr;
 if (secondBlockOffset <= 1)

{

173

 /* if block offset of index table entry is 0 or 1, first block
 is not compressed */
 goto copy;
}

 }
 else /* second block */
 {
 if (secondBlockOffset <= 1)

{
 /* if block offset of index table entry is 0 or 1, second block
 address is address of first block + 64 */
 blockAddr = groupAddr + 64;
 if (secondBlockOffset == 0)
 {
 /* if block offset of index table entry is 0, second block
 is not compressed */
 goto copy;
 }
}

 else
{
 /* if block offset of index table entry is greater than 1,
 second block address is address of first block plus block
 offset (lower 6 bits of index table entry) */
 blockAddr = groupAddr + secondBlockOffset;
}

 } /* second block */

 ihalfHiLookupAddr = (long) &ihalfHiLookup;
 ihalfLoLookupAddr = (long) &ihalfLoLookup;
 indexHiLookupAddr = (long) &indexHiLookup;
 indexLoLookupAddr = (long) &indexLoLookup;

 /* decompress 2 cache lines */
 {
 unsigned long tagHi, tagLo;
 unsigned long tagHiLength, tagLoLength;
 unsigned long indexHi, indexLo;
 unsigned long indexHiLength, indexLoLength;
 unsigned short ihalfHi16, ihalfLo16;

 unsigned long inputWord;
 unsigned long tempWord;
 unsigned long bitPosition = 32 - (8 * (blockAddr & 0x03));
 unsigned long addr = blockAddr & ~0x03;
 unsigned k;

 /* fetch first word from memory into inputWord - use “big-endian” word load
*/
 mem_load_4B(addr,inputWord);

 for (loop = 0; loop < 16; loop++)
 /* fetch and decompress 16 instructions (one block) */
 {

/* determine length of high tag by looking at next bit of
 input word */
tempWord = inputWord << (32-bitPosition);

174

/* tempWord is 0 or 1. If 0, length = 3, else length=2. */
tagHiLength = 2 + (tempWord>>31);
k = 32 - tagHiLength;
if (bitPosition > tagHiLength)
 {
 /* if all the bits for the high tag are available in this
 input word, grab them and readjust bitPosition */
 tempWord = tempWord >> k;

 tagHi = tempWord;
 bitPosition -= tagHiLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 tagHi = tempWord;

 /* get the rest of the bits for the high tag from the next word */
 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
tagHi |= tempWord;
 }
 }

/* repeat above for low tag */
tempWord = inputWord << (32-bitPosition);

/* tempWord is 0 or 1. If 0, length = 3, else length=2. */
tagLoLength = 2 + (tempWord>>31);
k = 32-tagLoLength;
if (bitPosition > tagLoLength)
 {
 tempWord = tempWord >> k;
 tagLo = tempWord;
 bitPosition -= tagLoLength;
 }
else
 {
 tempWord = tempWord >> k;
 tagLo = tempWord;

 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
tagLo |= tempWord;
 }
 }

/* determine length of indexes according to the tag values */
mem_load_1B_RR(indexHiLookupAddr,tagHi,indexHiLength);

175

mem_load_1B_RR(indexLoLookupAddr,tagLo,indexLoLength);

/* get high index value from memory */
tempWord = inputWord << (32-bitPosition);
k = 32 - indexHiLength;
if (bitPosition > indexHiLength)
 {
 /* if the rest of the bits for the high index are
 available in this input word, grab them */
 tempWord = tempWord >> k;

 indexHi = tempWord;
 bitPosition -= indexHiLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 indexHi = tempWord;

 /* get the rest of the bits for the high index from the next word */
 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {
tempWord = inputWord >> bitPosition;
indexHi |= tempWord;
 }
 }

/* repeat above for low index value */
tempWord = inputWord << (32-bitPosition);
k = 32-indexLoLength;
if (bitPosition > indexLoLength)
 {
 /* if the rest of the bits for the low index are
 available in this input word, grab them */
 tempWord = tempWord >> k;

 indexLo = tempWord;
 bitPosition -= indexLoLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 indexLo = tempWord;

 /* get the rest of the bits for the low index from the next word */
 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
indexLo |= tempWord;

176

 }
 }

/* now we have the indexes into the decode lookup table for
 this instruction. look up the high and low half-words and
 store into temps. each entry in the dictionary is 2 bytes
 long. the dictionary for the high index starts at
 dict_base. the dictionary for the low index starts at
 dict_base + 512. */

if (tagHi != 7)
 {
 unsigned temp;
 mem_load_2B_RR(ihalfHiLookupAddr,tagHi<<1,temp);
 temp += indexHi;
 mem_load_2B_RR(dict_base,2*temp,ihalfHi16);
 }
else
 {
 ihalfHi16 = indexHi;
 }

if ((tagLo != 7) && (tagLo != 0))
 {
 unsigned temp;
 mem_load_2B_RR(ihalfLoLookupAddr,tagLo<<1,temp);
 temp += indexLo;
 mem_load_2B_RR(dict_base,2*temp,ihalfLo16);
 }
else if (tagLo == 0)
 {
 ihalfLo16 = 0;
 }
else
 {
 ihalfLo16 = indexLo;
 }

/* put together the whole 32-bit instruction and put it into
 temporary storage */
iword32 = (ihalfHi16 << 16) | ihalfLo16;
swic(swicAddr,0,iword32);
swicAddr+=4;

 }

 }

 goto writeback;

 copy:
 /* block is not compressed, we can just copy it directly from memory
 with no decoding */
 {
 unsigned char temp;
 unsigned long addr = blockAddr;

 for (loop = 0; loop < 16 ; loop++)
 {

177

unsigned long iword=0;
/* fetch 16 instructions (one block, 64 bytes) and put them
 into temporary storage */
for (loopByte = 0; loopByte < 4; loopByte++)
 {
 mem_load_1B(addr,0,temp);
 addr++;
 ((unsigned char *)&iword)[loopByte] = temp;
 }
swic(swicAddr,0,iword);
swicAddr+=4;

 }

 }

 writeback:
 // hardback to SW cache the two lines just filled in I-cache.
 iunmap(compressedBlockAddr,0,cacheDataAddr);
 iunmap(compressedBlockAddr,32,cacheDataAddr+32);

 done:
 isync;
 iret;

}

178

A.10 CodePack Memo-EW

// CodePack Exception Handler (EW)
//
// Inputs
// C0[MD_REG_CO_INDICES]: address base of indices
// C0[MD_REG_C0_DICTIONARY]: address base of dictionary
// C0[MD_REG_C0_TEXT]: address of .text segment
// C0[MD_REG_C0_BADVA]: This is the location to load the I-cache.
// C0[MD_REG_C0_LAT]: Location of index table.
//
// Assumptions:
// I-cache is 2-way associative with 8 32-bit instructions in each line
//
// Output
// Load I-cache at address C0[MD_REG_C0_BADVA] with 2 lines.
//
// Memoization
// First check the SW cache for the requested cache lines. If they
// are there, copy them into the I-cache and return. Otherwise,
// begin full decompression. Before decompression, if the both
// lines being replaced in the I-cache are in the same compression
// block, then store them both in the SW cache.
//
// Special SimpleScalar instructions
// swic: store word in instruction cache
// swicw: index store word in instruction cache
// lwicw: index read instruction word from cache
// igetctrl: get control bits from I-cache line
// igettag: get tag bits from I-cache line
// mfc0: move from coprocessor-0 register to general purpose register
// isync: instruction synchronization

// IMPORTANT: THIS VALUE MUST CHANGE WHEN CACHE ORGANIZATION CHANGES
// amount to shift address to get the tag. For 32B lines, this is Log(#sets)+5.
// For example, 4 KB cache with assoc=2,line=32B has 64 sets -->
ICACHE_TAG_SHIFT=11
#ifndef ICACHE_TAG_SHIFT
#error Must define ICACHE_TAG_SHIFT
#endif

#include “eh.h”

unsigned char const indexHiLookup[] = {3, 5, 0, 0, 6, 7, 8, 16};
unsigned char const indexLoLookup[] = {0, 4, 0, 0, 5, 7, 8, 16};
unsigned short const ihalfHiLookup[] = {0x008, 0x020, 0, 0, 0x040, 0x080, 0x100,
0};
unsigned short const ihalfLoLookup[] = {0, 512+0x010, 0, 0, 512+0x020, 512+0x080,
512+0x100, 0};

void eh();

void eh()/* block address to access */
{

 unsigned long ihalfHiLookupAddr;

179

 unsigned long ihalfLoLookupAddr;
 unsigned long indexHiLookupAddr;
 unsigned long indexLoLookupAddr;

 unsigned long loop;
 unsigned long loopByte;

 unsigned long insnNumber;

 unsigned long groupNumber;
 unsigned long blockNumber;
 unsigned long whichBlock;

 unsigned long indexTableEntry;

 unsigned long groupOffset;
 unsigned long secondBlockOffset;
 unsigned long groupAddr;
 unsigned long blockAddr;
 unsigned long iword32;

 unsigned long baddr;
 unsigned long compressedBlockAddr;

 unsigned long text_base;
 unsigned long dict_base;
 unsigned long lat_base;
 unsigned long indices_base;

 unsigned long cacheTagOffset;
 unsigned long cacheTag;
 unsigned long cacheDataOffset;
 unsigned long cacheDataAddr;

 unsigned long cacheDataBase;
 unsigned long cacheTagBase;

 unsigned long currentTag;
 unsigned long currentTag2;
 unsigned long ctrlbits;
 unsigned long replAddr;
 unsigned long compressedBlockAddrTag;

 unsigned long currentAddr;
 unsigned long replCacheDataAddr;
 unsigned long replCacheTagOffset;

 // Get parameters from system coprocessor
 mfc0(baddr,MD_REG_C0_BADVA); // Get missed PC about put in baddr;

 // remove bottom portion, get line address from word address;
 baddr = (baddr >> 5) << 5;
 compressedBlockAddr = (baddr >> 6) << 6;

 // For example, tag has bottom 11 bits removed in 4 KB 2-way 32B-line cache
 compressedBlockAddrTag = compressedBlockAddr>>ICACHE_TAG_SHIFT;

 // Check SW cache. 16 KB cache.
 //

180

 // Cache Data is located at address 0x00200000
 // Cache Tags are located at address 0x00210000
 cacheDataBase = (0x20) << 16;
 cacheTagBase = (0x21) << 16;
 cacheTagOffset = ((compressedBlockAddr) << 18) >> 22;
 mem_load_4B_RR(cacheTagBase,cacheTagOffset,cacheTag);
 cacheDataOffset = (compressedBlockAddr << 18) >> 18;
 cacheDataAddr = cacheDataBase + cacheDataOffset;

 /* Find replacement cache line */
 igetctrl(compressedBlockAddr,0,ctrlbits);
 /* if lru 0, use this line, else next way */
 replAddr = compressedBlockAddr;
 replAddr |= (ctrlbits >> 2); /* ctrlbits >> 2 == lru */

 if (cacheTag == compressedBlockAddrTag)
 {
 // hit
 // copy 2 cache lines (16 instructions) into I-cache

 /* ASSUME: if the first line is here, then the second line is
 too since we always decompress 2 lines at a time. So we
 really only need half the tag store! Therefore, we don’t need
 to check for a hit in the second line */

 mem_load_4B(cacheDataAddr,0,iword32);
 swicw(replAddr,0,iword32);
 mem_load_4B(cacheDataAddr,4,iword32);
 swicw(replAddr,4,iword32);
 mem_load_4B(cacheDataAddr,8,iword32);
 swicw(replAddr,8,iword32);
 mem_load_4B(cacheDataAddr,12,iword32);
 swicw(replAddr,12,iword32);
 mem_load_4B(cacheDataAddr,16,iword32);
 swicw(replAddr,16,iword32);
 mem_load_4B(cacheDataAddr,20,iword32);
 swicw(replAddr,20,iword32);
 mem_load_4B(cacheDataAddr,24,iword32);
 swicw(replAddr,24,iword32);
 mem_load_4B(cacheDataAddr,28,iword32);
 swicw(replAddr,28,iword32);
 mem_load_4B(cacheDataAddr,32,iword32);
 swicw(replAddr,32,iword32);
 mem_load_4B(cacheDataAddr,36,iword32);
 swicw(replAddr,36,iword32);
 mem_load_4B(cacheDataAddr,40,iword32);
 swicw(replAddr,40,iword32);
 mem_load_4B(cacheDataAddr,44,iword32);
 swicw(replAddr,44,iword32);
 mem_load_4B(cacheDataAddr,48,iword32);
 swicw(replAddr,48,iword32);
 mem_load_4B(cacheDataAddr,52,iword32);
 swicw(replAddr,52,iword32);
 mem_load_4B(cacheDataAddr,56,iword32);
 swicw(replAddr,56,iword32);
 mem_load_4B(cacheDataAddr,60,iword32);
 swicw(replAddr,60,iword32);

 goto done;

181

 }

 // Miss SW cache

 // Write replaced I-cache line to SW cache

 igettag(replAddr,0,currentTag);
 igettag(replAddr,32,currentTag2);

 if (currentTag == currentTag2) /* writeback decompressed code if we still have
both lines */
 {
 /*Find address*/
 currentAddr = compressedBlockAddr;
 /* Strip top bits to get byte index into cache */
 currentAddr &= ((1<<ICACHE_TAG_SHIFT) - 1);
 /* add tag bits on top */
 currentAddr |= (currentTag << ICACHE_TAG_SHIFT);

 /* find address to store TAG. Just like for faulting address */
 replCacheTagOffset = (currentAddr << 18) >> 22; /* strip top bits. DRAM
PARAMETER. */
 /* push tag. Only need to push 1 tag because both lines are loaded and
stored together */
 mem_store_4B_RR(cacheTagBase,replCacheTagOffset,currentTag);
 /* push current cache contents to memory. Replace same way for

 both lines */

 // Find address in SW cache to store instructions.
 replCacheDataAddr = (currentAddr << 18) >> 18;
 replCacheDataAddr += cacheDataBase;

 lwicw(replAddr,0,iword32);
 mem_store_4B(replCacheDataAddr,0,iword32);
 lwicw(replAddr,4,iword32);
 mem_store_4B(replCacheDataAddr,4,iword32);
 lwicw(replAddr,8,iword32);
 mem_store_4B(replCacheDataAddr,8,iword32);
 lwicw(replAddr,12,iword32);
 mem_store_4B(replCacheDataAddr,12,iword32);
 lwicw(replAddr,16,iword32);
 mem_store_4B(replCacheDataAddr,16,iword32);
 lwicw(replAddr,20,iword32);
 mem_store_4B(replCacheDataAddr,20,iword32);
 lwicw(replAddr,24,iword32);
 mem_store_4B(replCacheDataAddr,24,iword32);
 lwicw(replAddr,28,iword32);
 mem_store_4B(replCacheDataAddr,28,iword32);
 lwicw(replAddr,32,iword32);
 mem_store_4B(replCacheDataAddr,32,iword32);
 lwicw(replAddr,36,iword32);
 mem_store_4B(replCacheDataAddr,36,iword32);
 lwicw(replAddr,40,iword32);
 mem_store_4B(replCacheDataAddr,40,iword32);
 lwicw(replAddr,44,iword32);
 mem_store_4B(replCacheDataAddr,44,iword32);
 lwicw(replAddr,48,iword32);
 mem_store_4B(replCacheDataAddr,48,iword32);
 lwicw(replAddr,52,iword32);

182

 mem_store_4B(replCacheDataAddr,52,iword32);
 lwicw(replAddr,56,iword32);
 mem_store_4B(replCacheDataAddr,56,iword32);
 lwicw(replAddr,60,iword32);
 mem_store_4B(replCacheDataAddr,60,iword32);
 }

 mfc0(text_base,MD_REG_C0_TEXT); // where compressed region starts
 mfc0(dict_base,MD_REG_C0_DICTIONARY); // where dictionary starts
 mfc0(lat_base,MD_REG_C0_LAT); // where line address table starts
 mfc0(indices_base,MD_REG_C0_INDICES); // where indices start (the codewords)

 /* miss SW cache */

 insnNumber = (baddr - text_base) >> 2; /* (b-ltb/4) 4=sizeof SS32 insn */

 /* Determine what compression group and block the requested
 instruction is in. 32 instructions per compression group, 16
 instructions per compression block, 2 compression blocks per
 group. */
 groupNumber = insnNumber >> 5; /* / 32; */
 blockNumber = insnNumber >> 4; /* / 16; */

 /* Determine whether the requested address is in the first or second
 compression block in the group. */
 whichBlock = blockNumber % 2;

 /* Calculate address of index table entry. Each index table entry
 is 4 bytes long and contains info for one compression group */
 /* fetch index table entry from memory */
 mem_load_4B_RR(lat_base,groupNumber*4,indexTableEntry);

 /* offset of compression group is upper 26 bits of index table entry
 shifted right */
 groupOffset = indexTableEntry & ~0x3f;
 groupOffset = groupOffset >> 6;

 /* offset of second block in compression group is lower six bits of
 index table entry */
 secondBlockOffset = indexTableEntry & 0x3f;

 /* address of compression group is base address of text plus group
 offset */
 groupAddr = indices_base + groupOffset;

 /* check whether first or second block in group is being accessed */
 if (whichBlock == 0) /* first block */
 {
 /* block address is same as group address */
 blockAddr = groupAddr;
 if (secondBlockOffset <= 1)

{
 /* if block offset of index table entry is 0 or 1, first block
 is not compressed */
 goto copy;
}

 }
 else /* second block */
 {

183

 if (secondBlockOffset <= 1)
{
 /* if block offset of index table entry is 0 or 1, second block
 address is address of first block + 64 */
 blockAddr = groupAddr + 64;
 if (secondBlockOffset == 0)
 {
 /* if block offset of index table entry is 0, second block
 is not compressed */
 goto copy;
 }
}

 else
{
 /* if block offset of index table entry is greater than 1,
 second block address is address of first block plus block
 offset (lower 6 bits of index table entry) */
 blockAddr = groupAddr + secondBlockOffset;
}

 } /* second block */

 ihalfHiLookupAddr = (long) &ihalfHiLookup;
 ihalfLoLookupAddr = (long) &ihalfLoLookup;
 indexHiLookupAddr = (long) &indexHiLookup;
 indexLoLookupAddr = (long) &indexLoLookup;

 /* decompress 2 cache lines */
 {
 unsigned long tagHi, tagLo;
 unsigned long tagHiLength, tagLoLength;
 unsigned long indexHi, indexLo;
 unsigned long indexHiLength, indexLoLength;
 unsigned short ihalfHi16, ihalfLo16;

 unsigned long inputWord;
 unsigned long tempWord;
 unsigned long bitPosition = 32 - (8 * (blockAddr & 0x03));
 unsigned long addr = blockAddr & ~0x03;
 unsigned k;

 /* fetch first word from memory into inputWord - use “big-endian” word load
*/
 mem_load_4B(addr,inputWord);

 for (loop = 0; loop < 16; loop++)
 /* fetch and decompress 16 instructions (one block) */
 {

/* determine length of high tag by looking at next bit of
 input word */
tempWord = inputWord << (32-bitPosition);

/* tempWord is 0 or 1. If 0, length = 3, else length=2. */
tagHiLength = 2 + (tempWord>>31);
k = 32 - tagHiLength;
if (bitPosition > tagHiLength)
 {
 /* if all the bits for the high tag are available in this
 input word, grab them and readjust bitPosition */

184

 tempWord = tempWord >> k;

 tagHi = tempWord;
 bitPosition -= tagHiLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 tagHi = tempWord;

 /* get the rest of the bits for the high tag from the next
 word */

 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
tagHi |= tempWord;
 }
 }

/* repeat above for low tag */
tempWord = inputWord << (32-bitPosition);

/* tempWord is 0 or 1. If 0, length = 3, else length=2. */
tagLoLength = 2 + (tempWord>>31);
k = 32-tagLoLength;
if (bitPosition > tagLoLength)
 {
 tempWord = tempWord >> k;
 tagLo = tempWord;
 bitPosition -= tagLoLength;
 }
else
 {
 tempWord = tempWord >> k;
 tagLo = tempWord;

 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
tagLo |= tempWord;
 }
 }

/* determine length of indexes according to the tag values */
mem_load_1B_RR(indexHiLookupAddr,tagHi,indexHiLength);
mem_load_1B_RR(indexLoLookupAddr,tagLo,indexLoLength);

/* get high index value from memory */
tempWord = inputWord << (32-bitPosition);
k = 32 - indexHiLength;
if (bitPosition > indexHiLength)

185

 {
 /* if the rest of the bits for the high index are
 available in this input word, grab them */
 tempWord = tempWord >> k;

 indexHi = tempWord;
 bitPosition -= indexHiLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 indexHi = tempWord;

 /* get the rest of the bits for the high index from the

 next word */
 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {
tempWord = inputWord >> bitPosition;
indexHi |= tempWord;
 }
 }

/* repeat above for low index value */
tempWord = inputWord << (32-bitPosition);
k = 32-indexLoLength;
if (bitPosition > indexLoLength)
 {
 /* if the rest of the bits for the low index are
 available in this input word, grab them */
 tempWord = tempWord >> k;

 indexLo = tempWord;
 bitPosition -= indexLoLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 indexLo = tempWord;

 /* get the rest of the bits for the low index from the

 next word */
 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
indexLo |= tempWord;
 }
 }

/* now we have the indexes into the decode lookup table for

186

 this instruction. look up the high and low half-words and
 store into temps. each entry in the dictionary is 2 bytes
 long. the dictionary for the high index starts at
 dict_base. the dictionary for the low index starts at
 dict_base + 512. */

if (tagHi != 7)
 {
 unsigned temp;
 mem_load_2B_RR(ihalfHiLookupAddr,tagHi<<1,temp);
 temp += indexHi;
 mem_load_2B_RR(dict_base,2*temp,ihalfHi16);
 }
else
 {
 ihalfHi16 = indexHi;
 }

if ((tagLo != 7) && (tagLo != 0))
 {
 unsigned temp;
 mem_load_2B_RR(ihalfLoLookupAddr,tagLo<<1,temp);
 temp += indexLo;
 mem_load_2B_RR(dict_base,2*temp,ihalfLo16);
 }
else if (tagLo == 0)
 {
 ihalfLo16 = 0;
 }
else
 {
 ihalfLo16 = indexLo;
 }

/* put together the whole 32-bit instruction and put it into
 temporary storage */
iword32 = (ihalfHi16 << 16) | ihalfLo16;
swic(compressedBlockAddr,0,iword32);
compressedBlockAddr+=4;

 }

 }

 goto done;

 copy:
 /* block is not compressed, we can just copy it directly from
 memory with no decoding */
 {
 unsigned char temp;
 unsigned long addr = blockAddr;

 for (loop = 0; loop < 16 ; loop++)
 {

unsigned long iword=0;
/* fetch 16 instructions (one block, 64 bytes) and put them
 into temporary storage */
for (loopByte = 0; loopByte < 4; loopByte++)

187

 {
 mem_load_1B(addr,0,temp);
 addr++;
 ((unsigned char *)&iword)[loopByte] = temp;
 }
swic(compressedBlockAddr,0,iword);
compressedBlockAddr+=4;

 }

 }

 done:
 isync;
 iret;

}

188

A.11 CodePack Memo-EL

// CodePack Exception Handler (EL)
//
// Inputs
// C0[MD_REG_CO_INDICES]: address base of indices
// C0[MD_REG_C0_DICTIONARY]: address base of dictionary
// C0[MD_REG_C0_TEXT]: address of .text segment
// C0[MD_REG_C0_BADVA]: This is the location to load the I-cache.
// C0[MD_REG_C0_LAT]: Location of index table.
//
// Assumptions:
// I-cache is 2-way associative with 8 32-bit instructions in each line
//
// Output
// Load I-cache at address C0[MD_REG_C0_BADVA] with 2 lines.
//
// Memoization
// First check the SW cache for the requested cache lines. If they
// are there, copy them into the I-cache and return. Otherwise,
// begin full decompression. Before decompression, if the both
// lines being replaced in the I-cache are in the same compression
// block, then store them both in the SW cache.
//
// Special SimpleScalar instructions
// swic: store word in instruction cache
// imapw: index read I-cache line from main memory
// iunmapw: index write I-cache line to main memory
// igetctrl: get control bits from I-cache line
// igettag: get tag bits from I-cache line
// mfc0: move from coprocessor-0 register to general purpose register
// isync: instruction synchronization
// sync: memory synchronization

#include “eh.h”

// IMPORTANT: THIS VALUE MUST CHANGE WHEN CACHE ORGANIZATION CHANGES
// amount to shift address to get the tag. For 32B lines, this is Log(#sets)+5.
// For example, 4 KB cache with assoc=2,line=32B has 64 sets -->
ICACHE_TAG_SHIFT=11
#ifndef ICACHE_TAG_SHIFT
#error Must define ICACHE_TAG_SHIFT
#endif

unsigned char const indexHiLookup[] = {3, 5, 0, 0, 6, 7, 8, 16};
unsigned char const indexLoLookup[] = {0, 4, 0, 0, 5, 7, 8, 16};
unsigned short const ihalfHiLookup[] = {0x008, 0x020, 0, 0, 0x040, 0x080, 0x100,
0};
unsigned short const ihalfLoLookup[] = {0, 512+0x010, 0, 0, 512+0x020, 512+0x080,
512+0x100, 0};

void eh();

void eh()/* block address to access */
{

 unsigned long ihalfHiLookupAddr;

189

 unsigned long ihalfLoLookupAddr;
 unsigned long indexHiLookupAddr;
 unsigned long indexLoLookupAddr;

 unsigned long loop;
 unsigned long loopByte;

 unsigned long insnNumber;

 unsigned long groupNumber;
 unsigned long blockNumber;
 unsigned long whichBlock;

 unsigned long indexTableEntry;

 unsigned long groupOffset;
 unsigned long secondBlockOffset;
 unsigned long groupAddr;
 unsigned long blockAddr;
 unsigned long iword32;

 unsigned long baddr;
 unsigned long compressedBlockAddr;

 unsigned long text_base;
 unsigned long dict_base;
 unsigned long lat_base;
 unsigned long indices_base;

 unsigned long cacheTagOffset;
 unsigned long cacheTag;
 unsigned long cacheDataOffset;
 unsigned long cacheDataAddr;

 unsigned long cacheDataBase;
 unsigned long cacheTagBase;

 unsigned long currentTag;
 unsigned long currentTag2;
 unsigned long ctrlbits;
 unsigned long replAddr;
 unsigned long compressedBlockAddrTag;

 unsigned long currentAddr;
 unsigned long replCacheDataAddr;
 unsigned long replCacheTagOffset;

 // Get parameters from system coprocessor
 mfc0(baddr,MD_REG_C0_BADVA); // Get missed PC about put in baddr;

 // remove bottom portion, get line address from word address;
 baddr = (baddr >> 5) << 5;
 compressedBlockAddr = (baddr >> 6) << 6;

 // For example, tag has bottom 11 bits removed in 4 KB 2-way 32B-line cache
 compressedBlockAddrTag = compressedBlockAddr>>ICACHE_TAG_SHIFT;

 // Check SW cache. 16 KB cache.

190

 //
 // Cache Data is located at address 0x00200000
 // Cache Tags are located at address 0x00210000
 cacheDataBase = (0x20) << 16;
 cacheTagBase = (0x21) << 16;
 cacheTagOffset = ((compressedBlockAddr) << 18) >> 22;
 mem_load_4B_RR(cacheTagBase,cacheTagOffset,cacheTag);
 cacheDataOffset = (compressedBlockAddr << 18) >> 18;
 cacheDataAddr = cacheDataBase + cacheDataOffset;

 /* Find replacement cache line */
 igetctrl(compressedBlockAddr,0,ctrlbits);
 /* if lru 0, use this line, else next way */
 replAddr = compressedBlockAddr;
 replAddr |= (ctrlbits >> 2); /* ctrlbits >> 2 == lru */

 if (cacheTag == compressedBlockAddrTag)
 {
 // hit
 // copy 2 cache lines (16 instructions) into I-cache

 /* ASSUME: if the first line is here, then the second line is
 too since we always decompress 2 lines at a time. So we
 really only need half the tag store! Therefore, we don’t need
 to check for a hit in the second line */

 imapw(replAddr,0,cacheDataAddr);
 imapw(replAddr,32,cacheDataAddr+32);
 sync;

 goto done;
 }

 igettag(replAddr,0,currentTag);
 igettag(replAddr,32,currentTag2);

 if (currentTag == currentTag2) /* writeback decompressed code if we still have
both lines */
 {
 /*Find address*/
 currentAddr = compressedBlockAddr;
 /* Strip top bits to get byte index into cache */
 currentAddr &= ((1<<ICACHE_TAG_SHIFT) - 1);
 /* add tag bits on top */
 currentAddr |= (currentTag << ICACHE_TAG_SHIFT);

 /* find address to store TAG. Just like for faulting address */
 replCacheTagOffset = (currentAddr << 18) >> 22; /* strip top bits. DRAM
PARAMETER. */
 /* push tag. Only need to push 1 tag because both lines are loaded and
stored as 1 unit */
 mem_store_4B_RR(cacheTagBase,replCacheTagOffset,currentTag);
 /* push current cache contents to memory. Replace same way for

 both lines */

 // Find address in SW cache to store instructions.
 replCacheDataAddr = (currentAddr << 18) >> 18;
 replCacheDataAddr += cacheDataBase;

191

 iunmapw(replAddr,0,replCacheDataAddr);
 iunmapw(replAddr,32,replCacheDataAddr+32);
 }

 mfc0(text_base,MD_REG_C0_TEXT); // where compressed region starts
 mfc0(dict_base,MD_REG_C0_DICTIONARY); // where dictionary starts
 mfc0(lat_base,MD_REG_C0_LAT); // where line address table starts
 mfc0(indices_base,MD_REG_C0_INDICES); // where indices start (the codewords)

 /* miss SW cache */

 insnNumber = (baddr - text_base) >> 2; /* (b-ltb/4) 4=sizeof SS32 insn */

 /* Determine what compression group and block the requested
 instruction is in. 32 instructions per compression group, 16
 instructions per compression block, 2 compression blocks per
 group. */
 groupNumber = insnNumber >> 5; /* / 32; */
 blockNumber = insnNumber >> 4; /* / 16; */

 /* Determine whether the requested address is in the first or second
 compression block in the group. */
 whichBlock = blockNumber % 2;

 /* Calculate address of index table entry. Each index table entry
 is 4 bytes long and contains info for one compression group */
 /* fetch index table entry from memory */
 mem_load_4B_RR(lat_base,groupNumber*4,indexTableEntry);

 /* offset of compression group is upper 26 bits of index table entry
 shifted right */
 groupOffset = indexTableEntry & ~0x3f;
 groupOffset = groupOffset >> 6;

 /* offset of second block in compression group is lower six bits of
 index table entry */
 secondBlockOffset = indexTableEntry & 0x3f;

 /* address of compression group is base address of text plus group
 offset */
 groupAddr = indices_base + groupOffset;

 /* check whether first or second block in group is being accessed */
 if (whichBlock == 0) /* first block */
 {
 /* block address is same as group address */
 blockAddr = groupAddr;
 if (secondBlockOffset <= 1)

{
 /* if block offset of index table entry is 0 or 1, first block
 is not compressed */
 goto copy;
}

 }
 else /* second block */
 {
 if (secondBlockOffset <= 1)

{
 /* if block offset of index table entry is 0 or 1, second block

192

 address is address of first block + 64 */
 blockAddr = groupAddr + 64;
 if (secondBlockOffset == 0)
 {
 /* if block offset of index table entry is 0, second block
 is not compressed */
 goto copy;
 }
}

 else
{
 /* if block offset of index table entry is greater than 1,
 second block address is address of first block plus block
 offset (lower 6 bits of index table entry) */
 blockAddr = groupAddr + secondBlockOffset;
}

 } /* second block */

 ihalfHiLookupAddr = (long) &ihalfHiLookup;
 ihalfLoLookupAddr = (long) &ihalfLoLookup;
 indexHiLookupAddr = (long) &indexHiLookup;
 indexLoLookupAddr = (long) &indexLoLookup;

 /* decompress:*/
 {
 unsigned long tagHi, tagLo;
 unsigned long tagHiLength, tagLoLength;
 unsigned long indexHi, indexLo;
 unsigned long indexHiLength, indexLoLength;
 unsigned short ihalfHi16, ihalfLo16;

 unsigned long inputWord;
 unsigned long tempWord;
 unsigned long bitPosition = 32 - (8 * (blockAddr & 0x03));
 unsigned long addr = blockAddr & ~0x03;
 unsigned k;

 /* fetch first word from memory into inputWord - use “big-endian” word load
*/
 mem_load_4B(addr,inputWord);

 for (loop = 0; loop < 16; loop++)
 /* fetch and decompress 16 instructions (one block) */
 {

/* determine length of high tag by looking at next bit of
 input word */
tempWord = inputWord << (32-bitPosition);

/* tempWord is 0 or 1. If 0, length = 3, else length=2. */
tagHiLength = 2 + (tempWord>>31);
k = 32 - tagHiLength;
if (bitPosition > tagHiLength)
 {
 /* if all the bits for the high tag are available in this
 input word, grab them and readjust bitPosition */
 tempWord = tempWord >> k;

 tagHi = tempWord;

193

 bitPosition -= tagHiLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 tagHi = tempWord;

 /* get the rest of the bits for the high tag from the next word */
 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
tagHi |= tempWord;
 }
 }

/* repeat above for low tag */
tempWord = inputWord << (32-bitPosition);

/* tempWord is 0 or 1. If 0, length = 3, else length=2. */
tagLoLength = 2 + (tempWord>>31);
k = 32-tagLoLength;
if (bitPosition > tagLoLength)
 {
 tempWord = tempWord >> k;
 tagLo = tempWord;
 bitPosition -= tagLoLength;
 }
else
 {
 tempWord = tempWord >> k;
 tagLo = tempWord;

 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
tagLo |= tempWord;
 }
 }

/* determine length of indexes according to the tag values */
mem_load_1B_RR(indexHiLookupAddr,tagHi,indexHiLength);
mem_load_1B_RR(indexLoLookupAddr,tagLo,indexLoLength);

/* get high index value from memory */
tempWord = inputWord << (32-bitPosition);
k = 32 - indexHiLength;
if (bitPosition > indexHiLength)
 {
 /* if the rest of the bits for the high index are
 available in this input word, grab them */
 tempWord = tempWord >> k;

194

 indexHi = tempWord;
 bitPosition -= indexHiLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 indexHi = tempWord;

 /* get the rest of the bits for the high index from the

 next word */
 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {
tempWord = inputWord >> bitPosition;
indexHi |= tempWord;
 }
 }

/* repeat above for low index value */
tempWord = inputWord << (32-bitPosition);
k = 32-indexLoLength;
if (bitPosition > indexLoLength)
 {
 /* if the rest of the bits for the low index are
 available in this input word, grab them */
 tempWord = tempWord >> k;

 indexLo = tempWord;
 bitPosition -= indexLoLength;
 }
else
 {
 /* otherwise, get the rest of the bits in this input word */
 tempWord = tempWord >> k;

 indexLo = tempWord;

 /* get the rest of the bits for the low index from the

 next word */
 addr += 4;
 mem_load_4B(addr,inputWord);
 bitPosition += k;

 if (bitPosition < 32)
 {

tempWord = inputWord >> bitPosition;
indexLo |= tempWord;
 }
 }

/* now we have the indexes into the decode lookup table for
 this instruction. look up the high and low half-words and
 store into temps. each entry in the dictionary is 2 bytes
 long. the dictionary for the high index starts at
 dict_base. the dictionary for the low index starts at

195

 dict_base + 512. */

if (tagHi != 7)
 {
 unsigned temp;
 mem_load_2B_RR(ihalfHiLookupAddr,tagHi<<1,temp);
 temp += indexHi;
 mem_load_2B_RR(dict_base,2*temp,ihalfHi16);
 }
else
 {
 ihalfHi16 = indexHi;
 }

if ((tagLo != 7) && (tagLo != 0))
 {
 unsigned temp;
 mem_load_2B_RR(ihalfLoLookupAddr,tagLo<<1,temp);
 temp += indexLo;
 mem_load_2B_RR(dict_base,2*temp,ihalfLo16);
 }
else if (tagLo == 0)
 {
 ihalfLo16 = 0;
 }
else
 {
 ihalfLo16 = indexLo;
 }

/* put together the whole 32-bit instruction and put it into
 temporary storage */
iword32 = (ihalfHi16 << 16) | ihalfLo16;
swic(compressedBlockAddr,0,iword32);
compressedBlockAddr+=4;

 }

 }

 goto done;

 copy:
 /* block is not compressed, we can just copy it directly from memory
 with no decoding */
 {
 unsigned char temp;
 unsigned long addr = blockAddr;

 for (loop = 0; loop < 16 ; loop++)
 {

unsigned long iword=0;
/* fetch 16 instructions (one block, 64 bytes) and put them
 into temporary storage */
for (loopByte = 0; loopByte < 4; loopByte++)
 {
 mem_load_1B(addr,0,temp);
 addr++;
 ((unsigned char *)&iword)[loopByte] = temp;

196

 }
swic(compressedBlockAddr,0,iword);
compressedBlockAddr+=4;

 }

 }

 done:
 isync;
 iret;

}

197

Bibliography

[Araujo98] G. Araujo, P. Centoducatte, M. Cortes, and R. Pannain, “Code Com-
pression Based on Operand Factorization”, Proceedings of the 31st An-
nual International Symposium on Microarchitecture, pp. 194-201,
1998.

[ARM95] Advanced RISC Machines Ltd., An Introduction to Thumb, March
1995.

[Bell90] T. Bell, J. Cleary, I. Witten, Text Compression, Prentice Hall, 1990.

[Benes97] M. Benes, A. Wolfe, S. M. Nowick, “A High-Speed Asynchronous De-
compression Circuit for Embedded Processors”, Proceedings of the
17th Conference on Advanced Research in VLSI, pp. 219-236, Septem-
ber 1997.

[Benes98] M. Benes, S. M. Nowick, and A. Wolfe, “A Fast Asynchronous Huff-
man Decoder for Compressed-Code Embedded processors”, Proceed-
ings of the IEEE International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pp. 43-56, September 1998.

[Bird96] P. Bird and T. Mudge, An Instruction Stream Compression Technique,
Technical report CSE-TR-319-96, EECS Department, University of
Michigan, November 1996.

[Bunda93] J. Bunda, D. Fussell, R. Jenevein, and W.C. Athas, “16-Bit vs. 32-Bit In-
structions for Pipelined Microprocessors”, Proceedings of the 20th An-
nual International Symposium of Computer Architecture, pp. 237-246,
1993.

[Burger97] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0”,
Computer Architecture News 25(3), pp. 13-25, June 1997.

[Cate91] V. Cate and T. Gross, “Combining the Concepts of Compression and
Caching for a Two-Level Filesystem”, Proceedings of the 4th Interna-
tional Conference on Architectural Support for Programming Languag-
es and Operating Systems, pp. 200-209, 1991.

[Chen97a] I. Chen, P. Bird, and T. Mudge, The Impact of Instruction Compression
on I-cache Performance, Technical report CSE-TR-330-97, EECS De-
partment, University of Michigan, 1997.

[Chen97b] I. Chen, Enhancing Instruction Fetching Mechanism Using Data Com-
pression, Ph.D. Dissertation, University of Michigan, 1997.

[Citron95] D. Citron, “Creating a Wider Bus Using Caching Techniques”, Pro-
ceedings of the 1st International Symposium on High-Performance
Computer Architecture, pp. 90-99, January 1995.

[Coffing97] C. Coffing and J. Brown, “A System for Transparent File Compression
With Caching Under Linux”, unpublished.

198

[Cooper99] Keith D. Cooper and Nathaniel McIntosh, “Enhanced code compression
for embedded RISC processors”, Proc. Conf. on Programming Lan-
guages Design and Implementation, pp. 139-149, 1999.

[Debray99] S. Debray, W. Evans, and R. Muth, “Compiler Techniques for Code
Compression”, Proc. 2nd Workshop on Compiler Support for Systems
Software (WCSSS-99), May 1999.

[Douglis93] F. Douglis, “The Compression Cache: Using On-line Compression to
Extend Physical Memory”, Proceedings of the Winter 1993 USENIX
Conference, pp. 88-94, 1993.

[Ernst97] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A. Proebsting, “Code
compression”, Proceedings of the ACM SIGPLAN’97 Conference on
Programming Language Design and Implementation (PLDI), pp. 358-
365, June 1997.

[Flynn83] M. J. Flynn and L. W. Hoevel, “Execution Architecture: The DELtran
Experiment”, IEEE Transactions on Computers, Vol. C-32, No. 2, pp.
156-175, February 1983.

[Franz94] M. Franz, Code-Generation On-the-Fly: A Key for Portable Software,
Ph.D. dissertation, Institute for Computer Systems, ETH Zurich, 1994.

[Franz97] M. Franz and T. Kistler, “Slim binaries”, Communications of the ACM,
40(12):87–94, December 1997.

[Fraser95] C. W. Fraser, T. A. Proebsting, Custom Instruction Sets for Code Com-
pression, unpublished, http://www.cs.arizona.edu/people/todd/papers/
pldi2.ps, October 1995.

[Greenhills98] Greenhills Software, Optimizing Speed vs. Size using The CodeBalance
Utility For ARM/THUMB and MIPS16 Architectures, white paper,
1998.

[Gwennap99] L. Gwennap, “MAJC Gives VLIW a New Twist”, Microprocessor Re-
port, 13(12), pp. 13-15:22, Sept. 13, 1999.

[Hooger99] J. Hoogerbrugge, L. Augusteijn, J. Trum, and R. Van De Wiel, “A Code
Compression System Based on Pipelined Interpreters”, Softw. Pract.
Exper., 29(11), pp. 1005-1023, 1999.

[Horowitz98] M. Horowitz, M. Martonosi, T. Mowry, M. Smith, “Informing Memory
Operations: Memory Performance Feedback Mechanisms and Their
Applications”, ACM Transactions on Computer Systems, 16(2):170-
205, May 1998.

[IBM98] IBM, CodePack PowerPC Code Compression Utility User’s Manual
Version 3.0, IBM, 1998.

[IBM00] IBM, ASIC SA-27E, Databook, February 2000.

199

[Jacob97] B. Jacob and T. Mudge, “Software-Managed Address Translation”,
Proceedings of the Third International Symposium on High Perfor-
mance Computer Architecture, pp. 156-167, 1997.

[Jacob99] B. Jacob, “Cache Design for Embedded Real-Time Systems”, Proceed-
ings of the Embedded Systems Conference, Summer 1999.

[Jouppi90] N. Jouppi, “Improving Direct-Mapped Cache Performance by the Addi-
tion of a Small Fully-Associative Cache and Prefetch Buffers”, Pro-
ceedings of the 17th International Symposium on Computer
Architecture, pp. 364-373, June 1990.

[Kemp98] T. M. Kemp, R. K. Montoye, J. D. Harper, J. D. Palmer, and D. J. Auer-
bach, “A decompression core for PowerPC”, IBM Journal of Research
and Development 42(6), November 1998.

[Kirovski97] D. Kirovski, J. Kin, and W. H. Mangione-Smith, “Procedure Based Pro-
gram Compression”, Proceedings of the 30th Annual International Sym-
posium on Microarchitecture, pp.204-211, December 1997.

[Kissell97] K. Kissell, MIPS16: High-density MIPS for the Embedded Market,
Technical report, Silicon Graphics MIPS Group, 1997.

[Klint81] P. Klint, “Interpretation Techniques”, Software Practice and Experi-
ence, Vol. 11, No.9, pp. 963-973, September 1981.

[Kozuch94] M. Kozuch and A. Wolfe, “ Compression of Embedded System Pro-
grams,” IEEE International Conference on Computer Design, pp. 270-
277, 1994.

[Kunchit99] K. Kunchithapadam and J. Larus, Using Lightweight Procedures to im-
prove Instruction Cache Performance, CS-TR-99-1390, University of
Wisconsin, 1999.

[Larin99] S. Larin and T. Conte, “Compiler-Driven Cached Code Compression
Schemes for Embedded ILP Processors”, Proceedings of the 32nd An-
nual International Symposium on Microarchitecture, pp. 82-92, No-
vember 1999.

[Lee97] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A Tool
for Evaluating and Synthesizing Multimedia and Communications Sys-
tems”, Proceedings of the 30th Annual International Symposium on Mi-
croarchitecture, December 1997.

[Lefurgy97] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge, “Improving code density
using compression techniques”, Proceedings of the 30th Annual Inter-
national Symposium on Microarchitecture, pp. 194-203, December
1997.

[Lefurgy98] C. Lefurgy and T. Mudge, Code Compression for DSP, CSE-TR-380-
98, University of Michigan, November 1998.

200

[[Lekatsas98] H. Lekatsas and W. Wolf, “Code Compression for Embedded Systems”,
Proceedings of the 35th Design Automation Conference, pp. 516-521,
June 1998.

[Lelewer87] D. A. Lelewer and D. S. Hirschberg, “Data Compression”, ACM Com-
puting Surveys, 19(3):261-296, September 1987.

[Liao95] S. Liao, S. Devadas, K. Keutzer, “Code Density Optimization for Em-
bedded DSP Processors Using Data Compression Techniques”, Pro-
ceedings of the 15th Conference on Advanced Research in VLSI, March
1995.

[Liao96] S. Liao, Code Generation and Optimization for Embedded Digital Sig-
nal Processors, Ph.D. Dissertation, Massachusetts Institute of Technol-
ogy, June 1996.

[Michie68] D. Michie, “Memo Functions and Machine Learning”, Nature, Vol. 218,
pp. 19-22, April 6, 1968.

[MIPS96] MIPS Technologies, Inc., MIPS R10000 Microprocessor User’s Manu-
al, Version 2.0, 1996.

[Motorola94] Motorola, PowerPC Microprocessor Family: The Programming Envi-
ronments, Sept. 1994.

[Perl96] S. Perl and R. Sites, “Studies of Windows NT Performance Using Dy-
namic Execution Traces”, Proceedings of the USENIX 2nd Symposium
on Operating Systems Design and Implementation, pp. 169-183, Octo-
ber 1996.

[Pettis90] K. Pettis and R. Hansen, “Profile Guided Code Positioning”, Proceed-
ings of the ACM SIGPLAN’90 Conference on Programming Language
Design and Implementation (PLDI), pp. 16-27, June 1990.

[Pittman87] T. Pittman, “Two-Level Interpreter/Native Code Execution”, Proceed-
ings of the SIGPLAN’87 Symposium on Interpreters and Interpretive
Techniques, pp. 150-152, 1987.

[SPEC95] SPEC CPU’95, Technical Manual, August 1995.

[Standish76] T. A. Standish, D. C. Harriman, D. F. Kibler, and J. M. Neighbors, The
Irvine Program Transformation Catalogue, Department of Information
and Computer Science, University of California, Irvine, January 1976.

[Storer77] J. Storer, NP-completeness Results Concerning Data Compression,
Technical report 234, Department of Electrical Engineering and Com-
puter Science, Princeton University, 1977.

[Szymanski78] T. G. Szymanski, “Assembling code for machines with span-dependent
instructions,” Communications of the ACM 21:4, pp. 300-308, April
1978.

201

[Taunton91] M. Taunton, “Compressed Executables: an Exercise in Thinking
Small”, Proceedings of the Summer 1991 USENIX Conference, pp. 385-
403, 1991.

[Turley95] J. L. Turley, “Thumb squeezes arm code size”, Microprocessor Report,
9(4), pp. 1-5, 27 March 1995.

[Williams91] R. Williams, “An Extremely Fast Ziv-Lempel Data Compression Algo-
rithm”, Data Compression Conference, pp.362-371, 1991.

[Witten90] Witten, R. Neal, and J. Cleary, “Arithmetic Coding for Data Compres-
sion”, Communications of the ACM, Vol. 30(6), pp. 520-540, June 1987.

[Wolfe92] A. Wolfe and A. Chanin, “Executing Compressed Programs on an Em-
bedded RISC Architecture,” Proceedings of the 25th Annual Interna-
tional Symposium on Microarchitecture, December 1992.

[Wulf75] W. Wulf, R. Johnsson, C. Weinstock, S. Hobbs, and C. Geschke, The
Design of an Optimizing Compiler, North Holland, 1975.

