Code Compression for DSP

CSE-TR-380-98

Charles Lefurgy and Trevor Mudge
{lefurgy,tnm}@eecs.umich.edu

EECS Department, University of Michigan
1301 Beal Ave., Ann Arbor, MI 48109-2122

http://www.eecs.umich.edu/~thm/compress

Presented at
Compiler and Architecture Support for Embedded Computing Systems (CASES 98)
December 4-5, 1998
George Washington University
Washington DC

Abstract

Previous works have proposed adding compression techniques to a variety of architectural styles to reduce
instruction memory requirements. It is not immediately clear how these results apply to DSP architectures. DSP
instructions are longer and have potentially greater variation which can decrease compression ratio. Our results dem-
onstrate that DSP programs do provide sufficient repetition for compression algorithms. We propose a compression
method and apply it to SHARC, a popular DSP architecture. Even using a very simple compression algorithm, it is
possible to halve the size of the instruction memory requirements.

Keywords: Compression, Code Density, Code Space Optimization, DSP, Embedded Systems

1 Introduction program representation [Conte95] reduced program size
by eliminating NOP fields.
In a previous work [Lefurgy97], we used dictionary
pression to reduce the instruction memory footprint
of embedded programs. We examined replacing fre-
quently used sequences of instructions with a codeword.
The codeword served as an index into a list of instruc-
tion sequences. Fetching and decoding the codewords
recovered the original sequence of instructions to exe-
cute. A variable-length encoding using small codewords
-bits, 12-bits, and 16-bits), allowed us to compress
'PowerPC programs to 60% of their original size. We

. . - will show that even simpler compression techniques can
Wolf97, Aran1098]. Previous work focuged on using improve SHARC [ADI] programs by much greater
short variable-length codewords and increasing the

meaning of codes by allowing them to decode to a list Ofamounts.
instructions. It is not known if such compression meth- 3
ods can be used on DSP architectures. DSP instructions
can hold multiple independent operations which poten- Our compression scheme takes advantage of the
tially increases variance in the instruction bit patterns.observation that the instructions in programs are highly
Our previous study [Lefurgy98] noted that most com- repetitive. Each unique instruction word in the program
pression can be attributed to single instruction patternsis put in aninstruction table Each instruction in the
We use this idea to show that programs for DSP archi-program is then replaced with an index into this table.
tectures are highly compressible. Compression for DSFBecause the instruction words are replaced with a
has two important ramifications. First, performance canshorter code and because the table overhead is usually
be traded for small code size. Second, small code sizesmall compared to the program size, the compressed
reduces the frequency at which overlays are performedrersion is smaller than the original. Instructions that
and therefore can vastly improve execution time. only appear once in the program are problematic. The
The organization of this paper is as follows. Section original instruction in the instruction table and the index
2 reviews previous work in code compression. We in the program stream are larger than the single original
present our compression method in section 3. Ourinstruction, causing a slight expansion from the native
experimental results are presented in section 4. In secrepresentation.
tion 5, we discuss some implications of the results. The SHARC pipeline is shown in Figure 1.

Architectures for digital signal processing (DSP)
have adopted several characteristics of Very LongCom
Instruction Word (VLIW) architectures, including wide
instruction words. The cost of using the explicit paral-
lelism of VLIW is much larger code sizes. Beyond the
classical optimizations used to achieve smaller pro-
grams, compression can shrink program size by utiliz-
ing repetition found at the instruction level. Several
compression techniques have been proposed for gener
purpose architectures [Wolfe92, Kozuch94, Fraser95
Liao95, Benes97, Ernst97, Kirovski97, Lefurgy97,

Compression architecture

Finally, section 6 contains our conclusions. SHARC typically uses the Program Memory bus to
fetch instructions and uses the Data Memory bus to
2 Previous work fetch data. However, it can also use these busses for dual

There h b | ; K q data access. When this happens, instructions are exe-
ere nave been several recent works on code COMg, oy from the instruction cache so that the Program

pression. The Compressed Code RISC Processoi(/lemor e
; y bus can be used for data fetch. The modifica-
(CCRP) [Wolfe92, Kozuch94, Benes97] is a MIPS pro- tion of SHARC for compressed programs is given in

cessor that compresses instruction cache lines using:igure 2. We augment the 3 stage SHARC pipeline by
Huffman coding. cht|on€_;1ry compression methods adding a pre-fetch stage. First, the pre-fetch stage
[B_eII90] have been studied for several ProcessorS ayieves the 16-bit instruction index from the external
[IT|a095, Lefurgy97]. A software-mgnaged compres- memory. Theinstruction table address registdrolds
sion-cache that decompresse_s functions on a (_:ache M3Re location of the instruction table in the internal mem-
has been proposed [K'rOVSk'9_7]' . Compression algo'ory. Adding the contents of this register to the index
rithms based on operand factorization and Markov mod-forms the address of the SHARC instruction. Second
els have been suggested for tra_msmitting programs OVef,q fetch stage uses this address to get the 48-bit
netv_vorks [Er”5t971- A C compiler that produces cus- SHARC instruction word. Finally, the instruction is
tomized compact interpreters and byte-code has bee%sued to the decode stage.

demonstrated [Fraser95]. Carmel [Sucher98] is a DSP There are three costs for adding the pre-fetch stage.
architecture that uses a dictionary compression techy; o 0 exira internal memory bus must be added to
nigue. More complicated compression algorithms havesupp’Ort simultaneous access to the index memory, pro-

combined operand factorization with Huffman and :
. . : . ram memory, and data memories. SHARC uses dual-
arithmetic coding [Aranjo98, Lekatsas98]. A VLIW g 4

1

Internal SRAM
Program Data
Memory Memory

c c

So |2

sg |8 Program Data

E5 | & Bus Bus

22| 2

=<7y Y
Insn-Fetch | Decode | Execute |
1 A A A

Sy

S8 Program Data
g§ 2 Bus Bus

\

Instruction Program || Data
Cache Memory || Memory

Internal SRAM

Figure 1: SHARC pipeline

Top shows program fetch during execution of a
single data access instruction. Bottom shows
program fetch during execution of a dual data
access instruction. Instructions are fetched from
cache when execution unit uses both Program
and Data busses to fetch data.

Internal SRAM

Program Data
Memory Memory

Index

Memory
c % 5
29 Index g 2|5 | Program Data
225 | Bus =£]2| Bus Bus
33| EEA R
cg|E cI|E
Y Y \
| Index-fetch | Insn-Fetch | Decode | Execute |
A s, A A A
B0
5 Index §g 3 Program Data
g Bus ggvg Bus Bus
3
£

Address
Index

Instruction

Cache

Index Program | | Data

Memory Memory | | Memory
Internal SRAM

Figure 2: Compressed program pipeline

Top shows program fetch during single data path
instruction execution. Bottom shows program
fetch during dual data path execution.

ported SRAM to achieve simultaneous accesses over th

When data and program accesses compete for use
of the program bus, SHARC puts the conflicting
instruction in the instruction cache. Future references to
the same instruction address can use the I-cache and
allow the program bus to be used for data. This feature
allows loops with instructions that use the program bus
for data access to execute without penalty due to bus
contention. This is extremely important for DSP algo-
rithms which tend to be composed of small, computa-
tion-intensive loops. Our compression architecture
retains this valuable feature.

The 16-bit index limits a program to use only 64K
unigue instructions. However, programs that use more
instructions can be accommodated. One alternative is to
add a mode-switching branch to the instruction set simi-
lar to the one used in ARM [ARM95, Turley95]. This
would cause the fetch units to switch between using
indexes and normal SHARC instructions. In native
mode, the pre-fetch stage could be turned off. The fetch
stage would use the program counter to fetch SHARC
instructions as usual. Another possibility is to encode
different parts of the program by using different instruc-
tion tables. By simply re-loading thestruction table
address registeran entire new set of 64K instructions
can be used. This register can also be used to allow each
program in an embedded system to use its own instruc-
tion table so that the tables are tuned to the instructions
that the program actually uses.

3.1 Branch instructions

In our previous work, we did not compress branch
instructions because doing so could affect instruction
repetition in complicated ways. Using patterns of only 1
instruction with a fixed-length encoding eliminates this
problem. Compressing a program moves all instructions
to a different location. This affects branches which have
index and address fields. Additionally, codewords are
smaller than the original instructions, so the instruction
fetch mechanism and branches must use a new align-
ment. Since we are using 16-bit codewords, PC-relative
branches and absolute branches now specify a 16-bit
aligned address. In this simple scheme, the index fields
of the PC-relative branches do not change since the dis-
tance (number of instructions or codewords) between
the branch and target are the same. Absolute branches,
which the compiler uses for function calls, must change
fo use the address for the new location of the target

program and data busses. Instead of adding another pof,,tion. However, all such branches that matched

to SRAM for the index bus, a separate SRAM block
could be dedicated to index memory. Second, the pre

before will also match after this transformation. There-
fore, we can easily compress branch instructions just as

fetch stage adds a third branch delay slot. Last, one regény other instruction
ister must be added to hold the address of the instruction '

table.

Static Original Size Compressed | Compression
Benchmark Optimization Instructions Table size (bytes) Size (bytes) Ratio
mpeg2enc none 28,832 7,167 172,992 100,666 58.2%
-01 26,537 8,118 159,222 101,782 $3.9%
go none 81,343 8,564 488,058 214,070 43.9%
-01 76,424 12,931 458,544 230,434 30.3%
ghostscript none 352,525 33,322 2,115,150 904,982 42.8%
-01 310,869 49,734 1,865,214 20,142 49.3%
Table 1: Baseline results
4 Results instruction may not match any other instruction. We can

improve the compression ratios by removing these
unigue instructions from the table. To accomplish this,
we select some instructions that can be represented in
6-bits and mix them in with the index stream. These
hort instructions will be coded with unused index val-
ues. For this experiment, we selected the 8 most fre-
quent ALU operations for each benchmark to use as
short instructions. The encoding of the index stream is
s follows. If an index begins with the bit 0, then the
remaining 15 bits are the index into the instruction
table. If then index begins with 1, then next 3 bits will
select an ALU operation in the SHARC. The remaining
12 bits are divided into groups of 4-bits to select 3 regis-
(Eq. 1) ters for the ALU operation. The 3-bit ALU operation
' field selects one entry from an 8-entry table of SHARC

Table 1 shows the results for the our basic compresALU opcodes. This table could be programmable so
sion method. Each benchmark was compiled with andthat each program could select the 8 best ALU instruc-
without optimizations. We only use “-O1” optimization tions to help compression.
because higher levels of optimization exposed bugs in ~ Results for mixing ALU operations and indexes are
the compiler. TheTable Sizecolumn is the number of ~Presented in Table 2. Some common ALU operations
entries in theinstruction table There is one entry for used are addition, multiplication, subtraction, pass,
each unique instruction bit pattern in the progr@om- ~ compare, increment, and decrement. This encoding sig-

pressed Sizis the combined size of the indexes and the Nificantly reduces the table size. However, fgiost-
instruction table. scriptwith optimization, there are too few unused index

Classical code Optimizations are one Way to attain aVa.IUeS to a.dd the Shortened ALU instructions. For Other
smaller code size. Using some optimization on thebPenchmarks, the compression ratio is improved between

benchmarks reduces the number of instructions, but itl-2% and 3.7%.
also increases the table size. The table size increases)

because the number of unique instructions increase® Discussion
when single operation instructions are combined into 2
and 3 operation instructions. In un-optimized code, o< with a nibble compression algorithm

instructions only contain 1 operation and aré morey of,qv97]. This algorithm reduces the size of code-
likely to match each other. The reduced number of, . 4o (indexes) to 8 bits, 12 bits, and 16 bits. Each

instructions in the optimized code did not account for o ye\ord can represent a list of instructions. However

the increase in the table size. Therefore, the smallesp oo jnstructions are not encoded. Instead they are
representation was attained by compressing un-optiy efived with an 4-bit escape nibble to differentiate

mized code. _ _ _them from the codewords. Table 3 shows the results and

The instruction tables contain many instructions compares them to the baseline method. This demon-
that are used only once in the entire program. One réagy aeq that more complicated schemes can attain better
son this happens is that the combination of registers the.,myression ratios. Interestingly, the compression ratios

register allocation algorithm uses for a particular ¢, yhe |arger benchmarks are quite similar which shows

In this section we integrate our compression tech-
nigue into the SHARC ADSP-2106x instruction set. We
use benchmarks from SPEC CINT95 [SPEC95] and
MediaBench [Lee97]. These benchmarks are compile
with the VisualDSP compiler from Analog Devices. The
portions of the benchmarks for file /O were removed
since they are not supported by the compiler’s libraries.
Our results include both application and library code.
All compressed program sizes include the overhead o
the dictionaryCompression ratidgs used to measure the
amount of compressibility.

compressed size

compression ratio= o -
original size

For comparison, we also compressed the bench-

3

Table size Compression
change from Compressed | Compression | ratio change
Benchmark Optimization Table size baseline size (bytes) ratio from baseline
mpeg2enc none 6,107 -1060 94,306 54.5% -3.7%
-01 7,323 -795 97,012 60.9% -3.0%
go none 7,213 -1351 205,964 42.2% -1.7%
-01 11,728 -1203 223,216 48.7% -1.6%
ghostscript none 29,183 -4139 880,148 41.6% -1.2%
-01 46,498 -3236 N/A N/A N/A
Table 2: Addition of short instruction words
Compression
Compressed | Compression | ratio change
Benchmark Optimization size (bytes) ratio from baseline
mpeg2enc none 89,647 51.8% -6.4%
-01 88,541 55.6% -8.3%
go none 196,260 40.2% -3.7%
-01 203,632 43.3% -7.0%
ghostscript none 883,789 41.8% -1.0%
-01 852,871 45.7% -3.6%

Table 3: Nibble encoding

that even simple compression algorithms can be effecAcknowledgments
tive. Using the shorter codewords instead of compress- ,
ing branches yielded slightly better compression ratios__11iS work was supported by DARPA grant
for the larger benchmarks. DABT63-97-C-0047.

In embedded systems that must use external mem-
ory to store programs, overlays are an important way toReferences
effectively use internal memory to achieve high perfor-
mance. Code compression can assist such systems
achieve even greater performance. Smaller code siz8ARM95] Advanced RISC Machines LtdAn Introduction to
reduces the frequency at which overlays must be usedhumb March 1995.

since a larger portion of the program can fit in internal [Bell90] T. Bell, J. Cleary, |. WittenText CompressigrPren-
memory. In addition, loading a compressed function tice Hall, 1990.

from external memory requires less time than loading a[Benes97]M Benes, A. Wolfe, S. M. Nowick, “A High-Speed
non-compressed function. Asynchronous Decompression Circuit for Embedded Proces-

sors”, Proceedings of the 17th Conference on Advanced
Research in VLSBeptember 1997.

{éDI] Analog Devices, INcSHARC User’'s Manual

6 Conclusions

We have demonstrated that even simple compres{Conte95]T. Conte and S. Sathaye, “Dynamic Rescheduling:
sion methods can be highly effective at reducing code” Technique for Object Code Compatibility in VLIW Archi-
sizes in DSP programs. Compressing only Sing|etectyres“,Pro.ceeding.s of the 28th Annual International Sym-
instructions to a fixed-length code allows us to have aP°Sium on MicroarchitecturéNovember 1995.
simple mechanism for decompression which has mini-[Ernst97] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and
mal impact on the SHARC architecture. Our method T. A. Proebsting, “Code compressionProceedings of the
can compress programs to half their original size while ACM SIGPLAN'97 Conference on Programming Language
allowing the hand-coded numerical loops that areDesignand Implementation (PLDQune 1997.
important in DSP algorithms to run at native speeds. [Fraser95] C. W. Fraser, T. A. Proebstingustom Instruction

Sets for Code Compressionnpublished, http://www.cs.ari-
zona.edu/people/todd/papers/pldi2.ps, October 1995.

[Kirovski97] D. Kirovski, J. Kin, and W. H. Mangione-Smith,
“Procedure Based Program Compressidirgceedings of the

30th Annual International Symposium on Microarchitecfure [Liao95] S. Liao, S. Devadas, K. Keutzer, “Code Density
December 1997. Optimization for Embedded DSP Processors Using Data
[Kozuch94] M. Kozuch and A. Wolfe,“ Compression of gﬁcn;p;ﬁsjgolgfgggggg:ﬂﬁgﬁvﬁigfﬁ&15th Confer-
Embedded System ProgramEZEE International Conference v !)

on Computer Desigri994. [SPEC95]SPEC CPU'95, Technical Manual, August 1995.

[Lee97] C. Lee, M. Potkonjak, and W. Mangione-Smith, [Sucher98]R. Sucher, R. Niggebaum, G. Fettweiss, and A.
“MediaBench: A Tool for Evaluating and Synthesizing Multi- Rom, “CARMEL - A New High Performance DSP Core
media and Communications System#&toceedings of the Using CLIW", 9th Annual International Conference on Signal

30th Annual International Symposium on Microarchitecture Processing Applications and Technolp§gptember 1998.

December 1997. [Turley95] J.L. Turley. “Thumb squeezes arm code size”.

[Lefurgy97] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge, Microprocessor Repor9(4), 27 March 1995.
“Improving code density using compression techniquBsd;
ceedings of the 30th Annual International Symposium on
Microarchitecture December 1997.

[Wolfe92] A. Wolfe and A. Chanin, “Executing Compressed
Programs on an Embedded RISC ArchitectuRrfceedings
of the 25th Annual International Symposium on Microarchi-
[Lekatsas98]H. Lekatsas and W. Wolf, “Code Compression tecture December 1992.

for Embedded Systems’Proceedings of the 35th Design

Automation Conferencdune 1998.

	Abstract
	1 Introduction
	2 Previous work
	3 Compression architecture
	3.1 Branch instructions

	4 Results
	Table 1: Baseline results
	Table 2: Addition of short instruction words

	5 Discussion
	Table 3: Nibble encoding

	6 Conclusions
	Acknowledgments

