
Code Compression for DSP

CSE-TR-380-98

Charles Lefurgy and Trevor Mudge
{lefurgy,tnm}@eecs.umich.edu

EECS Department, University of Michigan
1301 Beal Ave., Ann Arbor, MI 48109-2122

http://www.eecs.umich.edu/~tnm/compress

Presented at
Compiler and Architecture Support for Embedded Computing Systems (CASES 98)

December 4-5, 1998
George Washington University

Washington DC

Abstract

Previous works have proposed adding compression techniques to a variety of architectural styles to reduce
instruction memory requirements. It is not immediately clear how these results apply to DSP architectures. DSP
instructions are longer and have potentially greater variation which can decrease compression ratio. Our results dem-
onstrate that DSP programs do provide sufficient repetition for compression algorithms. We propose a compression
method and apply it to SHARC, a popular DSP architecture. Even using a very simple compression algorithm, it is
possible to halve the size of the instruction memory requirements.

Keywords: Compression, Code Density, Code Space Optimization, DSP, Embedded Systems



ize

nt
e-
rd.
c-
rds
e-

ds
ss
e
an
r

the
ly

m

e.
a

ally
ed
t

he
x
al
e

.
o
to
ual
xe-
m
a-
n
y

ge
al

-
x
d,
-bit

ge.
to
ro-
al-
1  Introduction

Architectures for digital signal processing (DSP)
have adopted several characteristics of Very Long
Instruction Word (VLIW) architectures, including wide
instruction words. The cost of using the explicit paral-
lelism of VLIW is much larger code sizes. Beyond the
classical optimizations used to achieve smaller pro-
grams, compression can shrink program size by utiliz-
ing repetition found at the instruction level. Several
compression techniques have been proposed for general
purpose architectures [Wolfe92, Kozuch94, Fraser95,
Liao95, Benes97, Ernst97, Kirovski97, Lefurgy97,
Wolf97, Aranjo98]. Previous work focused on using
short variable-length codewords and increasing the
meaning of codes by allowing them to decode to a list of
instructions. It is not known if such compression meth-
ods can be used on DSP architectures. DSP instructions
can hold multiple independent operations which poten-
tially increases variance in the instruction bit patterns.
Our previous study [Lefurgy98] noted that most com-
pression can be attributed to single instruction patterns.
We use this idea to show that programs for DSP archi-
tectures are highly compressible. Compression for DSP
has two important ramifications. First, performance can
be traded for small code size. Second, small code size
reduces the frequency at which overlays are performed
and therefore can vastly improve execution time.

The organization of this paper is as follows. Section
2 reviews previous work in code compression. We
present our compression method in section 3. Our
experimental results are presented in section 4. In sec-
tion 5, we discuss some implications of the results.
Finally, section 6 contains our conclusions.

2  Previous work

There have been several recent works on code com-
pression. The Compressed Code RISC Processor
(CCRP) [Wolfe92, Kozuch94, Benes97] is a MIPS pro-
cessor that compresses instruction cache lines using
Huffman coding. Dictionary compression methods
[Bell90] have been studied for several processors
[Liao95, Lefurgy97]. A software-managed compres-
sion-cache that decompresses functions on a cache miss
has been proposed [Kirovski97]. Compression algo-
rithms based on operand factorization and Markov mod-
els have been suggested for transmitting programs over
networks [Ernst97]. A C compiler that produces cus-
tomized compact interpreters and byte-code has been
demonstrated [Fraser95]. Carmel [Sucher98] is a DSP
architecture that uses a dictionary compression tech-
nique. More complicated compression algorithms have
combined operand factorization with Huffman and
arithmetic coding [Aranjo98, Lekatsas98]. A VLIW

program representation [Conte95] reduced program s
by eliminating NOP fields.

In a previous work [Lefurgy97], we used dictionary
compression to reduce the instruction memory footpri
of embedded programs. We examined replacing fr
quently used sequences of instructions with a codewo
The codeword served as an index into a list of instru
tion sequences. Fetching and decoding the codewo
recovered the original sequence of instructions to ex
cute. A variable-length encoding using small codewor
(8-bits, 12-bits, and 16-bits), allowed us to compre
PowerPC programs to 60% of their original size. W
will show that even simpler compression techniques c
improve SHARC [ADI] programs by much greate
amounts.

3  Compression architecture

Our compression scheme takes advantage of
observation that the instructions in programs are high
repetitive. Each unique instruction word in the progra
is put in an instruction table. Each instruction in the
program is then replaced with an index into this tabl
Because the instruction words are replaced with
shorter code and because the table overhead is usu
small compared to the program size, the compress
version is smaller than the original. Instructions tha
only appear once in the program are problematic. T
original instruction in the instruction table and the inde
in the program stream are larger than the single origin
instruction, causing a slight expansion from the nativ
representation.

The SHARC pipeline is shown in Figure 1
SHARC typically uses the Program Memory bus t
fetch instructions and uses the Data Memory bus
fetch data. However, it can also use these busses for d
data access. When this happens, instructions are e
cuted from the instruction cache so that the Progra
Memory bus can be used for data fetch. The modific
tion of SHARC for compressed programs is given i
Figure 2. We augment the 3 stage SHARC pipeline b
adding a pre-fetch stage. First, the pre-fetch sta
retrieves the 16-bit instruction index from the extern
memory. Theinstruction table address registerholds
the location of the instruction table in the internal mem
ory. Adding the contents of this register to the inde
forms the address of the SHARC instruction. Secon
the fetch stage uses this address to get the 48
SHARC instruction word. Finally, the instruction is
issued to the decode stage.

There are three costs for adding the pre-fetch sta
First, an extra internal memory bus must be added
support simultaneous access to the index memory, p
gram memory, and data memories. SHARC uses du
1



use
g
to

and
re

us
us
-
a-
re

re
to
i-

g
e
ch
C
e
-

ach
c-
ns

h
n
1
is
ns
e

re
n

gn-
ve
-bit
lds
is-

en
es,
e
et
d
-
as
ported SRAM to achieve simultaneous accesses over the
program and data busses. Instead of adding another port
to SRAM for the index bus, a separate SRAM block
could be dedicated to index memory. Second, the pre-
fetch stage adds a third branch delay slot. Last, one reg-
ister must be added to hold the address of the instruction
table.

When data and program accesses compete for
of the program bus, SHARC puts the conflictin
instruction in the instruction cache. Future references
the same instruction address can use the I-cache
allow the program bus to be used for data. This featu
allows loops with instructions that use the program b
for data access to execute without penalty due to b
contention. This is extremely important for DSP algo
rithms which tend to be composed of small, comput
tion-intensive loops. Our compression architectu
retains this valuable feature.

The 16-bit index limits a program to use only 64K
unique instructions. However, programs that use mo
instructions can be accommodated. One alternative is
add a mode-switching branch to the instruction set sim
lar to the one used in ARM [ARM95, Turley95]. This
would cause the fetch units to switch between usin
indexes and normal SHARC instructions. In nativ
mode, the pre-fetch stage could be turned off. The fet
stage would use the program counter to fetch SHAR
instructions as usual. Another possibility is to encod
different parts of the program by using different instruc
tion tables. By simply re-loading theinstruction table
address register, an entire new set of 64K instructions
can be used. This register can also be used to allow e
program in an embedded system to use its own instru
tion table so that the tables are tuned to the instructio
that the program actually uses.

3.1  Branch instructions

In our previous work, we did not compress branc
instructions because doing so could affect instructio
repetition in complicated ways. Using patterns of only
instruction with a fixed-length encoding eliminates th
problem. Compressing a program moves all instructio
to a different location. This affects branches which hav
index and address fields. Additionally, codewords a
smaller than the original instructions, so the instructio
fetch mechanism and branches must use a new ali
ment. Since we are using 16-bit codewords, PC-relati
branches and absolute branches now specify a 16
aligned address. In this simple scheme, the index fie
of the PC-relative branches do not change since the d
tance (number of instructions or codewords) betwe
the branch and target are the same. Absolute branch
which the compiler uses for function calls, must chang
to use the address for the new location of the targ
function. However, all such branches that matche
before will also match after this transformation. There
fore, we can easily compress branch instructions just
any other instruction.

Internal SRAM

Internal SRAM

Figure 1: SHARC pipeline
Top shows program fetch during execution of a
single data access instruction. Bottom shows
program fetch during execution of a dual data
access instruction. Instructions are fetched from
cache when execution unit uses both Program
and Data busses to fetch data.

Instruction
Cache

Insn-Fetch ExecuteDecode

In
st

ru
ct

io
n

In
st

ru
ct

io
n

A
dd

re
ss

In
st

ru
ct

io
n

In
de

x

A
dd

re
ss

Data
Bus

Program
Bus

Data
Bus

Program
Bus

Program
Memory

Data
Memory

Program
Memory

Data
Memory

Instruction
Cache

Data
Memory

Program
Memory

Index
Memory

Data
Memory

Program
Memory

Index
Memory

Figure 2: Compressed program pipeline
Top shows program fetch during single data path
instruction execution. Bottom shows program
fetch during dual data path execution.

Index-fetch Insn-Fetch ExecuteDecode

In
sn

. T
ab

le

In
st

ru
ct

io
n

A
dd

re
ss

In
st

ru
ct

io
n

In
de

x

A
dd

re
ss

In
st

ru
ct

io
n

In
de

x

A
dd

re
ss In
st

ru
ct

io
n

In
de

x

A
dd

re
ss

Program
Bus

Data
Bus

Program
Bus

Internal SRAM

Internal SRAM

Data
Bus

Index
Bus

Index
Bus
2



n
se
s,

in
e
l-
re-
as
is

e
n
ll
g
s-

C
o
c-

e
ns
s,
ig-

x
er
en

h-

-
h
er
are
e
nd
n-
tter
ios
s

4  Results

In this section we integrate our compression tech-
nique into the SHARC ADSP-2106x instruction set. We
use benchmarks from SPEC CINT95 [SPEC95] and
MediaBench [Lee97]. These benchmarks are compiled
with the VisualDSP compiler from Analog Devices. The
portions of the benchmarks for file I/O were removed
since they are not supported by the compiler’s libraries.
Our results include both application and library code.
All compressed program sizes include the overhead of
the dictionary.Compression ratiois used to measure the
amount of compressibility.

(Eq. 1)

Table 1 shows the results for the our basic compres-
sion method. Each benchmark was compiled with and
without optimizations. We only use “-O1” optimization
because higher levels of optimization exposed bugs in
the compiler. TheTable Sizecolumn is the number of
entries in theinstruction table. There is one entry for
each unique instruction bit pattern in the program.Com-
pressed Sizeis the combined size of the indexes and the
instruction table.

Classical code optimizations are one way to attain a
smaller code size. Using some optimization on the
benchmarks reduces the number of instructions, but it
also increases the table size. The table size increases
because the number of unique instructions increases
when single operation instructions are combined into 2
and 3 operation instructions. In un-optimized code,
instructions only contain 1 operation and are more
likely to match each other. The reduced number of
instructions in the optimized code did not account for
the increase in the table size. Therefore, the smallest
representation was attained by compressing un-opti-
mized code.

The instruction tables contain many instructions
that are used only once in the entire program. One rea-
son this happens is that the combination of registers the
register allocation algorithm uses for a particular

instruction may not match any other instruction. We ca
improve the compression ratios by removing the
unique instructions from the table. To accomplish thi
we select some instructions that can be represented
16-bits and mix them in with the index stream. Thes
short instructions will be coded with unused index va
ues. For this experiment, we selected the 8 most f
quent ALU operations for each benchmark to use
short instructions. The encoding of the index stream
as follows. If an index begins with the bit 0, then th
remaining 15 bits are the index into the instructio
table. If then index begins with 1, then next 3 bits wi
select an ALU operation in the SHARC. The remainin
12 bits are divided into groups of 4-bits to select 3 regi
ters for the ALU operation. The 3-bit ALU operation
field selects one entry from an 8-entry table of SHAR
ALU opcodes. This table could be programmable s
that each program could select the 8 best ALU instru
tions to help compression.

Results for mixing ALU operations and indexes ar
presented in Table 2. Some common ALU operatio
used are addition, multiplication, subtraction, pas
compare, increment, and decrement. This encoding s
nificantly reduces the table size. However, forghost-
script with optimization, there are too few unused inde
values to add the shortened ALU instructions. For oth
benchmarks, the compression ratio is improved betwe
1.2% and 3.7%.

5  Discussion

For comparison, we also compressed the benc
marks with a nibble compression algorithm
[Lefurgy97]. This algorithm reduces the size of code
words (indexes) to 8 bits, 12 bits, and 16 bits. Eac
codeword can represent a list of instructions. Howev
branch instructions are not encoded. Instead they
prefixed with an 4-bit escape nibble to differentiat
them from the codewords. Table 3 shows the results a
compares them to the baseline method. This demo
strates that more complicated schemes can attain be
compression ratios. Interestingly, the compression rat
for the larger benchmarks are quite similar which show

compression ratio
compressed size

original size
--------------------------------------=

Benchmark Optimization
Static

Instructions Table size
Original Size

(bytes)
Compressed
Size (bytes)

Compression
Ratio

mpeg2enc none 28,832 7,167 172,992 100,666 58.2%

-O1 26,537 8,118 159,222 101,782 63.9%

go none 81,343 8,564 488,058 214,070 43.9%

-O1 76,424 12,931 458,544 230,434 50.3%

ghostscript none 352,525 33,322 2,115,150 904,982 42.8%

-O1 310,869 49,734 1,865,214 920,142 49.3%

Table 1: Baseline results
3



t

s-
ed

g:

-

d

e

that even simple compression algorithms can be effec-
tive. Using the shorter codewords instead of compress-
ing branches yielded slightly better compression ratios
for the larger benchmarks.

In embedded systems that must use external mem-
ory to store programs, overlays are an important way to
effectively use internal memory to achieve high perfor-
mance. Code compression can assist such systems to
achieve even greater performance. Smaller code size
reduces the frequency at which overlays must be used
since a larger portion of the program can fit in internal
memory. In addition, loading a compressed function
from external memory requires less time than loading a
non-compressed function.

6  Conclusions

We have demonstrated that even simple compres-
sion methods can be highly effective at reducing code
sizes in DSP programs. Compressing only single
instructions to a fixed-length code allows us to have a
simple mechanism for decompression which has mini-
mal impact on the SHARC architecture. Our method
can compress programs to half their original size while
allowing the hand-coded numerical loops that are
important in DSP algorithms to run at native speeds.

Acknowledgments

This work was supported by DARPA gran
DABT63-97-C-0047.

References

[ADI]  Analog Devices, Inc.,SHARC User’s Manual.

[ARM95] Advanced RISC Machines Ltd.,An Introduction to
Thumb, March 1995.

[Bell90] T. Bell, J. Cleary, I. Witten,Text Compression, Pren-
tice Hall, 1990.

[Benes97]M. Benes, A. Wolfe, S. M. Nowick, “A High-Speed
Asynchronous Decompression Circuit for Embedded Proce
sors”, Proceedings of the 17th Conference on Advanc
Research in VLSI, September 1997.

[Conte95] T. Conte and S. Sathaye, “Dynamic Reschedulin
A Technique for Object Code Compatibility in VLIW Archi-
tectures”,Proceedings of the 28th Annual International Sym
posium on Microarchitecture, November 1995.

[Ernst97] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, an
T. A. Proebsting, “Code compression”,Proceedings of the
ACM SIGPLAN’97 Conference on Programming Languag
Design and Implementation (PLDI), June 1997.

[Fraser95] C. W. Fraser, T. A. Proebsting,Custom Instruction
Sets for Code Compression, unpublished, http://www.cs.ari-
zona.edu/people/todd/papers/pldi2.ps, October 1995.

[Kirovski97] D. Kirovski, J. Kin, and W. H. Mangione-Smith,
“Procedure Based Program Compression”,Proceedings of the

Benchmark Optimization Table size

Table size
change from

baseline
Compressed
size (bytes)

Compression
ratio

Compression
ratio change
from baseline

mpeg2enc none 6,107 -1060 94,306 54.5% -3.7%

-O1 7,323 -795 97,012 60.9% -3.0%

go none 7,213 -1351 205,964 42.2% -1.7%

-O1 11,728 -1203 223,216 48.7% -1.6%

ghostscript none 29,183 -4139 880,148 41.6% -1.2%

-O1 46,498 -3236 N/A N/A N/A

Table 2: Addition of short instruction words

Benchmark Optimization
Compressed
size (bytes)

Compression
ratio

Compression
ratio change
from baseline

mpeg2enc none 89,647 51.8% -6.4%

-O1 88,541 55.6% -8.3%

go none 196,260 40.2% -3.7%

-O1 203,632 43.3% -7.0%

ghostscript none 883,789 41.8% -1.0%

-O1 852,871 45.7% -3.6%

Table 3: Nibble encoding
4



y
ta

.

l

”.

i-
30th Annual International Symposium on Microarchitecture,
December 1997.

[Kozuch94] M. Kozuch and A. Wolfe,“ Compression of
Embedded System Programs,”IEEE International Conference
on Computer Design, 1994.

[Lee97] C. Lee, M. Potkonjak, and W. Mangione-Smith,
“MediaBench: A Tool for Evaluating and Synthesizing Multi-
media and Communications Systems”,Proceedings of the
30th Annual International Symposium on Microarchitecture,
December 1997.

[Lefurgy97] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge,
“Improving code density using compression techniques”,Pro-
ceedings of the 30th Annual International Symposium on
Microarchitecture, December 1997.

[Lekatsas98]H. Lekatsas and W. Wolf, “Code Compression
for Embedded Systems”,Proceedings of the 35th Design
Automation Conference, June 1998.

[Liao95] S. Liao, S. Devadas, K. Keutzer, “Code Densit
Optimization for Embedded DSP Processors Using Da
Compression Techniques”,Proceedings of the 15th Confer-
ence on Advanced Research in VLSI, March 1995.

[SPEC95] SPEC CPU’95, Technical Manual, August 1995.

[Sucher98] R. Sucher, R. Niggebaum, G. Fettweiss, and A
Rom, “CARMEL - A New High Performance DSP Core
Using CLIW”, 9th Annual International Conference on Signa
Processing Applications and Technology, September 1998.

[Turley95] J. L. Turley. “Thumb squeezes arm code size
Microprocessor Report, 9(4), 27 March 1995.

[Wolfe92] A. Wolfe and A. Chanin, “Executing Compressed
Programs on an Embedded RISC Architecture,”Proceedings
of the 25th Annual International Symposium on Microarch
tecture, December 1992.
5


	Abstract
	1 Introduction
	2 Previous work
	3 Compression architecture
	3.1 Branch instructions

	4 Results
	Table 1: Baseline results
	Table 2: Addition of short instruction words

	5 Discussion
	Table 3: Nibble encoding

	6 Conclusions
	Acknowledgments

